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EXECUTIVE SUMMARY

Contaminated water can lead to volatilization of chemicalsto residential indoor air.
Previous research has focused on only one source (shower stalls) and has been limited to
chemicals in which gas-phase resistance to mass transfer is of margina significance. Asaresult,
attempts to extrapolate chemical emissions from high-volatility chemicalsto lower volatility
chemicals, or to sources other than showers, have been difficult or impossible.

In this study two-phase dynamic mass bal ance models were developed for estimating
chemical emissions from washing machines, dishwashers, and bathtubs. An existing model was
adopted for showers only. The mass transfer theory and derivations of these models are further
described in chapter 2 of thisreport. Source- and chemical-specific mass transfer coefficients, as
well as air exchange (ventilation) rates were estimated based on a series of experiments. These
experiments were conducted using 5 tracer chemicals (acetone, ethyl acetate, toluene,
ethylbenzene, and cyclohexane) and 4 sources (showers, bathtubs, washing machines, and
dishwashers). Each set of experiments led to the determination of chemical stripping efficiencies
and mass transfer coefficients (overall, liquid-phase, gas-phase), and to an assessment of the
importance of gas-phase resistance to mass transfer.

A set of protocols for estimating emission rates for chemicals other than those used in this
study was defined for each of the four sources. Example applications are provided and illustrate
the dynamic behavior of emissions and importance of chemical properties on such emissions.
The experimental mass transfer coefficients, air exchange rates and protocols described in this
report can be used as direct input values or to estimate reasonable input values for the reported
emission models.

Stripping efficiencies ranged from 6.3% to 80% for showers, 2.6% to 69% for bathtubs,
18% to 100% for dishwashers, and 3.8% to 100% for washing machines. Acetone and
cyclohexane always defined the lower and upper bounds, respectively, of these ranges.

The findings of this study lead to several conclusions. A detailed discussion of
conclusions is presented in chapter 9. Some of the most significant conclusions are summarized
below.

. System operating conditions can have a significant effect on chemical emissions. In
particular, chemical stripping efficiencies for washing machines were observed to be
highly sensitive to system operating conditions.

. Water temperature was an important variable that affected stripping efficiencies and mass
transfer coefficients for all sources.



Chemical stripping efficiencies increase as Henry’ s law constant increases for lower-
volatility chemicals. However, with the exception of the fill-cycle of bathtubs, chemical
stripping efficiencies are relatively insensitive to Henry’ s law constant for chemicals with
constants greater than that of toluene.

Failure to account for gas-phase resistance to mass transfer can lead to significant
overestimates of chemical volatilization to indoor air. Thisis particularly true for lower-
volatility chemicals or those sources with low values of gas- to liquid-phase mass transfer
coefficients (k/k)), €.9., washing machines.

Results for shower experiments were reasonably consistent with those reported by other
researchers with stripping efficiencies ranging from 60% to 80% for chemicals with
Henry’s law constant equal or greater than that of toluene.

Gas-phase concentrations were homogeneous throughout the shower stall demonstrating
that the frequent assumption of awell-mixed system is reasonably accurate.

Dishwashers were determined to be very effective at removing chemicals from water to
air, with low but continuous emissions during operation and significant storage within the
dishwasher headspace. The most significant release of chemicalsto indoor air would
occur if the dishwasher door is opened immediately after use.

Washing machines during the rinse cycle with hot water and low clothes loading resulted
in stripping efficiencies that approached 100% for chemicals with Henry’ s law constant
greater than toluene.

Bathtubs may be more significant than showers with respect to human exposure to
chemicals dissolved in water because of longer exposure times.
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PREFACE

This report was prepared under the direction of the National Center for Environmental
Assessment (NCEA) of EPA’s Office of Research and Development (ORD). The purpose of this
report is to provide a methodol ogy for estimating chemical emissions from washing machines,
dishwashers, showers, and bathtubs. The methodology presented in this report was derived from
volatilization experiments conducted by The University of Texas at Austin under a Cooperative
Agreement with NCEA. Results of these experiments are included in the report.
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