

Mechanistic Indicators of Childhood Asthma (MICA) Study

Elaine Cohen Hubal, David Reif, Stephen Edwards, Lucus Neas, Ed Hudgens, Jane Gallagher

11th SAC Seminar: NEW TRENDS IN CHEMICAL TOXICOLOGY 22 – 25 September 2008 Danilovskaya Hotel, Moscow, Russian Federation

Office of Research and Development National Center for Computational Toxicology

September 23, 2008

Mechanistic Indicators of Childhood Asthma (MICA)

- Apply state-of-the-art technologies to examine the interplay between environmental and genetic factors affecting asthma
- 100 asthmatic and 100 non-asthmatic children, ages 9-12 years (subset of Detroit Children's Health Study cohort)
- Collected multiple types of clinical, demographic, exposure, and gene expression data
- Consider markers of susceptibility, exposure, and effects to analyze and characterize combined risk factors that relate to asthma severity
- http://www.epa.gov/dears/studies.htm

Jane Gallagher

Slide taken from the **MICA** educational presentation used in our study in Detroit

Biomarker Framework

Characteristics of our MICA Study Sample

Range (Years) = [9.5,13.5]

MICA Childhood Study Multiple Risk Factors

Jane Gallagher

8

Collaborative NCCT-MICA Goals

- The objectives of the NCCT include advancement of a systems approach to evaluate complex relationships between
 - environmental factors
 - physiological biomarkers
 - health outcomes.
- NCCT collaborating to apply advanced statistical and machine learning methods to evaluate biomarker data collected in MICA
- Contribution of the NCCT component:
 - analyze genetic and gene expression data
 - use a systems biology approach to put data into framework for evaluating ecogenetics

Data Analysis Methods

- <u>Traditional statistics</u>: linear regression, logistic regression, ANOVA, linear discriminant analysis.
- <u>Machine learning</u>: recursive partitioning trees, bootstrap aggregation (bagging) techniques, evolutionary computation-optimized classifiers, multifactor dimensionality reduction, random forests.
- <u>Bioinformatics</u>: protein interaction databases, knowledge (literature) mining tools, biological pathway database and inference software.
- <u>Graphical approaches</u>: cluster diagrams, expression "heat" maps, dendrograms, overlaid scatter plots (both exploratory and summary), distributional "violin" plots, regression plots.

MICA: Physiological Markers/ Health Status

Red – Asthmic White – Non Asthmatic

Gene expression measured using oligonucleotide microarrays

{gene expression} Genetics

IMPORTANT: Total RNA was taken from whole blood samples in the <u>absence</u> of any deliberate experimental perturbation.

-6

Can Gene Expression Distinguish Subtypes of Asthmatics?

- To identify subtypes, first applying an unbiased (i.e. without knowledge of asthma status) analysis to assess association between gene expression data and information on clinical, demographic, and exposure indicators.
- Next, select only gene expression probe sets that are significantly correlated with at least one of the demographic, clinical, or exposure indicators.
 - This filtering method prevents selecting only genes whose expression is associated with broadly-defined, imperfect asthma diagnoses.
- Examination of the genes differentiating asthma subtypes in this context highlights mechanistic genomic etiologies underlying the disease. These include subtypes of asthma characterized by
 - Patterns of gene expression associated with immune over-stimulation and household allergy exposures
 - Combinations of genomic biomarkers with demographic factors such as gender

Why not just do the usual "here are some main-effect Agency genes that discriminate asthmatics versus non-asthmatics"?

€FPA

United States

Does **not** address gene expression profiles associated with subtypes of asthma

Office of Research and Development National Center for Computational Tox Dogs <u>not</u> link gene expression with other biomarkers or 15 covariates (Where is the context?) **David Reif**

Why not just do the usual "here are some main-effect **Environmental Protection** genes that discriminate asthmatics versus non-asthmatics"?

Reliance on group means **ignores** the complexity of asthma etiology

Agency

The ultimate goal is to glean mechanistic information regarding asthma subtypes

Analysis pipeline for the gene expression data

How do we leverage MICA covariate information for the gene expression analysis?

Are MICA covariates reflective of underlying gene expression patterns?

David Reif

Genes

Long_ort MIRCT EMIRCT L_EMI OUTLELEAS

L_Manalaz L_MBOOt L_MBOOt

Pet.Bergt

FetLyn

Absolute value of gene-covariate correlation

1.0

0.0

Can we discriminate between subtypes of asthma?

Can we leverage covariate information to put gene expression asthma classifier results in context?

Summary

- Integration of diverse set of exposure, effects and susceptibility measures
- High-data content technologies, elucidating the genetic and environmental basis for toxicity and disease

Acknowledgements

- Jane Gallagher, Human Studies Division, NHEERL
- Stephen Edwards, National Human and Environmental Effects Laboratory
- David Reif, National Center for Computational Toxicology
- Wendell Jones, Expression Analysis
- John Wambaugh, National Center for Computational Toxicology

Disclaimer

Although this work was reviewed by EPA and approved for presentation, it may not necessarily reflect official Agency policy.