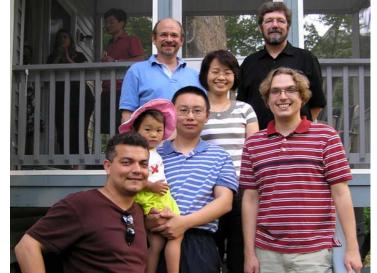


PHARMACOKINETIC MODELING OF PERFLUOROALKYL ACIDS IN RODENTS

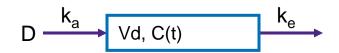
Hugh A. Barton



Acknowledgements

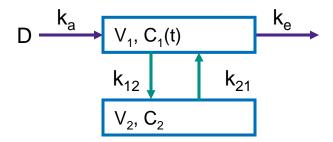
- Inchio Lou, University of North Carolina and US EPA, NCCT
- John Wambaugh, US EPA, NCCT
- Chester Rodriguez, US EPA, NCCT
- R. Woodrow Setzer, US EPA, NCCT
- Chris Lau, US EPA, NHEERL, RTD
- Roger G Hanson, US EPA, NHEERL, RTD
- Andrew B. Lindstrom, US EPA, NERL
- Mark J. Strynar, US EPA, NERL

This presentation does not represent offical Agency policy.



Outline

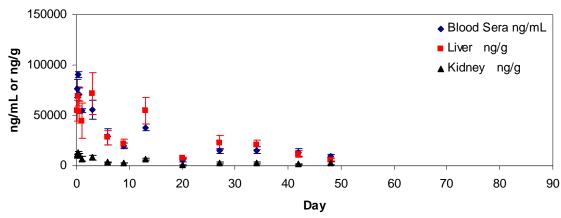
- Issues
- Classical PK Models for PFOA
- Saturable Reabsorption Model for PFOA
- Early Life Modeling
- Conclusions

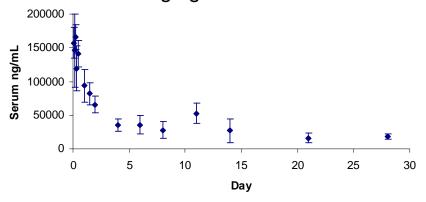


Classical Compartmental Analyses

- One and two compartment models with first order absorption and elimination
- Fitted by generalized nonlinear least squares

$$C(t) = \frac{k_a D}{(k_a - k_e)V_d} (e^{-k_e t} - e^{-k_a t})$$


$$C(t) = \frac{k_a D}{V_1} \left[(\frac{k_{21} - \alpha}{(k_a - \alpha)(\beta - \alpha)}) e^{-\alpha t} + (\frac{k_{21} - \beta}{(k_a - \beta)(\alpha - \beta)}) e^{-\beta t} - (\frac{k_{21} - k_a}{(\alpha - k_a)(k_a - \beta)}) e^{-k_a t} \right]$$


PFOA kinetic studies (aqueous gavage)

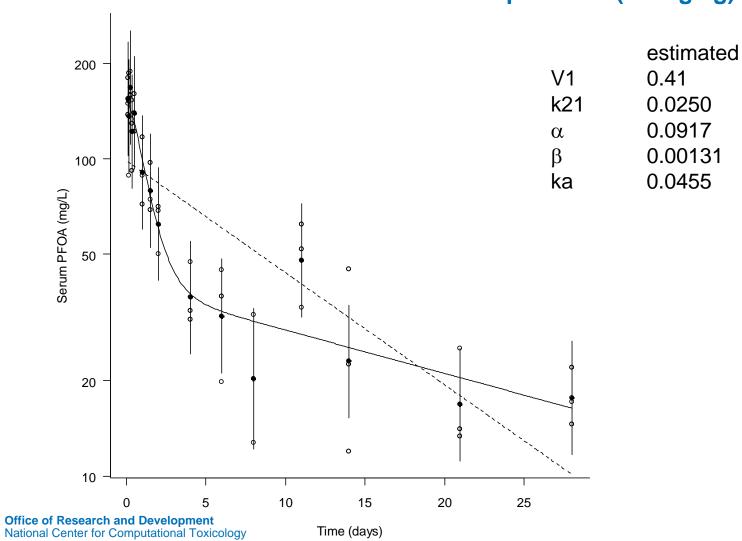
- Male & Female CD1 mice
- 1 & 10 mg/kg
- Serum, liver, kidney concentrations
- 60 mg/kg serum only in females only

10 mg/kg Female CD1 Mice (block 1)

60 mg/kg Female CD1 Mice

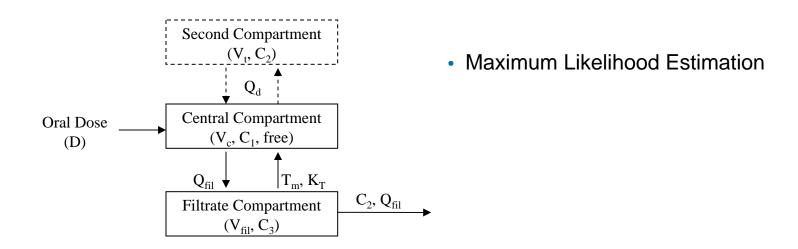
Parameter estimation summary after considering effects of gender, blocks and doses (1 & 10 mg/kg)

Vd: L/Kg; ka:h-1; ke:h-1			Female (95% confidence interval)	Male (95% confidence interval)	
Blood Sera	$V_{\rm d}$		0.135 (0.102-0.179)	0.226 (0.202-0.253)	
	k _a		0.537 (0.300-0.960)		
	k _e		0.00185 (0.00175-0.00196)	0.00133 (0.00120-0.00148)	
Liver	$V_{\rm d}$		0.161 (0.148-0.176)	0.120 (0.111-0.129)	
	k _a		0.517 (0.303-0.881)		
	k _e		0.00161 (0.00143-0.00181)	0.00129 (0.00115-0.00145)	
Kidney	V _d	1 mg/Kg	0.822 (0.745-0.908)	1.280 (1.145-1.432)	
		10 mg/Kg	1.092 (1.004-1.188)	1.700 (1.520-1.902)	
	k _a		0.527		
	k _e		0.00151 (0.00138-0.00166)	0.00113 (0.000992-0.00128)	



Female Half Lives (One Compartment)

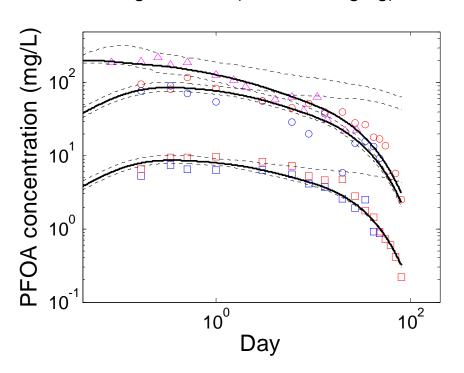
- Single Dose (1, 10 mg/kg/day)
 - $\text{Ke} = 0.00185 \text{ h}^{-1} \text{ T}\frac{1}{2} = 15.6 \text{ days}$
- Repeated Dosing (20 mg/kg/day aqueous gavage)
 - 176 ± 56 mg/L 24 hr after 7 days of dosing
 - 172 ± 34 mg/L 24 hr after 17 days of dosing
 - $\text{Ke} = 0.0255 \text{ h}^{-1} \text{ T } \frac{1}{2} = 1.1 \text{ days}$
- T ½ appears concentration dependent



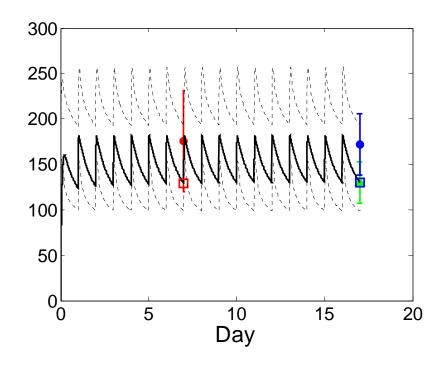
Two Compartment (60 mg/kg)

Saturable Reabsorption Model

Andersen ME, Clewell HJ, Tan Y, Butenhoff JL and Olsen GW (2006), Pharmacokinetic modeling of saturable, renal resorption of perfluoroalkylacids in monkeys – Probing the determinants of long plasma half-lives, 227: 156-164, Toxicology.

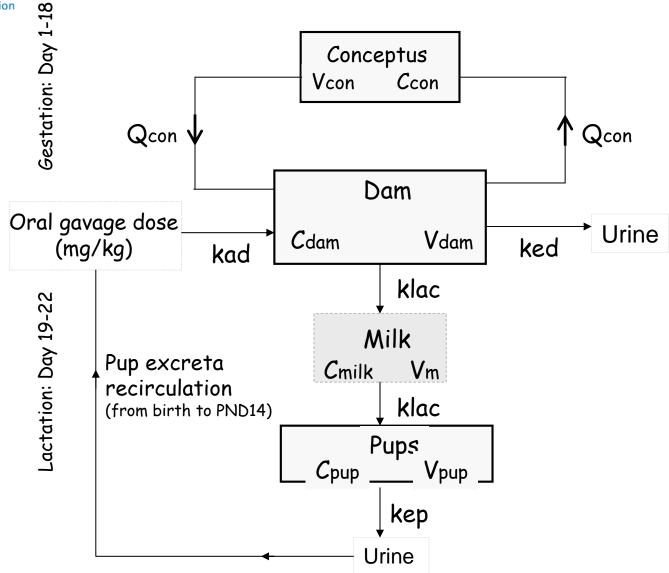

Saturable Reabsorption Parameters

Parameter	Value (Standard Error)	
Body Weight (BW)	25 g	
Cardiac output	16.5 L/hr for mice	
Absorption rate constant in the central compartment (k _a)	0.537 h ⁻¹ (estimated from single dose data using one compartment model)	
Volume of distribution in the central compartment (V_c)	0.00326 (0.00015) L	
Volume of renal filtrate (V _{fil})	0.01 L (Andersen, et al., 2006)	
Renal blood filtrate rate (Q _{fil})	0.0258 (0.00086) L/h	
Volume of distribution of second body compartment (Vt)	0.502 (0.934) L	
Intercompartmental clearance	0.0000056 (0.0000005) L/h	
Transport maximum (T _m)	0.117 (0.018) mg/h	
Transport affinity constant (K _T)	0.001 (0.0007) mg/L	
Proportion of PFOA free in serum (free)	0.06 (0.015)	

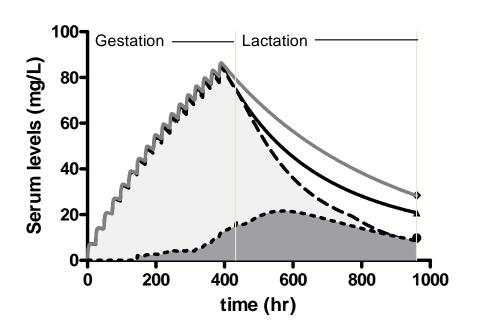


Saturable Reabsorption Simulations

Single Doses (1, 10, 60 mg/kg)



Repeated Doses (20 mg/kg, 7 & 17 days)


Linear Pregnancy/Lactation Model

Non-pregnant, pregnant, lactating 129 mouse dam & offspring

1.0 mg/kg/day

- Adult non-pregnant
- ◆ Abbott et al. 2007
- Non-Lactating dam
- ▲ Abbott et al. 2007
- - Lactating dam (mg/L)
- Abbott et al. 2007
- · · · Pup
- Abbott et al. 2007

Conclusions

- Male and female mice similar distribution and clearance at 1 and 10 mg/kg following single oral dose
- One compartment model appropriate for 1 and 10 mg/kg data, but two compartment required for 60 mg/kg
- Concentration dependent changes in distribution and clearance
- Saturable reabsorption plausibly explains data
- Early life modeling ongoing

Unresolved Issues

- Mouse strain PK differences CD1 & 129J
- Time- & concentration-dependent changes in biliary excretion, liver tissue distribution, urinary clearance – impacts of saturable processes, age, chemical?
- Saturable reabsorption? No direct urinary excretion data.
- Quantification tissue processing and analytical chemistry can be reproducible, but can also result in substantial differences. Comparisons across experiments and laboratories require caution.