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APPENDIX C 

 

METHODS AND RESULTS DETAILS FOR CASE STUDY 1: THE POWER OF 

BIOLOGICAL ASSESSMENTS TO DETECT CLIMATE CHANGE 
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C.1.  DETAILED METHODS FOR CASE STUDY 1 1 
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C.1.1.  Analysis Approach 

Power, as it relates to a monitoring program, is the ability to detect a real effect that has 

occurred.  In statistical jargon, power is defined as the probability of rejecting a false null 

hypothesis.  The more power a test has, the more likely one is to correctly infer that a real change 

has actually occurred.  Power is related to type II error (β), which is the probability of accepting 

a null hypothesis (no change) when it is false (things changed).  Thus, power = 1-β.   

This study focuses on climate change effects associated with temperature, principally 

because 1) the goal is to demonstrate a process for calculating the capacity of a program to detect 

change and not to predict all the effects of climate change and 2) while few data exist on climate 

change effects on aquatic assemblages in general, there are more data on temperature effects than 

hydrologic effects.  As discussed in Section 4.1, this case study attempts to answer two 

questions:  

• How long must monitoring be conducted to have a fixed probability of detecting a change 

in the mean native taxa richness of the reference site population?  

• How long must monitoring be conducted to have a fixed probability of detecting a change 

in mean native taxa richness for a particular site?  

Predicted macroinvertebrate taxa loss rates due to temperature increases were derived 

from the literature based on observed changes in taxa richness associated with temperature 

increases.   

For this study, native or expected taxa richness is considered rather than total richness; 

species replacement is not being considered.  Total richness may not change if species 

replacement rates are high.  For example, it is possible that stenothermal species (those with a 

narrow range of temperature tolerance) that are lost will be replaced over time by eurythermal 

taxa (those with wide temperature tolerances).  However, native taxa are expected to be lost from 

many streams (e.g., Moore et al., 1997; Xenopolous et al., 2005; Parmesan, 2006), and native 

taxa richness based on current climate will decrease.  It is this loss rate that is considered here. 

Many other ecological responses are expected but are not being considered in this study.  

For example, responses such as density and range shifts, changes in timing of important life 

history stages and phenology, morphological, physiological, and behavioral changes, and 
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changes in gene frequencies (Schindler, 1997; Hogg et al., 1998; Walther et al., 2002; Root et al., 

2003; Parmesan, 2006) are not being considered.  Taxa richness, a very common component 

metric evaluated in bioassessment programs and incorporated in multimetric indices, is evaluated 

for signs of bioassessment program vulnerability. 

C.1.2.  Ability to Detect Change–Power Analysis 

Power analyses requires several critical components:  the sample size (N), the variability 

in an observed factor (taxa richness in this case) (σ), the effect size (how much of a change one 

wants to detect, δ), and the significance level (type I error, α).  In this case study, the power 

analysis approach was used to evaluate how much of a change in taxa richness (the effect size or 

minimal detectable difference) can be detected in a typical biomonitoring program.  This 

detectable difference will then be compared to expected taxa loss from climate change to see 

how long (in years) the program must monitor to have assurance (at a set probability level) of 

being able to detect a taxa loss signal resulting only from climate change, all else being equal.  

For this application of power analysis, we must fix the desired level of power (1 - β) as well.  

The case study demonstrates how changing some of these components can increase or decrease 

the ability to detect a climate change effect. 

The equations for calculating effect size for comparing two paired population means can 

be found in many statistical textbooks.  The basic formula, assuming normally distributed 

populations, is: 

n
ZZ σ

δ βα ×+
= −− )( 12/1

 (after Snedecor and Cochran, 1980) 20 

21 

22 

23 

24 

25 

26 

27 

28 

 

where Zα and Zβ are the z-scores (probability levels) for the desired type I (α) and type II (β) 

error rates.   

The power equation above requires knowledge of two critical variables, population 

variance (σ2) and effect size.  For this case study, variance is estimated using existing monitoring 

data for sites sampled repeatedly over several years during an index period.  Such data give an 

estimate of the natural variability in biological condition through time, assuming minimal 

external changes.  Knowledge about what taxa changes (effect size) might be expected in 
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response to climate change is also needed.  This value can be derived from existing literature on 

taxa loss in relation to temperature changes. 

C.1.3.  Data Sets Analyzed 

C.1.3.1.  MBSS Biological Data 

For this case study, the Maryland Biological Stream Survey (MBSS) dataset was used to 

estimate population variance (σ2).  The MBSS biological monitoring program approach and 

sampling methods are described in Appendix B. 

A series of 28 MBSS sentinel sites have been monitored annually for the last 6 years, 

including sampling for benthic macroinvertebrates and fish using the same protocols described in 

Appendix B.  This 6-year period fortuitously includes both a dry and a wet climate cycle.  These 

repeat visit data are used to calculate an estimate of σ2, variance in taxa richness.  While this case 

study compares expected effects across various regions of the US, the MBSS derived variance 

will be used for all regions as the estimate of variance associated with biomonitoring. 

Relative variability of taxa richness is assumed to be constant over time.  This is likely 

not true as both the mean and variation in biological condition of sites may change with warming 

water temperatures.  For simplicity, it is assumed that the variance in taxa richness associated 

with the MBSS program can be extrapolated in time and across different regions. 

C.1.3.2.  Information on Taxa Loss Rates 

Macroinvertebrate taxa (i.e., genus or species, reflecting practical taxonomic limitations) 

loss rates were obtained from two sources.  A study in France examined taxa loss associated with 

climate changes in the upper Rhone River over a 20 year period (Daufresne et al., 2003).  The 

other source was the Clean Water Act 316(a) program, which includes studies on thermal 

discharges (e.g., Lehigh University, 1960; Morgan and Coutant, 1972; Coutant and Pfuderer, 

1973; Talmage and Coutant, 1980; Energy Citations Database 

(http://www.osti.gov/energycitations/index.jsp)).   

Daufresne et al. (2003) observed a loss of 7 macroinvertebrate taxa in streams associated 

with a 1.5 ºC increase over the period 1980–1999; this will be referred to as the high taxa loss 

rate.  This equals a loss rate of roughly 4.6 taxa per °C.  In reality, taxa loss rates are likely to 

occur episodically over time, for instance when particular species thresholds are reached.  It is 

understood that by looking at total change in number of species over a sufficiently long time 
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period and relating this to total observed temperature change, we are essentially estimating 

average species loss per unit of temperature change, and making an assumption of a linear loss 

rate is only to allow projection of further losses in the future.   

The second estimate was derived from the literature associated with thermal discharge 

studies associated with the Clean Water Act 316 program.  Most of the 316(a) studies focused on 

fish effects and many were physiological.  One study (Lehigh University, 1960) included 

macroinvertebrate effects and this study found a loss rate of approximately 1 taxon per °C over 

the range 22–28 degree °C; this will be referred to as the low taxa loss rate.  This represents a 

fairly high thermal range, but these studies were designed to investigate effects of thermal 

effluent, not effects of climate change.  Nevertheless, the results are considered applicable.  

There are likely more 316(a) studies with invertebrate data, but these individual studies, for the 

most part, are not published in standard scientific citation databases and can be hard to locate 

(but see the Energy Citations Database (http://www.osti.gov/energycitations/index.jsp)). 

Predicted fish taxa loss rates were also considered from the thermal discharge literature.  

A study of thermal effluent on the Wabash River found a loss rate of 3.6 fish taxa per °C increase 

in temperature (Gammon, 1973).  This may be on the high side for loss rates, but it was one of 

the few data-based values found within a reasonable temperature range. 

C.1.3.3.  Prediction of Expected Taxa Losses with Projected Temperature Increases 

Estimates of taxa loss rates were coupled with projected temperature increases to model 

the expected rate of taxa loss per year due to climate change.  Projected temperature increases 

due to climate change for each region of the United States were taken from the National 

Assessment Synthesis Team (NAST) summary report (2001).  NAST (2001) relied mainly on 

results from two coupled atmosphere/ocean general circulation models (AO-GCMs) which were 

used to estimate projected temperature increases for various regions of the United States (Table 

C-1).  Although the biological data are from the Mid-Atlantic region, we also investigated how 

projected climate changes in other regions affected taxa loss rates. 

We estimated a rate of temperature increase per year using the climate projection data 

and compared low and high values.  We then linked the temperature rates to taxa loss rates 

derived from the literature to estimate taxa loss per year; again, low and high rates were used for 

comparison.   
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1 Table C-1 - Average annual temperature increases expected by region of the US (NAST, 2001). 

 Average Annual Temperature (º C) 
Increases by 2100 

Region Min Max 

Northeast/Mid-Atlantic 2.6 (Hadley) 5 (Canadian) 

Southeast 2.3 (Hadley) 5.5 (Canadian) 

Midwest 3 (Hadley) 6 (Canadian) 

Great Plains 3 (Hadley) 6.5 (Canadian) 

West 4 (Hadley) 5.5 (Canadian) 

Pacific Northwest 2.7 (by 2050) (Hadley) 3.2 (by 2050) (Canadian) 
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Linear projections of climate change effects are used in this case study as a basis for 

estimating ability to detect climate-induced changes after various monitoring periods.  It is likely 

that climate will actually change in a non-linear fashion with periods of fast change followed by 

periods of slower changes (Alley et al., 2007).  There is little way to predict this course, 

however, so the linear assumption is the more conservative approach and is a common 

assumption used in the literature (e.g., Najjar et al., 2000).  Thermal effects on taxa are also 

assumed to result in losses at a linear rate.  Given the complexity of biotic interactions as well as 

temperature effects, this is not thought to be an accurate representation of reality.  For example, 

loss of keystone taxa may precipitate abrupt and dramatic changes on stream communities as 

well as on stream processes (Power et al., 1985; Power, 1990; Pringle et al., 1993; Flecker, 

1996).  However, the simplifying assumption allows us to model changes into the future. 

C.1.4.  Specific Analyses 

For each of the two questions being assessed (see Section C.1.1), different confidence 

levels were investigated (i.e., α and β were varied).  Effects of sample size were also investigated 

for both questions.  To address the first question of detecting change in a reference population, 

the number of sampling sites, N, was either fixed per year (at N=40 for the reference population) 

or cumulative (N increasing by 40 each year for the reference population) and assumed a 

comparison of year one versus a cumulative pooled sample size through time.  For the second 

question of detecting a change at a particular site, N was either fixed at one of three different 

levels (N=5, 10, and 20) or N was cumulative, increasing by 5, 10, or 20 for the respective 

analysis runs. 

 80



1 

2 

3 

4 

5 

6 

The MBSS-derived variance estimates were used for each region.  Z scores were varied 

by changing the type I and type II error rates to illustrate the effects of these choices on the 

ability to detect a climate change effect.  The outputs from these analyses are time series of taxa 

loss rates predicted from climate change effects.  These outputs are compared with minimal 

detectable effect sizes to illustrate the length of time required to detect a climate change effect on 

taxa richness under various conditions (taxa loss rates, temperature scenarios, and error rates). 
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C.2.  RESULTS 

C.2.1.  Question 1 - How Long Must We Monitor to Have a Fixed Probability of Detecting a 
Change in the Mean Native Taxa Richness of the Reference Site Population? 

If a population of reference sites (N=40) is sampled each year, an average 

macroinvertebrate taxa richness in reference streams can be calculated.  For comparing any two 

samples of N=40 sites, there is a fixed difference in mean taxa richness (effect size) at which 

significance can be detected with a specified power.  For α=β=0.05 (95% confidence, 95% 

power), and the Maryland data, the effect size is 4.5 taxa.  Thus, to have a 95% probability of 

detecting a significant (p < 0.05) taxa loss between 2 samples of 40 sites, requires a mean 

difference of 4.5 taxa.  At high taxa loss rates and under the higher estimate for warming in the 

Northeast/Mid-Atlantic region, it will take 15 years to achieve a mean loss of 4.5 taxa (Figure 

C.1), assuming that:  1) the same 40 sites are sampled each year; 2) samples from a site are not 

treated as cumulative through time; and 3) the analysis uses type I and type II error rates of 0.05.  

This value is derived by identifying the point where the effect size line (hatched) crosses the taxa 

loss rate line (solid) (Figure C.1).   

Figure C.1 illustrates a variety of scenarios representing different confidence levels and 

either fixed or cumulative sample sizes.  For example, relaxing the confidence level decreases 

the time to detect a change.  Increasing α and β from 0.05 to 0.20 (reducing both confidence and 

power), reduces the time to achieve 80% probability of detecting a significant climate change 

effect (p<0.2) to approximately 8 years.  If a 1 in 5 (rather than a 1 in 20) chance that statistically 

significant results are due to random chance alone is acceptable, a taxa change attributable to 

climate change could be detected in half the time.  This is the type of trade-off that is important 

for programs to consider. 
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Similarly, if samples taken across the reference population are treated as cumulative 

estimates of the population condition, then the projected climate change effect can be detected 

very quickly under the conditions of a high taxa loss rate and high temperature increase.  This 

assumes that the interannual variance will remain constant—in essence that the same population 

is being sampled through time.  This may be true on short time scales; however, remembering 

that the main assertion in this study is that climate change will alter the communities being 

sampled, the assumption of constant variance may be too liberal.  Combining samples into 

decadal (or shorter) groups (N=400) may be more defensible and would also result in detecting 

the climate change effect more quickly.   

Using the same assumptions but altering the taxa loss rate to the lower taxa loss rate (1 

taxon per°C), the time to detect a climate change effect increases dramatically (Figure C.2).  This 

is reasonable, given that subtle effects will be much harder to detect than strong effects.  

Uncertainty about the effects of warming water temperatures on taxa loss also influences the 

ability to detect a climate change signal.  The effects of confidence level and sample size are the 

same under the lower taxa loss rates as under the high taxa loss rates.  For example, under the 

same fixed sample size (N=40) and confidence level (95%), it would take approximately 70 

Figure C.1 - Effects of confidence level (α (a) and β (b)) on time to detect a climate effect on 
macroinvertebrate taxa loss due to climatic warming at high taxa loss rates in the Northeast/Mid-
Atlantic US.  Sample size (N) is either fixed at 40 per year or is cumulative.  This analysis was based 
on a high estimate of global warming (5ºC by 2100). 
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years to detect a climate effect under the low taxa loss rate as opposed to 15 years under the high 

taxa loss rate. 

Figure C.2 - Effects of confidence level (α (a) and β (b)) on time to detect a climate effect on 
macroinvertebrate taxa loss due to climatic warming at low taxa loss rates in the Northeast/Mid-
Atlantic US.  Sample size (N) is either fixed at 40 per year or is cumulative.  This analysis was based 
on a high estimate of global warming (5ºC by 2100). 
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Lastly, there was only one defensible rate for fish taxa loss (3.6 per °C).  This fish taxa 

loss rate was used in the same models as those for the macroinvertebrate loss rate and indicates 

similar effects of sample size and confidence level on time to detect a change.  Under these 

assumptions, it would take 10 to 20 years to achieve a fixed probability of detecting the loss of 

fish taxa due to climate change in the reference site population using confidence levels of 0.80 

and 0.95 respectively (Figure C.3). 

Similar analyses were run for the lower temperature increase scenario for this region 

(Table C.1).  Not surprisingly, if temperatures warm more slowly, they will have less of an effect 

on taxa loss and it will take comparatively longer to detect a loss in average taxa richness in the 

reference population (Table C.2).  

 84



 85

1 

2 

3 

4 

5 

6 

7 

8 

9 
10 

11 

12 

13 

14 

15 

The above results make it clear what the effects of sample size, confidence level, temperature 

scenario, and taxa loss rate are on the ability to detect a climate change effect on taxa loss.  The 

second question focuses on the ability to detect these same effects at a single site, which 

potentially could be a reach of stream or a watershed.  In either case, the assumption is that 

replicate samples are apportioned probabilistically across the site.  For this question, three 

C.2.2.  Question 2 - How Long Must We Monitor to Have a Fixed Probability of Detecting a 
Change in Mean Native Taxa Richness for a Particular Site? 

Since there are variations in the projections for temperature increases among the regions, 

there are differences in the power to detect these changes.  Monitoring programs in regions 

projected to have greater increases in temperature (e.g., Midwest and West) will be able to detect 

associated community changes more quickly, assuming these models are applicable across 

regions.  This reiterates the point regarding the effect of temperature projections on this 

analysis—the greater the temperature increase, the faster the taxa loss and the more quickly this 

loss can be detected, all else being equal. 

 

Figure C.3 - Effects of confidence level (α (a) and β (b)) on time to detect a cli
loss due to climatic warming in the Northeast/Mid-Atlantic US.  Sample size (N) is 
per year or is cumulative.  This analysis was based on a high estimate of globa
2100). 
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Table C.2 - The time (years) to achieve a fixed probability of detecting a statistically significant effect of temperature increases on macroinvertebrate 
and fish taxa loss across different regions under maximum and minimum temperature projections.  These data are for question 1 and assume a fixed 
sample size of N=40 reference sites sampled each year.  Data are shown for different taxa loss rates and for different confidence levels.   
 

      
Northeast/Mid-

Atlantic Southeast Midwest Great Plains West 
Pacific 

Northwest 
Maximum Predicted Temperature Increase by 2100       
           

  
Macroinvertebrates - High Taxa Loss Rate 
(4.6 per degree C)           

    α=β=0.95 15 14 13 ---  13 ---  
    α=β=0.8 8 7 7 ---  7 ---  

  
Macroinvertebrates - Low Taxa Loss Rate 
(1 per degree C)           

    α=β=0.95 70 64 58  --- 57 --- 
    α=β=0.8 36 33 30 --- 29 --- 
  Fish Taxa Loss Rate (3.6 per degree C)            
    α=β=0.95 20 18 17 --- 16 --- 
    α=β=0.8 10 9 9 --- 9 --- 
                  
Minimum Predicted Temperature Increase by 2100       
           

  
Macroinvertebrates - High Taxa Loss Rate 
(4.6 per degree C)            

    α=β=0.95 29 33 38 19 17 14 
    α=β=0.8 15 17 19 10 9 7 

  
Macroinvertebrates - Low Taxa Loss Rate 
(1 per degree C)            

    α=β=0.95 >100 >100 >100 88 79 64 
    α=β=0.8 69 78 89 45 41 33 
  Fish Taxa Loss Rate (3.6 per degree C)            
    α=β=0.95 38 42 49 25 22 18 
    α=β=0.8 19 22 25 13 12 9 
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different sample sizes were investigated (N=5, 10, or 20) and were also treated as either fixed 

(non-additive over time) or cumulative.  Only results for the Northeast/Mid-Atlantic region 

under the maximum predicted temperature increase are shown, although results are similar 

across regions, shifting only due to differences in the projected temperature increases. 

This analysis specifically defines the effect of increasing sample size.  Whether for a 

watershed or a specific reach, increasing the sample size will shorten the time required to detect 

an effect of climate change on taxa richness (Figure C.4).  Most programs may collect only one 

sample at a site per year.  A means comparison approach like this analysis can support a test of 

effect when the sample size equals one (use N=1 in equation), but the difference will have to 

bequite large to be significant.  Samples could also be combined cumulatively by decade (N=10) 

(or less) to support testing, but the same caveat regarding cumulative aggregation of sites to 

estimate a parameter for a population that is changing apply to this example as well.  If this is 

necessary, a decadal (or less) combination is likely the most defensible option. 

Figure C.4 - Effects of sample size on time to detect a climate effect on macroinvertebrate taxa loss 
due to climatic warming at high taxa loss rates in the Northeast/Mid-Atlantic US.  The confidence 
level is fixed at 0.95.  This analysis was based on a high estimate of global warming (5ºC by 2100) and 
the highest macroinvertebrate taxa loss rate. 
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Similar effects of decreasing the confidence level would apply to these data as well.  

Decreasing α and β to 0.8 would dramatically decrease the time to achieve the desired 

probability of detecting an effect.  Similarly, if macroinvertebrate taxa loss rates are slower than 

the high taxa loss rate used for Figure C.4, it would take much longer to detect an effect (Figure 

C.5), all else being equal.  Effects of sample size on fish taxa loss rates are similar to those for 

macroinvertebrates (Figure C.6). 
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Figure C.5 - Effects of sample size on time to detect a climate effect on macroinvertebrate taxa 
loss due to climatic warming at low macroinvertebrate taxa loss rates in the Northeast/Mid-
Atlantic US.  The confidence level is fixed at 0.95.  This analysis was based on a high estimate of 
global warming (5ºC by 2100) and the highest macroinvertebrate taxa loss rate.. 
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C.3.  DISCUSSION 1 
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The power analysis approach supports investigation of how some elements of monitoring 

programs may be altered to increase the ability to detect a climate change effect on taxa loss 

associated with temperature.  The absolute numbers are not necessarily important, however, the 

analytical process is, as it will allow programs to assess their own vulnerability to climate 

change. 
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Figure C.6 - Effects of sample size on time to detect a climate effect on fish taxa loss due to climatic 
warming in the Northeast/Mid-Atlantic US.  The confidence level is fixed at 0.95.  This analysis was 
based on a high estimate of global warming (5ºC by 2100) and the highest macroinvertebrate taxa 
loss rate. 

Sample size decreases the time needed to detect an effect, all else being equal (Figure 

C.4).  Increasing N, either by increasing the number of reference sites sampled each year or 

increasing the number of samples taken per watershed or reach for targeted studies, will increase 

the ability to discern a climate change effect. 

Similarly, adjusting the type I and type II error rates, or desired confidence, can change 

the results.  If a program is able to sacrifice some confidence by decreasing α and β, the power 

(1-β) to detect a change goes up, which is evident from Figures C.1 through C.3.   
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Decreasing the projected effect size (δ), either by using a lower rate of projected 

temperature increase or a lower rate of taxa loss per degree, will increase the time until a climate 

change effect can be detected, all else being equal.  This is somewhat out of the control of 

programs in this context, since one cannot manipulate either of these factors.  However, it is 

worth mentioning because some regions may have more specific or defensible data about these 

rates that would affect the projections for that region. 

Lastly, the population variance (σ2) was fixed in this study based on the MBSS data.  

Different states have different species composition in their rivers and streams with different 

inherent variability and/or may use other sampling protocols with inherently different variability.  

If replicated site data are available, these could be used to calculate a state specific estimate of 

variance to be applied in these analyses.  Regardless of the estimate used, the greater the 

variance, the longer it will take to detect an effect. 

The process described here can be applied to any assessment program using either 

assumptions listed here or better values derived from more regionally precise estimates.  More 

specific state or regional estimates of population variance, climate projections, and/or predicted 

taxa responses to temperature increases will improve the outcome.  Note that a similar process 

could also be applied for hydrologic effects, especially drought frequencies, if the effects of 

hydrologic alteration on taxa richness or any other assemblage attribute can be derived from the 

literature or other data sources.  

There are several implications of this research for monitoring program design.  The 

choice of probabilistic designs or targeted designs depends on the questions being asked.  

Probabilistic designs are good for asking a variety of questions.  For example, the average 

condition of streams is best assessed by randomly sampling stream populations across a region.  

Estimating the taxa richness among reference sites is best assessed using random samples across 

the reference stream population.  Our estimates of sample size and power are based on paired 

tests, that is, comparing the same set of reference sites over time, but selected randomly the first 

time.  Paired tests are much more powerful than drawing new independent samples every year 

because site-to-site differences are removed from the variance term, leaving only differences 

over time within sites.  A new random site selection each year would result in lower power (i.e., 

longer times to detection at specified power) than estimated here.  The probabilistic resampling 

scenario would require use of the overall population variance of the reference sites, instead of the 

interannual measurement error as we used here.  With regard to climate change effects, 
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probabilistic sampling across reference sites would be ideal using as large a sample size as 

possible; this sampling would have benefits for biocriteria programs as well independent of 

climate detection.  For example, probabilistic designs are best for identifying trends in average 

resource condition and for generating a variety of inferences about any number of resource 

elements (e.g., taxa distributions and population sizes) across large spatial scales.  

Targeted site selection, however, is often needed to answer specific questions.  These 

include whether a specific site (watershed or reach of stream) is meeting its designated use or 

permit requirements.  In this case, the sampling frame is the site, but random samples are still 

ideally taken from within that sampling frame.  For the second question considered in this case 

study, it was assumed that the replicated samples were randomly selected from the site.  Another 

question that benefits from targeted site selection is what the effect of a specific land use is on 

stream condition.  It is often best to identify specific sites along a gradient to test a hypothesis 

related to the effects of a particular land use, for example, on stream condition.  This may be 

important for studying how land use will interact with climate change to affect stream condition.  

Note that probabilistic designs can also be used to answer these questions, but the gradient may 

not be sampled completely with random selections. 

If a biocriteria program is contemplating designing monitoring to detect climate change 

effects, there are several points to consider.  First, protecting reference streams emerges as an 

important concept, especially considering that reference sites are the sentinels that will be used to 

gauge climate change effects as well as the relative effects of climate change on other stressors 

(see Case Study 2, Chapter 3).  Ongoing monitoring of reference site populations is also an 

important aspect of program design, though this may be constrained by availability of resources 

(money and manpower).  The larger the sample size and the more frequent the sampling, the 

stronger the ability to detect changes will be.  Sampling these reference sites probabilistically 

will also provide the least biased estimate of average condition.  The use of rotating designs may 

optimize resources, since crews can stay within defined areas, travel can be limited, and total 

numbers of samples collected and processed each year is reduced by focusing on a subset of 

basins.  This approach also means that reference sites within any one basin will only be sampled 

once every several years, increasing the time it will take to obtain replicate samples needed to 

define climate change-associated trends. 

Incorporating more specific regional expectations would improve the analysis.  Applying 

power analysis using specific data on population variance and especially on regionally-specific 
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climate projections will also improve evaluation of program vulnerability to climate change 

effects.  In addition, it is important to review other assumptions (discussed above) inherent in 

this analysis approach, including taxa loss expectations, possible expectations for other 

community responses that could be tested, and assumptions of constant variance over time, 

before analyses are undertaken.  If more defensible assumptions can be identified, they should be 

used.   

 

 92


