(A biologist's perspective on) *Estimating Low-Dose Risk from High- Dose Data and Its Associated Uncertainty*

Rory Conolly

NAS June 5, 2007

Disclaimer

EPA has sponsored Dr. Conolly's attendance at this meeting. This presentation is not a statement of official policy of the United States Environmental Protection Agency.

Outline

- 1. Risk at a given exposure is determined by biological processes
 - Reduce uncertainty by characterizing the biology
- 2. Quantify uncertainty <u>or</u> identify when it is reduced?
 - Qualitative analysis may be sufficient

Outline

- 1. Risk at a given exposure is determined by biological processes
 - Reduce uncertainty by characterizing the biology
- 2. Quantify uncertainty <u>or</u> identify when it is reduced?
 - Qualitative analysis may be sufficient

<u>Uncertainty</u> of a risk estimate

Many possibilities for the <u>actual</u> dose-response

Default-driven, health-protective extrapolation

Theoretical mode of action based extrapolation with minimal uncertainty

Reducing uncertainty: How to close the gap?

Biological mechanisms determine dose-response

Reduce uncertainty by describing the system more accurately

Outline

- 1. Risk at a given exposure is determined by biological processes
 - Reduce uncertainty by characterizing the biology
- 2. Quantify uncertainty <u>or</u> identify when it is reduced?
 - Qualitative analysis may be sufficient

Quantify uncertainty or reduce it?

- What is the motivation for quantifying uncertainty?
 - To identify the appropriate level of confidence in predicted risk.
- As a practical matter, is it enough to simply know that a new assessment is less uncertain than its forerunner?

Approach

- Partition the exposure → dose → response relationship into its component parts
 - 1. Exposure
 - 2. Pharmacokinetics
 - 3. Pharmacodynamics
 - Mode of action
 - 4. Toxicological response

Example: Formaldehyde dosimetry

Dosimetry in EPA and CIIT

assessments

CIIT, 2003 Inhaled ppm **CFD** modeling Tissue dose (DPX)

<u>EPA, 1991</u>

Inhaled ppm

Tissue dose (DPX)

CFD Simulation of Nasal Airflow (Kimbell et. al)

Flux bins

 Nasal surface area partitioned into 20 bins ranked according to flux of formaldehyde predicted by the CFD model

Computational fluid dynamics models of the nasal airways

To reduce uncertainty...

- <u>Incremental</u> characterization, in a manner that is both statistically <u>and</u> biologically rigorous, of
 - Exposure
 - Mechanisms
 - PK
 - PD
- Consider relative uncertainty as opposed to quantitative

