Integration of biomarkers in risk assessment; a toxicological perspective

Rory B. Conolly, Sc.D.

Presented at the ENCIS Workshop "Integration of Biomarkers in Cancer Risk Assessment", Mitland Hotel Utrecht, Arienslaan 1, 3573 PT Utrecht, The Netherlands Thursday, October 19, 2006

Outline

- Using mechanistic data to reduce uncertainty in risk assessment
- Formaldehyde nasal SCC in rats
- Mechanistic studies of the rat tumors
- Risk assessment driven by the data
- IARC

The problem

The solution

Approach

Quantitative modeling of the mode or mechanism of action to predict doseresponse and time-course behaviors

(Formal + intuitive modeling)

Biologically based computational models form natural bridges between research and risk assessment

Reduction of uncertainty in risk assessment

Dose-response assessment for formaldehyde

Formaldehyde bioassay results

Exposure Concentration (ppm)

Normal respiratory epithelium in the rat nose

Formaldehyde-exposed respiratory epithelium in the rat nose (10+ ppm)

Dose-response for cell division rate

DPX submodel – simulation of rhesus monkey data

DPX and direct mutation

• Direct mutation is assumed to be proportional to the amount of DPX:

 $mutation = KMU \cdot DPX$

- Low-dose linear!
 - Is KMU big or small?

Summary of biomarker dose-response inputs to the clonal growth model

- Cell replication
 - J-shaped
- DPX
 - Low dose linear

CFD Simulation of Nasal Airflow (Kimbell et. al)

Flux bins

 Nasal surface area partitioned into 20 bins ranked according to flux of formaldehyde predicted by the CFD model

2-Stage clonal growth model (MVK model)

Calculation of the value of KMU

- Grid search
- Optimal value of KMU was zero
 - Modeling predicts that direct mutation is not a significant action of formaldehyde
- 95% upper confidence limit on KMU was estimated

Maximum likelihood grid search

Optimal value of KMU is zero

Hockey stick model fit to raw data to cell division dose-response

ppm formaldehyde

ppm formaldehyde

Simulation of tumor response in rats

From rats to humans

Computational fluid dynamics models of the nasal airways

Human assessment

Baseline calibration against human lung cancer data

Human risk modeling

Upper bound on KMU

Final model: Hockey stick and 95% upper confidence limit on value of KMU

33

Predicted human cancer risks (hockey stick-shaped dose-response for cell replication; optimal value for KMU)

"Negative risk" using raw dose-response for cell replication

Lutz & Kopp-Schneider: Tumor incidence with J-shaped cell replication & linear mutation

36

1999 - 2004 CIIT Inhaled ppm CFD modeling Cell killing Cell proliferation Tissue dose Cancer model (Clonal growth) Mutagenicity (DPX) Tumor response 37

Inhaled ppm

Cancer model (LMS)

Tumor response

1991 U.S. EPA

Make conservative choices when faced with uncertainty

- Use hockey stick-shaped cell replication
- Use a 95% upper bound on the dose-response for the directly mutagenic mode of action
 - Statistically optimal model has 0 (zero) slope
- Risk model predicts low-dose linear risk.
- Optimal, data based model predicts negative risk at low doses

Summary: CIIT assessment of formaldehyde cancer risk

- Either no additional risk or a much smaller level of risk than previous assessments
- Consistent with mechanistic database
 - Direct mutagenicity
 - Cell replication

IARC 2004

- Classified 1A based on nasopharyngeal cancer
- Myeloid leukemia data suggestive but not sufficient
 - Concern about mechanism
 - British study negative
- Reclassification driven by epidemiology
- *In my opinion* inadequate consideration of regional dosimetry and mechanistic data from rat studies

Whole nose

Anterior nose

nasopharynx

Formaldehyde summary

- Using mechanistic data to reduce uncertainty in risk assessment
- Formaldehyde nasal SCC in rats
- Mechanistic studies of the rat tumors
- Risk assessment driven by the data
- IARC

Reduction of uncertainty in risk assessment

Disclaimer

EPA has sponsored Dr. Conolly's attendance at this meeting. This presentation is not a statement of official policy of the United States Environmental Protection Agency. Acknowledgements (I)

• Many, many investigators at CIIT (and elsewhere) who have studied formaldehyde.

Acknowledgements (II)

- Colleagues who worked on the clonal growth risk assessment
 - Fred Miller, Julian Preston, Paul Schlosser, Julie Kimbell, Betsy Gross, Suresh Moolgavkar, Georg Luebeck, Derek Janszen, Mercedes Casanova, Henry Heck, John Overton, Steve Seilkop

End