Factors Influencing Decomposition of Surface Litter from the Cerrado in Central Brazil

R.G. Zepp¹, M. Molina¹, M. Cyterski¹, K. Kisselle², A.R. Kozovits³, M.R.S.S. Silva⁴, D.A. da Silva⁴, and M.M.C. Bustamante⁴

¹U.S. EPA, Athens GA; ² Austin College, Sherman TX; ³Universidade Federal de Ouro Preto; ⁴Universidade de Brasília

RESEARCH & DEVELOPMENT

OUTLINE

 Pathways for effects of light and fertilization on surface litter decomposition
Action spectra for photodecomposition
Comparisons to field studies
Fertilization effects

RESEARCH & DEVELOPMENT

Projected Changes in Amazon Vegetation Cover Cox et al, 2004

RESEARCH & DEVELOPMENT

Pathways for Plant Litter Transformation and Transport

CDOM is colored (chromophoric) dissolved organic matter -important in remote sensing of color; UV protection

RESEARCH & DEVELOPMENT

RESEARCH & DEVELOPMENT

Light-induced Litter Decomposition in Patagonian Steppe

RESEARCH & DEVELOPMENT

Competing Effects of Solar Ultraviolet Radiation on Plant Litter Decomposition

- Enhances decomposition by direct photoreactions (open, arid ecosystems)
- Slows decomposition by inhibition of decomposers (e.g. fungi)
- Changes leaf composition in growing plants thus altering decomposition

RESEARCH & DEVELOPMENT

Processes Driving Trace Gas Exchange In Terrestrial Ecosystems

RESEARCH & DEVELOPMENT

CO Fluxes From Sunlight-Exposed Litter

RESEARCH & DEVELOPMENT

Developing Relationships Required to Model Sunlight-Induced Decomposition of Plant Litter

General Approach: Determine action spectra using Rundel technique (Rundel, *Physiol. Plant.*, 58, (1986) 360-366.) Steps:

- Determine decomposition rates by following certain indicators, e.g. weight loss, CO₂ or CO production using filters that block UV
- -Measure irradiance of filtered light
- -Fit the data using exponential (or other) equation of form (EXP (a + b * Wavelength)
- -Use Excel Solver to compute values of a and b that minimize difference between observed and computed decomp rates

۲

RESEARCH & DEVELOPMENT

Filtered Irradiance Used to Determine Action Spectra For Litter Decomposition

RESEARCH & DEVELOPMENT

CO Production from Various Cerrado Litter Sources Exposed to Filtered Simulated Solar Radiation

RESEARCH & DEVELOPMENT

Equation and Data Describing Litter Photodegradation Fluxes

$Flux = a exp^{-DA}$						
Species	а	b	RMSE	Sun Flux		
Kielmeyera coriacea	-2.37	-0.0198	0.00131	0.0028		
Qualea grandiflora	3.12	-0.0348	0.00165	0.0031		
Brachiaria sp.	8.63	-0.0507	0.00417	0.0034		
Sheflera macrocarpum	2.78	-0.0314	0.00484	0.0073		
Vochysia elliptica	7.55	-0.0448	0.00421	0.0085		
Vochysia thyrsoidea	-0.40	-0.0219	0.00677	0.0093		

RESEARCH & DEVELOPMENT

Action Spectra for Plant Litter Photodecomposition

۲

RESEARCH & DEVELOPMENT

Wavelength Effects for Sunlight-induced Decomposition of *Brachiaria sp*

RESEARCH & DEVELOPMENT

Estimated Relationship Between Degradation and Photosynthetically Active Radiation (PAR)

CO flux = $7.5 \times 10^{-6} \times (PAR)$

 CO_2 flux = (7.5 -15) x 10⁻⁶ x (PAR) (PAR expressed as W m⁻²)

For Cerrado CO₂ in dry season est. 0.3-0.6 µmol m⁻² s⁻¹ ~15-30% of observed

RESEARCH & DEVELOPMENT

Litter CO Fluxes Observed in Cerrado Sites Kisselle et al., 2002

۲

RESEARCH & DEVELOPMENT

Fertilizer Effects: Long-term **Incubation** Experiment **Collect Soil samples** 0-10 cm 10-20 cm Fertilizers added: N, P, N+P All fertilizers added in granular Sieving form Jars were incubated in the dark at Addition of Soil and room temperature, at 60% WHC Nutrients to Jars for 143 days. Measure •CO2 (Licor) •CO (Trace A)

۲

RESEARCH & DEVELOPMENT

Fertilization Effects on Average CO₂ Flux from Soils (0-10 cm Depth)

RESEARCH & DEVELOPMENT

Fertilization Effects on Exponential Decay Constants for the Active and Slow C Pools in Cerrado Soils

	Original Soil	Act. C	Slow
Treatments	Depth (cm)	k _a	C k _s
Control	0-10	0.52	0.03
Ν		1.03	0.03
Р		2.26	0.02
N+P		0.62	0.03
Control	10-20	0.06	0.00
Ν		0.13	0.00
Р		0.23	0.01
N+P		0.13	0.01

RESEARCH & DEVELOPMENT

CO Uptake By Cerrado Soil Treated with Fertilizer

۲

RESEARCH & DEVELOPMENT

Deposition Velocities for CO Uptake By Soil Treated With Fertilizer

RESEARCH & DEVELOPMENT

Summary of Results and Conclusions

- Litter photodegradation is a significant CO source and loss pathway for surface litter in the Cerrado during dry season.
- Action spectra for litter photodegradation are species dependent and induced primarily by UV component of sunlight
- Fertilizer addition, esp. P, increases the microbial respiration of the labile C of surface SOM from Cerrado s.s. and enhances CO uptake

RESEARCH & DEVELOPMENT