

Adapting Management to Climate Change

Dr. Lara Hansen, Chief Scientist, WWF Climate Change Programme

Source: J.R. Petit, J. Jouzel, et al. Climate and atmospheric history of the past 420 000 years from the Vostok ice core in Antarctica, Nature 399 (3JUne), pp 429-436, 1999.

Source: J.R. Petit, J. Jouzel, et al. Climate and atmospheric history of the past 420 000 years from the Vostok ice core in Antarctice, Nature 399 (3JUne), pp 429-436, 1999.

550

Source: J.R. Petit, J. Jouzel, et al. Climate and atmospheric history of the past 420 000 years from the Vostok ice core in Antarctica, Nature 399 (3JUne), pp 429-436, 1999.

2005: A Year of Records

- Hottest Year Ever
- Least Icy Arctic Ever
- Hottest Water Ever in the Caribbean
- 5 Records Broken by Atlantic Hurricane Season
 - most named storms (26)
 - most hurricanes (14 storms w/winds exceeding 74 mph)
 - most category five storms (5 storms over 155 mph)
 - most storms hitting the US (4 make landfall)
 - most expensive (well over \$100 billion)
- Record Droughts around the planet

2005 Surface Temperature Anomoly Global Average

0.72°C above historical average

Source: NASA

Ocean Acidification

- 0.1 unit reduction in the pH of surface sea water over past 200 years
- (=30% [H⁺] increase)
- 0.5 unit reduction predicted by 2100
- (=300% [H⁺] increase)
- Change and rate of change greater than seen in "hundreds of millennia"

INTERACTIVE EFFECTS

Interactive Effects

- Stressors can interact to make the intensity of their effect different than one would expect.
- Antagonistic 1+1 < 2
- Additive 1 + 1 = 2 (anticipated response)
- Synergistic 1 + 1 = 3
- Potentiated 1 + 1 = 200

Climate & Contaminant Interactions

Climate Change :

\uparrow Temperature & \downarrow PH

Frequently:

 $\uparrow \text{Temperature} \rightarrow \uparrow \text{Toxicity}$ $\downarrow \text{PH} \rightarrow \uparrow \text{Toxicity}$

Climate & Contaminant Interactions

Implications:

- Energetic Taxation (particularly in polar regions)
- Altered Hydrology- TMDLs, permits
- Increased use of chemical in response to climate change
- Temperature/precipitation-altered transport distance and destination

Interactions ~ Temp/Contaminants

Rainbow Trout

2 x2 experiment (Ammonia and +2°C temperature)

Ammonia alone = little impact on gill protein synthesis, protein or muscle degradation, although some liver protein degradation

+ 2°C = slight increase in liver and gill protein turnover

Ammonia + 2°C = inhibited protein dynamics in gill and liver (Reid *et al.* 1998)

Similar effects have been found with metals, pesticides,

Interactions ~ pH/Contaminants

Hg toxicity \uparrow with \downarrow pH in penaeid prawns	penaeid prawns	Das and Sahu. 2005. Chemosphere 58(9):1241-8
Zn toxicity can ↑ at both ends of the pH spectrum	brown trout	Everall, Macfarlane and Sedgwick. 1989. Journal of Fish Biology 35(1):27–36
↓pH increases [] of Al, Mn, Zn; Hg, Pb and Cd bioaccumulation \uparrow with ↓ pH	Across aquatic systems	National Academy of Sciences. 1985. Acid Deposition: Effects on Geochemical Cycling and Biological Availability of Trace Elements

Another Global Change: UV Interactions

• PAHs

- Pesticides
 - Metals

• Global Climate Change

Interactions ~ UV/Acidity/Climate Change

Experimental Lake Area (ELA), Ontario Canada UV attenuation in water largely due to [DOC] Climate warming and acidification both \downarrow DOC, thereby \uparrow UV-B (more so than ozone depletion) Stratospheric ozone thinning = 10% UVB increase at ELA 10% Decrease in DOC = 11% UVB increase at ELA 80% Decrease in DOC = 400% UVB increase at ELA (Schindler et al. 1996)

Interactions ~ UV/Metals

UV and Arsenic

What do we do about it?

A User's Manual for Building Resistance and Resilience to Climate Change in Natural Systems

> L Binnger, nd J.R. Hoffman

WWF Approach to Climate Adaptation

1) Protect Adequate and Appropriate Space

2) Limit all **non**climate stresses

3) Use active adaptive management approaches and start testing strategies

> 4) **Reduce** Greenhouse Gas Emissions

1) Protect adequate and appropriate space for a changing world

WWF

Spatial Considerations Require Temporal/Climate Aware Thinking

Refugia
Gradients (Latitudinal/Elevational)
Heterogeneity
Gene flow/Connectivity
Inclusion of other changes in the watershed/landscape/seascape

2) Reduce non-climate stresses on natural systems

Unsustainable Harvest

Invasive Species & Pests Habitat Degradation

Pollution

8

Agriculture & Habitat Fragmentation

©WWF/Kjell-Arne LARSSON

©WWF-Canon/ Edward PARKER

Non-climate stresses

- Mountain pine beetles
 - -10 years

 Winter low of -40°C or sudden cold snap in early fall or late spring of -25°C would end the outbreak.

Source: Ministry of Forestry and Range

Managing with Change in Mind

- Reconsider regulatory limits
 - Physical and chemical changes may interact
- Reconsider monitoring approaches
 - Do sites and sampling times account for regional change and variability?
 - Are there parameters that you should be adding?
- Prepare for possible changes before they come
 There are thresholds- Mountain Pine Beetle

3) Employ active adaptive management approaches and start testing strategies

Coral Reef Resilience

Losing India to Rising Seas

Conservation in the face of sea level rise in the Sundarbans

3.14mm/year sea level rise 12 islands lost by 2020

4) Reduce Greenhouse Gas Emissions

For some systems resilience building options are scarce and mitigation is needed

2 °C

4 °C

Limitations to Resilience Building

Temp. ChangeEffects on Biodiversity

Some species lost Possible management options exist

Many species lost Some management options may exist (EXTREMELY EXPENSIVE, Low Likelihood of Success)

6 °C Dire

From Parmesan, 2003

Take Home Messages

- Contaminant and Climate Impacts are important to conservation efforts
- Impacts seen all over the world (even in seeming pristine areas)
- Impacts are often sublethal, resulting in longer response times
- Variability and Scale must be considered
- Current and future regulatory efforts must catchup with on-going anthropogenic change

Non-climate stresses

• Mountain pine beetles

