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PREFACE


National Ambient Air Quality Standards (NAAQS) are promulgated by the United States 

Environmental Protection Agency (EPA) to meet requirements set forth in Sections 108 and 109 

of the U.S. Clean Air Act. Those two Clean Air Act sections require the EPA Administrator 

(1) to list widespread air pollutants that reasonably may be expected to endanger public health or 

welfare; (2) to issue air quality criteria for them that assess the latest available scientific 

information on nature and effects of ambient exposure to them; (3) to set “primary” NAAQS to 

protect human health with adequate margin of safety and to set “secondary” NAAQS to protect 

against welfare effects (e.g., effects on vegetation, ecosystems, visibility, climate, manmade 

materials, etc); and (5) to periodically review and revise, as appropriate, the criteria and NAAQS 

for a given listed pollutant or class of pollutants.   

Lead was first listed in the mid-1970’s as a “criteria air pollutant” requiring NAAQS 

regulation. The scientific information pertinent to Pb NAAQS development available at the time 

was assessed in the EPA document Air Quality Criteria for Lead; published in 1977. Based on 

the scientific assessments contained in that 1977 lead air quality criteria document (1977 Lead 

AQCD), EPA established a 1.5 µg/m3 (maximum quarterly calendar average) Pb NAAQS in 

1978. 

To meet Clean Air Act requirements noted above for periodic review of criteria and 

NAAQS, new scientific information published since the 1977 Lead AQCD was later assessed in 

a revised Lead AQCD and Addendum published in 1986 and in a Supplement to the 1986 

AQCD/Addendum published by EPA in 1990.  A 1990 Lead Staff Paper, prepared by EPA’s 

Office of Air Quality Planning and Standards (OPQPS), drew upon key findings and conclusions 

from the 1986 Lead AQCD/Addendum and 1990 Supplement (as well as other OAQPS-

sponsored lead exposure/risk analyses) in posing options for the EPA Administrator to consider 

with regard to possible revision of the Pb NAAQS.  However, EPA chose not to revise the Pb 

NAAQS at that time.  Rather, as part of implementing a broad 1991 U.S. EPA Strategy for 

Reducing Lead Exposure, the Agency focused primarily on regulatory and remedial clean-up 

efforts to reduce Pb exposure from a variety of non-air sources that posed more extensive public 

health risks, as well as other actions to reduce air emissions. 

The purpose of this revised Lead AQCD is to critically assess the latest scientific 

information that has become available since the literature assessed in the 1986 Lead 
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AQCD/Addendum and 1990 Supplement, with the main focus being on pertinent new 

information useful in evaluating health and environmental effects of ambient air lead exposures.  

This includes discussion in this document of information regarding:  the nature, sources, 

distribution, measurement, and concentrations of lead in the environment; multimedia lead 

exposure (via air, food, water, etc.) and biokinetic modeling of contributions of such exposures 

to concentrations of lead in brain, kidney, and other tissues (e.g., blood and bone concentrations, 

as key indices of lead exposure).; characterization of lead health effects and associated exposure-

response relationships; and delineation of environmental (ecological) effects of lead.  This final 

version of the revised Lead AQCD mainly assesses pertinent literature published or accepted for 

publication through December 2005.   

The First External Review Draft (dated December 2005) of the revised Lead AQCD 

underwent public comment and was reviewed by the Clean Air Scientific Advisory Committee 

(CASAC) at a public meeting held in Durham, NC on February 28-March 1, 2006.  The public 

comments and CASAC recommendations received were taken into account in making 

appropriate revisions and incorporating them into a Second External Review Draft (dated May, 

2006) which was released for further public comment and CASAC review at a public meeting 

held June 28-29, 2006. In addition, still further revised drafts of the Integrative Synthesis 

chapter and the Executive Summary were then issued and discussed during an August 15, 2006 

CASAC teleconference call. Public comments and CASAC advice received on these latter 

materials, as well as Second External Review Draft materials, were taken into account in making 

and incorporating further revisions into this final version of this Lead AQCD, which is being 

issued to meet an October 1, 2006 court-ordered deadline.  Evaluations contained in the present 

document provide inputs to an associated Lead Staff Paper prepared by EPA’s Office of Air 

Quality Planning and Standards (OAQPS), which poses options for consideration by the EPA 

Administrator with regard to proposal and, ultimately, promulgation of decisions on potential 

retention or revision, as appropriate, of the current Pb NAAQS.   

Preparation of this document has been coordinated by staff of EPA’s National Center for 

Environmental Assessment in Research Triangle Park (NCEA-RTP).  NCEA-RTP scientific 

staff, together with experts from academia, contributed to writing of document chapters.  Earlier 

drafts of document materials were reviewed by scientists from other EPA units and by non-EPA 

experts in several public peer consultation workshops held by EPA in July/August 2005.   
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NCEA acknowledges the valuable contributions provided by authors, contributors, and 

reviewers and the diligence of its staff and contractors in the preparation of this document.  The 
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DISCLAIMER 

Mention of trade names or commercial products in this document does not constitute 

endorsement or recommendation for use. 
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BDNF brain derived neurotrophic factor 
BDWT body weight changes 
BEI biological exposure index 
BFU-E blood erythroid progenitor 
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BLL blood lead level 
BLM biotic ligand model 
BM basement membrane 
BMI body mass index 
BDNF brain-derived neurotrophic factor 
BOTMP Bruinicks-Oseretsky Test of Motor Proficiency 
BP blood pressure 
BPb blood lead concentration 
BSA bovine serum albumin 
BSI Brief Symptom Inventory 
BTQ Boston Teacher Questionnaire 
BUN blood urea nitrogen 
bw, b. wt., BW body weight 
C3H10T/12 mouse embryo cell line 
C3, C4 complement proteins 
CA chromosome aberration 
CA3 cornu ammonis 3 region of hippocampus 
45Ca calcium-45 radionuclide 
Ca-ATP calcium-dependent adenosine triphosphate 
Ca-ATPase calcium-dependent adenosine triphosphatase 
CaCO3 calcium carbonate 
CaEDTA calcium disodium ethylenediaminetetraacetic acid 
CAL calcitonin 
CaM calmodulin 
Ca-Mg-ATPase calcium-magnesium-dependent adenosine triphosphatase 
cAMP cyclic adenosinemonophosphate 
CaNa2 EDTA calcium disodium ethylenediaminetetraacetic acid 
CANTAB Cambridge Neuropsychological Testing Automated Battery 
CAT catalase; Cognitive Abilities Test 
CBCL Achenbach Child Behavior Checklist 
CBCL-T Total Behavior Problem Score 
CBL cumulative blood lead 
CBLI cumulative blood lead index 
CCB cytochalasin B 
CCD charge-coupled device 
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CCE Coordination Center for Effects 
CCL carbon tetrachloride 
CCS cosmic calf serum 
C-CVRSA coefficient of component variance of respiratory sinus 

arrhythmia 
Cd cadmium 
109Cd cadmium-109 radionuclide 
CdU urinary cadmium 
CEC cation exchange capacity 
CESD, CES-D Center for Epidemiologic Studies Depression (scale) 
GFAP glial fibrillary acidic protein 
CFU-E colony forming unit blood-erythroid progenitor (cell count) 
CFU-GEMM colony forming unit blood-pluripotent progenitor (cell count) 
CFU-GM blood granulocyte/macrophage progenitor (cell count) 
cGMP cyclic guanosine-3',5'-monophosphate 
ChAT choline acetyltransferase 
CHD coronary heart disease 
CHO Chinese hamster ovary cell line 
CI confidence interval 
CLE-SV competitive ligand-exchange/stripping voltammetry 
CLRTAP Convention on Long-Range Transboundary of Air Pollution 
CLS Cincinnati Lead Study 
CMC criterion maximum concentration 
CMI cell-mediated immunity 
CNS central nervous system 
COH cation-osmotic hemolysis 
ConA concanavalin A 
COR cortisol 
CoTx cotreatment 
COX-2 cyclooxygenase-2 
CP coproporphryn 
CPT current perception threshold 
cr creatinine 
CRAC calcium release activated calcium reflux 
CREB cyclic AMP-response element binding protein 
CRF chronic renal failure 
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CV 

CRI chronic renal insufficiency 
CSF cerebrospinal fluid 
CuZn-SOD copper and zinc-dependent superoxide dismutase 

conduction velocity 
CVLT California Verbal Learning Test 
CVR-R coefficient of variation of the R-R interval 
CYP cytochrome (e.g.,  CYP1A, CYP-2A6, CYP3A4, CYP450) 
CYP3a11 cytochrome P450 3a11 
D D-statistic 
DA dopamine; dopaminergic 
dbcAMP dibutyryl cyclic adenosine-3',5'-monophosphate 
DCV distribution of conduction velocities 
DEAE diethylaminoethyl (chromatography) 
DET diffusive equilibrium thin films 
DEYO death of young 
DFS decayed or filled surfaces, permanent teeth 
dfs covariate-adjusted number of caries 
DG dentate gyrus 
DGT diffusive gradient thin films 
DL DL-statistic 
DMEM Dulbecco’s Minimal Essential Medium 
DMEM/F12 Dulbecco’s Minimal Essential Medium/Ham’s F12 
DMFS decayed, missing, or filled surfaces, permanent teeth 
DMPS 2,3-dimercaptopropane 1-sulfonate 
DMSA 2,3-dimercaptosuccinic acid 
DMT Donnan membrane technique 
DMTU dimethylthiourea 
DNA deoxyribonucleic acid 
DO distraction osteogenesis 
DOC dissolved organic carbon 
DOM dissolved organic carbon 
DOPAc 3,4-dihydroxyphenylacetic acid 
DPASV differential pulse anodic stripping voltammetry 
dp/dt rate of left ventricular isovolumetric pressure 
DPPD N-N-diphenyl-p-phynylene-diamine 
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DR drinking water 
DSA delayed spatial alternation 
DTC diethyl dithiocarbomate complex 
DTH delayed type hypersensitivity 
DTPA diethylenetriaminepentaacetic acid 
DTT dithiothreitol 
dw dry weight 
E embryonic day 
E2 estradiol 
EBE early biological effect 
EBV Epstein-Barr virus 
EC European Community 
EC50 effect concentration for 50% of test population 
eCB endocannabinoid 
ECG electrocardiogram 
Eco-SSL ecological soil screening level 
EDS energy dispersive spectrometers 
EDTA ethylenediaminetetraacetic acid 
EEDQ N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinone 
EEG electroencephalogram 
EG egg 
EGF epidermal growth factor 
EGG effects on eggs 
EGPN egg production 
EKG electrocardiogram 
electro electrophysiological stimulation 
EM/CM experimental medium-to-control medium (ratio) 
EMEM Eagle’s Minimal Essential Medium 
eNOS endothelial nitric oxide synthase 
EP erythrocyte protoporphyrin 
EPA U.S. Environmental Protection Agency 
Epi epinephrine 
EPMA electron probe microanalysis 
EPO erythropoietin 
EPSC excitatory postsynaptic currents 
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EPT 	 macroinvertebrates from the Ephemeroptera (mayflies),  
Plecoptera (stoneflies), and Trichoptera (caddisflies) group 

ERG 	electroretinogram; electroretinographic 
ERL 	 effects range – low 
ERM 	 effects range – median 
EROD 	ethoxyresorufin-O-deethylase 
ESCA 	 electron spectroscopy for chemical analysis 
ESRD 	 end-stage renal disease 
EST 	estradiol 
ESTH 	eggshell thinning 
ET 	endothelein; essential tremor 
ETOH 	ethyl alcohol 
EXAFS 	 extended X-ray absorption fine structure 
EXANES 	 extended X-ray absorption near edge spectroscopy 
F 	F-statistic 
F344 	Fischer 344 (rat) 
FAV 	 final acute value 
FBS 	fetal bovine serum 
FCS 	 fetal calf serum 
FCV 	 final chronic value 
FD 	food 
FEF 	 forced expiratory flow 
FEP 	 free erythrocyte protoporphyrin 
FERT 	fertility 
FEV1	 forced expiratory volume in one second 
FGF 	 fibroblast growth factor (e.g., βFGF, αFGF) 
FI 	 fixed interval (operant conditioning) 
FIAM 	 free ion activity model 
FMLP 	 N-formyl-L-methionyl-L-leucyl-L-phenylalanine 
fMRI 	 functional magnetic resonance imaging 
FR 	fixed-ratio operant conditioning 
FSH 	 follicle stimulating hormone 
FT3 	free triiodothyronine 
FT4 	free thyroxine 
FTES 	free testosterone 
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FTII Fagan Test of Infant Intelligence 
FTPLM flow-through permeation liquid membranes 
FURA-2 1-[6-amino-2-(5-carboxy-2-oxazolyl)-5-benzofuranyloxy]-2-

(2-amino-5-methylphenoxy) ethane-N,N,N',N'-tetraacetic acid 
FVC forced vital capacity 
(-GT (-glutamyl transferase 
G gestational day 
GABA gamma aminobutyric acid 
GAG glycosaminoglycan 
G12 CHV79 cells derived from the V79 cell line 
GCI General Cognitive Index 
GD gestational day 
GDP guanosine diphosphate 
GEE generalized estimating equations 
GFAAS graphite furnace atomic absorption spectroscopy 
GFR glomerular filtration rate 
GGT (-glutamyl transferase 
GH growth hormone 
GI gastrointestinal 
GIME-VIP gel integrated microelectrodes combined with voltammetric  

in situ profiling 
GIS geographic information system 
GLU glutamate 
GMAV genus mean acute value 
GMCV genus mean chronic value 
GMP guanosine monophosphate 
GMPH general morphology 
GnRH gonadotropin releasing hormone 
GOT aspartate aminotransferase 
GP gross productivity 
G6PD, G6PDH glucose-6-phosphate dehydrogenase 
GPEI glutathione S-transferase P enhancer element 
gp91phox NAD(P)H oxidase 
GPT glutamic-pyruvic transaminase 
GPx glutathione peroxidase 
GRO growth 

II-xxxviii 



GRP78 glucose-regulated protein 78 
GSD geometric standard deviation 
GSH reduced glutathione 
GSIM gill surface interaction model 
GSSG glutathione disulfide 
GST glutathione-S-transferase 
GSTP placental glutathione transferase 
GTP guanosine triphosphate 
GV gavage 
H+ acidity 
3H hydrogen-3 radionuclide (tritium) 
HA humic acid; hydroxyapatite 
Hb hemoglobin 
HBEF Hubbard Brook Experimenatl Forest 
HBSS Hank’s Balanced Salt Solution 
HCG; hCG human chorionic gonadotropin 
Hct hematocrit 
HDL high-density lipoprotein (cholesterol) 
HEP habitat evaluation procedure 
HET Binghamton heterogeneous stock 
HFPLM hollow fiber permeation liquid membranes 
Hgb hemoglobin 
HGF hepatocyte growth factor 
HH hydroxylamine hydrochloride 
H-H high-high 
HHANES Hispanic Health and Nutrition Examination Survey 
H-L high-low 
HLA human leukocyte antigen 
H-MEM minimum essential medium/nutrient mixture–F12-Ham 
HMP hexose monophosphate shunt pathway 
HNO3 nitric acid 
H2O2 hydrogen peroxide 
HOME Home Observation for Measurement of Environment 
HOS TE human osteosarcoma cells 
HPLC high-pressure liquid chromatography 

II-xxxix 



H3PO4 phosphoric acid 
HPRT hypoxanthine phosphoribosyltransferase (gene) 
HR heart rate 
HSI habitat suitability indices 
H2SO4 sulfuric acid 
HSPG heparan sulfate proteoglycan 
Ht hematocrit 
HTC hepatoma cells 
hTERT catalytic subunit of human telomerase 
HTN hypertension 
IBL integrated blood lead index 
IBL H WRAT-R integrated blood lead index H Wide Range Achievement 

Test-Revised (interaction) 
ICD International Classification of Diseases 
ICP inductively coupled plasma 
ICP-AES inductively coupled plasma atomic emission spectroscopy 
ICP-MS, ICPMS inductively coupled plasma mass spectrometry 
ID-MS isotope dilution mass spectrometry 
IFN interferon (e.g., IFN-() 
Ig immunoglobulin (e.g., IgA, IgE, IgG, IgM) 
IGF-1 insulin-like growth factor 1 
IL interleukin (e.g., IL-1, IL-1$, IL-4, IL-6, IL-12) 
ILL incipient lethal level 
immuno immunohistochemical staining 
IMP inosine monophosphate 
iNOS inducible nitric oxide synthase 
i.p., IP intraperitoneal 
IPSC inhibitory postsynaptic currents 
IQ intelligence quotient 
IRT interresponse time 
ISEL in situ end labeling 
ISI interstimulus interval 
i.v., IV intravenous 
IVCD intraventricular conduction deficit 
JV juvenile 
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KABC Kaufman Assessment Battery for Children 
KTEA Kaufman Test of Educational Achievement 
KXRF, K-XRF K-shell X-ray fluorescence 
LA lipoic acid 
LB laying bird 
LC lactation 
LC50 lethal concentration at which 50% of exposed animals die 
LC74 lethal concentration at which 74% of exposed animals die 
LD50 lethal dose at which 50% of exposed animals die 
LDH lactate dehydrogenase 
LDL low-density lipoprotein (cholesterol) 
L-dopa 3,4-dihydroxyphenylalanine (precursor of dopamine) 
LE Long Evans (rat) 
LET linear energy transfer (radiation) 
LH luteinizing hormone 
LHRH luteinizing hormone releasing hormone 
LN lead nitrate 
L-NAME L-NG-nitroarginine methyl ester 
LOAEL lowest-observed adverse effect level 
LOEC lowest-observed-effect concentration 
LOWESS locally weighted scatter plot smoother 
LPO lipoperoxide 
LPP lipid peroxidation potential 
LPS lipopolysaccharide 
LT leukotriene 
LT50 time to kill 50% 
LTER Long-Term Ecological Research (sites) 
LTP long term potentiation 
LVH left ventricular hypertrophy 
µPIXE microfocused particle induced X-ray emission 
µSXRF microfocused synchrotron-based X-ray fluorescence 
MA mature 
MA-10 mouse Leydig tumor cell line 
MANCOVA multivariate analysis of covariance 
MAO monoamine oxidase 
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MATC maximum acceptable threshold concentration 
MDA malondialdehyde 
MDA-TBA malondialdehyde-thiobarbituric acid 
MDCK kidney epithelial cell line 
MDI Mental Development Index (score) 
MDRD Modification of Diet in Renal Disease (study) 
MEM Minimal Essential Medium 
MG microglobulin 
Mg-ATPase magnesium-dependent adenosine triphosphatase 
MiADMSA monoisamyl dimercaptosuccinic acid 
Mi-DMSA mi monoisoamyl dimercaptosuccinic acid 
MK-801 NMDA receptor antagonist 
MLR mixed lymphocyte response 
MMSE Mini-Mental State Examination 
MMTV murine mammary tumor virus 
MN micronuclei formation 
MND motor neuron disease 
MNNG N-methyl-N'-nitro-N-nitrosoguanidine 
MPH morphology 
MRI magnetic resonance imaging 
mRNA messenger ribonucleic acid 
MROD methoxyresorufin-O-demethylase 
MRS magnetic resonance spectroscopy 
MS mass spectrometry 
MSCA McCarthy Scales of Children’s Abiltities 
mSQGQs mean sediment quality guideline quotients 
MT metallothionein 
MVV maximum voluntary ventilation 
MW molecular weight (e.g., high-MW, low-MW) 
N, n number of observations 
N/A not available 
NAAQS National Ambient Air Quality Standards 
NAC N-acetyl cysteine 
NAD nicotinamide adenine dinucleotide 
NADH reduced nicotinamide adenine dinucleotide 

II-xlii 



NADP nicotinamide adenine dinucleotide phosphate 
NAD(P)H, NADPH reduced nicotinamide adenine dinucleotide phosphate 
NADS nicotinamide adenine dinucleotide synthase 
NAF nafenopin 
NAG N-acetyl-$-D-glucosaminidase 
Na-K-ATPase sodium-potassium-dependent adenosine triphosphatase 
NAWQA National Water-Quality Assessment 
NBT nitro blue tetrazolium 
NCBP National Contaminant Biomonitoring Program 
NCD nuclear chromatin decondensation (rate) 
NCS newborn calf serum 
NCTB Neurobehavioral Core Test Battery 
NCV nerve conduction velocity 
ND non-detectable; not detected 
NDI nuclear divison index 
NE norepinephrine 
NES Neurobehavioral Evaluation System 
NF-κB nuclear transcription factor-κB 
NGF nerve growth factor 
NHANES National Health and Nutrition Examination Survey 
NIOSH National Institute for Occupational Safety and Health 
NIST National Institute for Standards and Technology 
NK natural killer 
NMDA N-methyl-D-aspartate 
NMDAR N-methyl-D-aspartate receptor 
NMR nuclear magnetic resonance 
NO nitric oxide 
NO2 nitrogen dioxide 
NO3 nitrate 
NOAEC no-observed-adverse-effect concentration 
NOAEL no-observed-adverse-effect level 
NOEC no-observed-effect concentration 
NOEL no-observed-effect level 
NOM natural organic matter 
NORs nucleolar organizing regions 
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NOS nitric oxide synthase; not otherwise specified 
NOx nitrogen oxides 
NP net productivity 
NPSH nonprotein sulfhydryl 
NR not reported 
NRC National Research Council 
NRK normal rat kidney 
NS nonsignificant 
NSAID non-steroidal anti-inflammatory agent 
NT neurotrophin 
NTA nitrilotriacetic acid 
O2 oxygen 
ODVP offspring development 
OH hydroxyl 
7-OH-coumarin 7-hydroxy-coumarin 
1,25-(OH)2-D, 1,25-(OH)2 D3 1,25-dihydroxyvitamin D 
24,25-(OH)2-D3 24,25-dihydroxyvitamin D 
25-OH-D3 25-hydroxyvitamin D 
8-OHdG 8-hydroxy-2'-deoxyguanosine 
O horizon forest floor 
OR odds ratio; other oral 
OSWER Office of Solid Waste and Emergency Response 
P, p probability value 
P300 event-related potential 
P450 1A1 cytochrome P450 1A1 
P450 1A2 cytochrome P450 1A2 
P450 CYP3a11 cytochrome P450 3a11 
PAD peripheral arterial disease 
PAH polycyclic aromatic hydrocarbon 
PAI-1 plasminogen activator inhibitor-1 
PAR population attributable risk 
Pb lead 
203Pb lead-203 radionuclide 
204Pb, 206Pb, 207Pb, 208Pb stable isotopes of lead-204, -206, -207, -208, respectively 
210Pb lead-210 radionuclide 
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Pb(Ac)2 lead acetate 
PbB blood lead concentration 
PbCl2 lead chloride 
Pb(ClO4)2 lead chlorate 
PBG-S porphobilinogen synthase 
PBMC peripheral blood mononuclear cells 
Pb(NO3)2 lead nitrate 
PbO lead oxides (or litharge) 
PBP progressive bulbar paresis 
PbS galena 
PbU urinary lead 
PC12 pheochromocytoma cell 
PCR polymerase chain reaction 
PCV packed cell volume 
PDE phosphodiesterase 
PDGF platelet-derived growth factor 
PDI Psychomotor Development Index 
PEC probable effect concentration 
PEF expiratory peak flow 
PG prostaglandin (e.g., PGE2, PGF2); prostate gland 
PHA phytohemagglutinin A 
Pi inorganic phosphate 
PIXE particle induced X-ray emission 
PKC protein kinase C 
pl NEpi plasma norepinephrine 
PMA progressive muscular atrophy 
PMN polymorphonuclear leucocyte 
PMR proportionate mortality ratio 
PN postnatal (day) 
P5N pyrimidine 5'-nucleotidase 
PND postnatal day 
p.o., PO per os (oral administration) 
POMS Profile of Mood States 
ppb parts per billion 
ppm parts per million 
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PPVT-R Peabody Picture Vocabulary Test-Revised 
PRA plasma renin activity 
PRL prolactin 
PROG progeny counts or numbers 
PRR prevalence rate ratio 
PRWT progeny weight 
PST percent transferrin saturation 
PTH parathyroid hormone 
PTHrP parathyroid hormone-related protein 
PVC polyvinyl chloride 
PWM pokeweed mitogen 
PRWT progeny weight 
QA/QC quality assurance/quality control 
Q/V flux of air (Q) divided by volume of culture (V) 
r Pearson correlation coefficient 
R2 multiple correlation coefficient 

2r correlation coefficient 
226Ra most stable isotope of radium 
R/ALAD ratio of ALAD activity before and after reactivation 
RAVLT Rey Auditory Verbal Learning Test 
86Rb rubidium-86 radionuclide 
RBA relative bioavailablity 
RBC red blood cell; erythrocyte 
RBF renal blood flow 
RBP retinol binding protein 
RBPH reproductive behavior 
RCPM Ravens Colored Progressive Matrices 
REL rat epithelial (cells) 
REP reproduction 
RHIS reproductive organ histology 
222Rn most stable isotope of radon 
RNA ribonucleic acid 
ROS reactive oxygen species 
ROS 17.2.8 rat osteosarcoma cell line 
RPMI 1640 Roswell Park Memorial Institute basic cell culture medium 
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RR 
RT 
RSEM 
RSUC 
RT 
∑SEM 

SA7 
SAB 
SAM 
SBIS-4 
s.c., SC 
SCAN 
SCE 
SCP 
SD 
SDH 
SDS 
SE 
SEM 
SES 
sGC 
SH 
SHBG 
SHE 
SIMS 
SIR 
SLP 
SM 
SMAV 
SMR 
SNAP 
SNP 
SO2

SOD 

relative risk; rate ratio 
reaction time 
resorbed embryos 
reproductive success (general) 
reproductive tissue 
sum of the molar concentrations of simultaneously extracted 
metal 
simian adenovirus 
Science Advisory Board 
S-adenosyl-L-methionine 
Stanford-Binet Intelligence Scale-4th edition 
subcutaneous 
Test for Auditory Processing Disorders 
selective chemical extraction; sister chromatid exchange 
stripping chronopotentiometry 
Spraque-Dawley (rat); standard deviation 
succinic acid dehydrogenase 
sodium dodecyl sulfate; Symbol Digit Substitution 
standard error; standard estimation 
standard error of the mean 
socioeconomic status 
soluble guanylate cyclase 
sulfhydryl 
sex hormone binding globulin 
Syrian hamster embryo cell line 
secondary ion mass spectrometry 
standardized incidence ratio 
synthetic leaching procedure 
sexually mature 
species mean acute value 
standardized mortality ratio 
Schneider Neonatal Assessment for Primates 
sodium nitroprusside 

 sulfur dioxide 
superoxide dismutase 
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SOPR sperm-oocyte penetration rate 
SPCL sperm cell counts 
SPCV sperm cell viability 
SQGs sediment quality guidelines 
SRA Self Reported Antisocial Behavior scale 
SRD Self Report of Delinquent Behavior 
SRIF somatostatin 
SRM Standard Reference Material 
SRT simple reaction time 
SSADMF Social Security Administration Death Master File 
SSB single-strand breaks 
SSEP somatosensory-evoked potential 
StAR steroidogenic acute regulatory protein 
STORET STOrage and RETrieval 
SVC sensory conduction velocity 
SVRT simple visual reaction time 
T testosterone 
TA tail 
TABL time-averaged blood lead 
T&E threatened and endangered (species) 
TAT tyrosine aminotransferase 
TB tibia 
TBARS thiobarbituric acid-reactive species 
TBPS Total Behavior Problem Score 
TCDD methionine-choline-deficient diet 
T cell T lymphocyte 
TCLP toxic characteristic leaching procedure 
TE testes 
TEC threshold effect concentration 
TEDG testes degeneration 
TEL tetraethyl lead 
TES testosterone 
TEWT testes weight 
TF transferrin, translocation factor 
TG 6-thioguanine 
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TGF transforming growth factor 
TH tyrosine hydroxylase 
232Th stable isotope of thorium-232 
TLC Treatment of Lead-exposed Children (study) 
TNF tumor necrosis factor (e.g., TNF-α) 
TOF time-of-flight 
tPA plasminogen activator 
TPRD total production 
TRH thyroid releasing hormone 
TRV toxicity reference value 
TSH thyroid stimulating hormone 
TSP triple-super phosphate 
TT3 total triiodothyronine 
TT4 serum total thyroxine 
TTES total testosterone 
TTR transthyretin 
TU toxic unit 
TWA time-weighted average 
TX tromboxane (e.g., TXB2) 
U uriniary 
235U, 238U uranium-234 and -238 radionuclides 
UCP urinary coproporphyrin 
UDP uridine diphosphate 
UNECE United Nations Economic Commission for Europe 
Ur urinary 
USFWS U.S. Fish and Wildlife Service 
USGS United States Geological Survey 
UV ultraviolet 
V79 Chinese hamster lung cell line 
VA Veterans Administration 
VC vital capacity; vitamin C 
VDR vitamin D receptor 
VE vitamin E 
VEP visual-evoked potential 

variable-interval 
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vit C vitamin C 
vit E vitamin E 
VMA vanilmandelic acid 
VMI Visual-Motor Integration 
VSM vascular smooth muscle (cells) 
VSMC vascular smooth muscle cells 
WAIS Wechsler Adult Intelligence Scale 
WDS wavelength dispersive spectrometers 
WHO World Health Organization 
WISC Wechsler Intelligence Scale for Children 
WISC-R Wechsler Intelligence Scale for Children-Revised 
WO whole organism 
WRAT-R Wide Range Achievement Test-Revised 
WT wild type 
WTHBF-6 human liver cell line 
ww wet weight 
XAFS X-ray absorption fine structure 
XANES X-ray absorption near edge spectroscopy 
XAS X-ray absorption spectroscopy 
XPS X-ray photoelectron spectroscopy 
X-rays synchrotron radiation 
XRD X-ray diffraction 
XRF X-ray fluorescence 
ZAF correction in reference to three components of matrix effects:  

atomic number (Z), absorption (A), and fluorescence (F) 
ZnNa2 DTPA zinc disodium diethylenetriaminepentaacetic acid 
ZnNa2 EDTA zinc disodium ethylenediaminetetraacetic acid 
ZPP zinc protoporphyrin 
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Table AX4-1.  Analytical Methods for Determining Lead in Blood, Urine, and Hair 

Sample 
Matrix Preparation Method Analytical Method 

Sample 
Detection Limit 

Accuracy 
(percent recovery) Reference 

Blood Wet ashing with acid mixtures; residue dissolution in 
dilute HClO4 

ASV with mercury-
graphite electrode 
(NIOSH Method 195) 

40 µg/L 95B105 NIOSH (1977b) 

Blood Wet ashing with HNO3; residue dissolution in dilute 
HNO3 

GFAAS  
(NIOSH Method 214) 

100 µg/L No data NIOSH (1977e) 

Blood Dilution with Triton X-100®; addition of nitric acid 
and diammonium phosphate 

GFAAS 2.4 µg/L 93B105 Aguilera de Benzo 
et al. (1989) 

Blood Dilution of sample with ammonium solution 
containing Triton X-100 

ICP/MS 15 µg/L 96B111 Delves and Campbell 
(1988) 

Blood Dilution of sample in 0.2% Triton X-100 and water GFAAS .15 µg/L 97B150 Que Hee et al. (1985) 

ICP-MS 0.1 ppb 94B100 Blood Wet ashing, dilution 

GFAAS 4 ppb 90B108 

Zhang et al. (1997) 

Blood and 
urine 

Mixing of urine sample with HNO3; filtration, 
chelation of lead in whole blood or filtered urine with 
APDC, extraction with MIBK 

AAS  
(NIOSH Method 8003) 

0.05 µg/g (blood); 
50 µg/L (urine) 

99 (±10.8%) NIOSH (1994) 

Blood and 
urine 

Wet ashing of sample with HNO3, complexation 
with diphenylthio-carbazone, and extraction with 
chloroform 

Spectrophotometry  
(NIOSH Method 102) 

30 µg/L (blood); 
12 µg/L (urine) 

97 

97 

NIOSH (1977a) 

Blood and 
urine 

206Pb addition and sample acid digestion; lead 
coprecipitation by addition of Ba(NO3)2, followed by 
electrodeposition on platinum wire 

IDMS No data 98B99 Manton and Cook 
(1984) 

Blood and 
tissue 

Digestion of sample with HNO3/HClO4 /H2SO4; heat  ICP-AES (Method 8005) 0.01 µg/g (blood); 
0.2 µg/g (tissue) 

113 NIOSH (1984) 
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Table AX4-1 (cont’d).  Analytical Methods for Determining Lead in Blood, Urine, and Hair 

Sample 
Matrix Preparation Method Analytical Method 

Sample 
Detection Limit 

Accuracy 
(percent recovery) Reference 

Blood Addition of 50 µL of blood into reagent, mixing, 
and transferring to sensor strip (commercial test kit) 

Gold electrode sensor 1.4 µg/dL No data ESA (1998) 

Urine Collect 50 mL urine sample and add 5 mL 
concentrated HNO3 as preservative; filter samples 
through cellulose membrane, adjust pH to 8, ash filters 
and resins in low temperature oxygen plasma for 
6 hours 

ICP-AES (Method 8310) 5 µg/L 100 NIOSH (1994) 

Serum, 
blood, and 
urine 

Filtration of sample if needed; blood requires 
digestion in a Parr bomb; dilution of serum or urine 
with acid or water 

ICP-AES 10B50 µg/L 85 (serum) >80  
(urine, blood) 

Que Hee and Boyle 
(1988) 

Urine Wet ashing of sample with acid mixture and 
dissolution in dilute HClO4 

ASV with mercury-
graphite electrode 
(Method 200) 

4 µg/L 90B110 NIOSH (1977c) 

Hair Cleaning of sample with acetone/ methanol; digestion 
with acid mixture and heat; diammonium phosphate 
addition as matrix modifier 

GFAAS 0.16 µg/g 99 Wilhelm et al. (1989) 

Hair Cleaning with lauryl sulfate and water; digestion with 
heated nitric acid 

ICP-AES 1 µg/g No data DiPietro et al. (1989) 

Hair Cleaning with water; digestion with heated nitric acid 
and H2O2 

ET-AAS <0.026 µg/g >90 Drash et al. (1997) 

Hair Cleaning with acetone/water XRF 0.5 µg/g No data Gerhardsson et al. 
(1995a) 

 
AAS, atomic absorption spectroscopy; APDC, ammonium pyrrolidine dithiocarbamate; ASV, anode stripping voltammetry; Ba(NO3)2, barium nitrate; ET-AAS, electro-thermal 
atomic absorption spectrometry; GFAAS, graphite furnace atomic absorption spectroscopy; H2O2, hydrogen peroxide; H2SO4, sulfuric acid; HClO4, perchloric acid; HNO3, 
nitric acid; ICP-AES, inductively coupled plasma/atomic emission spectroscopy; ICP-MS, inductively coupled plasma-mass spectrometry; IDMS, isotope dilution mass 
spectrometry; MIBK, methyl isobutyl ketone; NIOSH, National Institute for Occupational Safety and Health; 206Pb, lead 206; XRF, X-ray fluorescence. 
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Table AX4-2.  Summary of Selected Measurements of PbB Levels in Humans 

Reference, Study 
Location, and Period Study Description PbB Measurement Comment 

United States 

CDC (2005)  
U.S. 
1999-2002 

Design:  National survey (NHANES IV)  
stratified, multistage probability cluster design 
Subjects:  Children and adults ($1 yrs, n = 16, 915) 
in general population 
Biomarker measured:  PbB  
Analysis:  ICP-MS 

Units:  µg/dL 
Geometric mean (95% CI) 
Age (yr) 1999-2000 2001-2002 
1-5: 1.66 (1.60, 1.72) 1.45 (1.39, 1.40) 
  n: 7, 970 8, 945 
6-11: 1.51 (1.36, 1.66) 1.25 (1.14, 1.36) 
  n: 905 1,044 
12-19: 1.10 (1.04, 1.17) 0.94 (0.90, 0.99) 
  n: 2, 135 2, 231 
$20: 1.75 (1.68, 1.81) 1.56 (1.49, 1.62) 
  n: 4, 207 4, 772 
Males: 2.01 (1.93, 2.09) 1.78 (1.71, 1.86) 
  n: 3, 913 4, 339 
Females: 1.37 (1.32, 1.43) 1.19 (1.14, 1.25) 
  n: 4,057 4, 606  

Data from NHANES IV Phase 1 
(1999-2000) and 2 (2001-2002). 

Brody et al. (1994) 
Pirckle et al. (1998) 
U.S. 
1988-1994 

Design:  National survey (NHANES III)  
stratified multistage probability cluster design. 
Subjects:  Children and adults ($1 yrs, n = 29, 843) 
in general population 
Biomarker measured:  PbB 
Analysis:  GFAAS 

Units:  µg/dL 
Geometric mean (95% CI) 
Age (yr)  1988-1991 1991-1994 
1-5: 3.6 (3.3, 4.0) 2.7 (2.5, 3.0)  
  n: 2, 234 2, 392 
6-11: 2.5 (2.2, 2.7) 1.9 (1.8, 2.1) 
  n: 1, 587 1, 345 
12-19: 1.6 (1.4, 1.9) 1.5 (1.4, 1.7) 
  n: 1, 376 1, 615 
20-49: 2.6 (2.5, 2.8) 2.1 (2.0, 2.2) 
  n: 4, 320 4, 716 
50-69 4.0 (3.8, 4.2) 3.1 (2.9, 3.2) 
  n: 2,071 2,026 
$70 4.0 (3.7, 4.3) 3.4 (3.3, 3.6) 
  n: 1, 613 1, 548 
Males: 3.7 (3.5, 3.9) 2.8 (2.6, 2.9) 
  n: 6,051 6, 258 
Females: 2.1 (2.0, 2.2) 1.9 (1.8, 2.) 
  n: 6,068 7, 384  

Comparison of data from NHANES III 
Phase 1 (1988-1991) and Phase 2 
(1991-1994) indicated declining PbB 
concentrations in children. 
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Table AX4-2 (cont’d).  Summary of Selected Measurements of PbB Levels in Humans 

Reference, Study 
Location, and Period Study Description PbB Measurement Comment 

United States (cont’d) 

Nash et al. (2003) 
U.S. 
1988-1994 

Design:  National survey (NHANES III) stratified, 
multistage probability cluster design 
Subjects:  Women(n = 2, 575), age range:  
40-59 yrs, in general population 
Biomarker measured:  PbB 
Analysis:  GFAAS 

Units:  µg/dL 
Geometric mean (95% CI, n) 
Premenopausal:  1.9 (1.7, 2.0, 1, 222) 
Surgically menopausal:  2.7 (2.4, 3.2, 139) 
Naturally menopausal:  2.9 (2.5, 3.2, 653) 

Geometric mean PbB concentrations 
were significantly lower in 
premenopausal women.  Increasing 
PbB concentrations were significantly 
associated with decreased bone mineral 
density. 

Pirkle et al. (1994) 
U.S. 
1976-1980 

Design:  National survey (NHANES II, III) 
stratified, multistage probability cluster design 
Subjects:  Children and adults ($1 yrs, n = 29, 843) 
in general population 
Biomarker measured:  PbB 
Analysis:  GFAAS 

Units:  µg/dL 
Geometric mean (95% CI) 
 

Age (yr) 1976-1980 1988-1991 

 1-5: 15.0 (14.2, 15.8) 3.6 (3.3, 4.0) 

   n: 2, 271 2, 234 

 6-19: 11.7 (11.2, 12.4) 1.9 (1.7, 2.2) 

   n: 2,024 2, 963 

 20-74: 13.1 (12.7, 13.7) 3.0 (2.8, 3.2) 

   n: 5, 537 6, 922 

 Males: 15.0 (14.5, 15.5) 3.7 (3.5, 3.9) 

   n: 4, 895 6,051 

 Females: 11.1 (10.6, 11.5) 2.1 (2.0, 2.2) 

   n: 4, 937 6,068 
 

Comparison of data from NHANES II 
(1976-1980) and Phase 1 of NHANES 
III (1988-1991) indicated declining 
PbB concentrations in U.S. population. 

Symanski and Hertz-
Picciotto (1995) 
U.S. 
1982-1984 

Design:  National survey (HHANES) multistage-
area probability sample 
Subjects:  Adults, females (n = 3, 137), age range 
20-60 yrs, in general Hispanic population 
Biomarker measured:  PbB 
Analysis:  GFAAS 

Units:  µg/dL 
Arithmetic mean (SE, n) 
All 
Premenopausal:  7.5 (0.07, 1, 984) 
Menopausal:  8.9 (0.11, 1, 152) 
Mexican-American: 
Premenopausal:  7.2 (0.13, 1, 219) 
Menopausal:  8.4 (0.20, 624) 

Mean difference between 
premenopausal and postmenopausal 
(#4 yrs) was 1.4 µg/dL 
(95% CI:  0.20, 2.7). 



 
A

X
4-6

 

 

Table AX4-2 (cont’d).  Summary of Selected Measurements of PbB Levels in Humans 

Reference, Study 
Location, and Period Study Description PbB Measurement Comments 

United States (cont’d) 

Yassin et al. (2004) 
U.S. 
1988-1994 

Design:  National survey (NHANES III) stratified, 
multistage probability cluster design 
Subjects:  Adults (n = 11, 126) in general 
population, age range:  18-64 yr), stratified by 
occupational category  
Biomarker measured:  PbB 
Analysis:  GFAAS 

Units:  µg/dL 
Occupation GM GSD Maximum   n 
Vehicle mechanics 4.80 3.88 28.1 169 
Food service workers 2.00 2.69 27.0 700 
Management, professional 
   technical, and sales workers 2.13 4.05 39.4 4, 768 
Personal service workers 2.48 4.52 25.9 1, 130 
Agricultural workers 2.76 4.02 23.4 498 
Production workers:  machine  
   operators, material movers, etc.  2.88 4.24 52.9 1, 876 
Laborers other than in construction 3.47 3.36 21.8 137 
Transportation workers 3.49 5.19 22.3 530 
Mechanics other than vehicle 
   mechanics 3.50 4.91 16.6 227 
Construction trades people 3.66 4.64 16.9 470 
Construction laborers 4.44 7.84 36.0 122 
Health service workers 1.76 2.24 22.4 499 
All 2.42 6.93 52.9 11, 126 

Mexico 

Hernandez-Avila et al. 
(2002) 
Mexico 
1993-1995 

Design:  Cross-sectional 
Subjects:  Adults females (n = 903) in general 
population, age range:  36-70 yr 
Biomarker measured:  PbB 
Analysis:  GFAAS 

Units:  µg/dL 
Arithmetic mean (SD, n)  
Premenopausal:  10.63 (5.46, 463)  
Menopausal:  11.39 (2.65, 437)  
Surgically menopausal:  10.23 (4.92, 115)  
Naturally menopausal:  11.30 (5.88, 322) 

Mean difference between 
premenopausal and menopausal; was 
0.76 µg/dL (95% CI:  0.224, 1.48). 

 
PbB, blood lead; GFAAS, graphite furnace atomic absorption spectroscopy; ICP-MS, inductively coupled plasma-mass spectrometry; NR, not reported. 
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Table AX4-3.  Bone Lead Measurements in Cadavers 

Reference, Study 
Location, and Period Study Description Lead Measurement Findings, Interpretation 

United States 

Wittmers et al. (1988) 
Minnesota 
1976-82 

Lead in tibia, skull, iliac crest, rib, 
and vertebrae.  81 Caucasian males 
and 53 male cadavers ranging in age 
from 0 to 98 yr.  Ashing, nitric acid, 
AAS. 

Mean and SEM (µg/g bone ash) >75 yr:  Tibia 29.0 ±3.4 (n = 28), ilium 
17.0 ± 2.6 (n = 29), rib 20.5 ± 2.4 (n = 31), vertebra 18.8 ± 2.6 (n = 30), 
skull 26.1 ± 3.2 (n = 28) 
51-75 yr:  Tibia 24.2 ± 2.3 (n = 38), ilium 19.2 ± 2.4 (n = 15), rib 22.3 ± 2.6 
(n = 40), vertebra 22.4 ± 2.6 (n = 41), skull 22.8 ± 2.9 (n = 29) 
36-50 yr:  Tibia 16.6 ±4.1 (n = 14), ilium 9.9 ± 1.6 (n = 15), rib 9.7 ± 1.7 
(n = 15), vertebra 11.9 ± 2.1 (n = 15), skull 15.2 ± 3.3 (n = 15) 
21-35 yr:  Tibia 5.9 ±1.2 (n = 18), ilium 5.3 ± 1.2 (n = 16), rib 5.0 ± 1.2 
(n = 18), vertebra 6.3 ± 1.3 (n = 17), skull 4.9 ± 1.1 (n = 17) 
14-20 yr:  Tibia 2.3 ±1.0 (n = 13), ilium 2.3 ± 0.9 (n = 13), rib 2.9 ± 1.4 
(n = 12), vertebra 3.8 ± 1.4 (n = 12), skull 3.2 ± 1.7 (n = 10) 
0-2 yr:  Tibia 0.3 ±0.2 (n = 11), ilium 0.0 ± 0.0 (n = 11), rib 0.7 ± 0.4 
(n = 12), vertebra 0.6 ± 0.6 (n = 12), skull 0.6 ± 0.4 (n = 12) 

Ratio of lead in tibia and 
skull/iliac/rib/vertebrae 
<1 from age 0 to 35 yrs then 
>1 from 36 to 75 yrs and 
greater than 75 yrs.  Evidence 
of differential distribution 
amongst bones with age; the 
earliest difference is apparent 
during adolescence when 
trabecular bone of the 
vertebral body accumulates 
significantly more lead than 
that of the other 4 sites. 

Saltzman et al. (1990) 
Cincinnati, OH 
1970-71 

29 tissues from 55 cadavers, mean 
age 50 yrs.  Muffle furnace ashing.  
Pb concentrations by dithazone 
method. 

Higher concentrations of Pb in tibia compared with rib and vertebrae and 
higher values for males compared with females.  Males (n = 46):  Ribs 
6.70 ± 3.96 (µg/g, wet weight), tibia 12.55 ± 10.65, vertebrae 4.12 ± 2.49.  
Females (n = 8):  Ribs 3.17 ± 0.91 (µg/g, wet weight), tibia 4.54 ± 2.04, 
vertebrae 2.01 ± 0.72. 

Bone Pb increased with age.  
Results were similar to those 
of Barry (1978) and Wittmers 
et al. (1988).   

Canada 

Samuels et al. (1989) 
Canada 
1965-69 

Ashed vertebral bones from male 
and female cadavers from three 
Canadian cities.  AAS method.   

Changes for different age ranges in Pb concentration for the period  
1965-1969:   

0-11 months:  3.98 µg/g (n = 28) 

1-4 yrs:  10.02 µg/g (n = 32) 

5-11 yrs:  12.91 µg/g (n = 26) 

12-19 yrs:  7.11 µg/g (n = 26)  

$20 yrs:  14.77 µg/g (n = 25) 

For period 1965 to 1969 
levels vary over age groups 
(p = 0.0001) but there was 
little gender difference.  For 
the period 1980 to 1998 for 
Winnipeg, values were 
approximately half to one 
third those prevailing earlier.   



 
A

X
4-8

 

 

Table AX4-3 (cont’d).  Bone Lead Measurements in Cadavers 

Reference, Study 
Location, and Period Study Description Lead Measurement Findings, Interpretation 

Europe 

Drasch et al. (1987) 
Germany 
1983-85 

Bone Pb in temporal 
bone, cortical part of 
the mid-femur, and 
pelvic bone from 
120 female and 120 
male adult cadavers.  
AAS. 

Geometric means: 
Males:  Pelvic 1.95 ± 1.00 (µg/g, wet weight), mid-femur 4.75 ± 2.53, temporal 6.24 ± 3.17.  
Females:  Pelvic 1.41 ± 0.74 (µg/g), mid-femur 3.14 ± 1.89, temporal 5.00 ± 2.66.   

Found cortical lead > 
trabecular lead.  Limited 
difference in Pb for younger 
males and females; much 
higher Pb in bones of men 
>50 yr old compared with 
women 

Age 0-1 yrs 1-6 yrs 10-20 yrs 0-20 yrs 

Sex Male Female Male Female Male Female Male Female 

n 9 16 9 9 18 16 39 42 

Temporal 0.331 0.334 0.530 0.732 1.770 1.740 0.858 0.749 

Pelvic 
bone 

0.230 0.278 0.461 0.522 0.748 0.511 0.455 0.404 

Mid-femur 0.333 0.327 0.642 0.858 1.342 1.010 0.768 0.632 

Drasch and Ott (1988) 
Germany 
1984 

Bone Pb in temporal 
bone, cortical part of 
the mid femur, and 
pelvic bone from 
82 child cadavers.  
Nitric acid digestion, 
AAS. 

    (values in µg/g wet weight) 

Negligible difference for 0 to 
1 yr olds, for pre-school 
children (1-6 yrs) and for 
10 to 20 yr olds; mean values 
for cortical bones showed 
higher Pb concentrations than 
trabecular bone; mean Pb in 
the mid femur and temporal 
bone was not statistically 
different for each of three 
age groups. 

Hac et al. (1997) 
Poland 

Pb in rib bone and hair 
from 59 cadavers, aged 
1-87 yrs.  Perchloric 
acid digestion, AAS. 

Bone Pb 3.0 (±1.5) µg/g (n = 54). Small increases to age 50 yrs 
in rib bone.  Number of 
samples for each age group 
not stated. 

Asia   

Noda et al. (1993) 
Japan 
1976, 1981, and 1986 

76 cadavers, age range 
0 to 83 yrs. 

Age 0 yrs (1.25 µg/g wet weight) to 59 yrs (4.5 µg/g) after which there was a decrease 
(~2.5 µg/g).  For the age range 10-49 yrs, there was no significant difference in mean 
values of 2.8 to 3.1 µg/g. 

Found no significant gender 
difference but levels in 1986 
were significantly lower than 
in 1976. 
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Table AX4-4.  Bone Lead Measurements in Environmentally-Exposed Subjects 

Reference, Study 
Location, and Period  Study Description 

Lead Measurement (SD or range) 
PbB in µg/dL, Bone Pb in µg/g Bone Mineral Findings, Interpretation 

United States 

Kim et al. (1996) 
Boston, MA 
1989-90 

Examination of the relationship between 
tooth Pb in children and bone Pb levels 
in young adults.  Members of a cohort of 
young adults (n = 63, ~20 yr of age) were 
reassessed 13 yr after initial examination.  
Dentine Pb by anodic stripping voltammetry.  
Bone K-shell XRF.  LOWESS smoothing, 
multiple linear regression.   

No PbB.   
Tibia Pb 1.3 (± 4.4), patella Pb 5.4 (±8.4). 
Dentine Pb 13.4 (±10.7). 
Approximately one-third of tibia and one-fourth 
of patella estimates were negative values. 

A 10 µg/g increase in dentine Pb levels in 
childhood was predictive of a 1 µg/g increase 
in tibia Pb levels and a 5 µg/g increase in 
patella PbB levels, and a 3 µg/g increase in 
mean bone Pb levels among the young adults.  
They concluded that Pb exposure in early life 
may be used to predict elevated body burden 
up to 13 yr later. 

Hu et al. (1990) 
Boston, MA 
Unknown 

To evaluate if K-shell XRF can be used to 
assess low-level Pb burdens in 34 employees 
(26 males, 8 females) ranging in age from 21 
to 58 yr of a biomedical company with no 
known history of excessive Pb exposure.  
Medical environmental history 
questionnaire.  Multiple linear regression. 

18 (53%) of subjects had bone Pb levels included 
0 or less within the estimate of uncertainty.  
Highest bone Pb 21 ± 4 µg/g bone mineral.  
For 16 young adults, age and year of home 
construction had a positive but statistically 
insignificant effect (p > 0.05) on bone Pb. 

K-shell XRF may be useful for assessing low-
level Pb burdens in epidemiological studies. 

Hu et al. (1996) 
Boston, MA 
1991+ 

Normative Aging Study. 
Subjects were middle-aged and elderly men 
who had community (nonoccupational) 
exposures to lead. 
Cross-sectional.  Backwards elimination 
multivariate regression models that 
considered age, race, education, retirement 
status, measures of both current and 
cumulative smoking, and alcohol 
consumption. 

47-59 yrs (n = 116):  PbB 5.8 (±3.7), tibia 14.6 
(±8.3), patella 23.6 (±12.4) 
60-69 yrs (n = 360):  PbB 6.3 (±4.2), tibia 21.1 
(±11.4), patella 30.5 (±16.9) 
>70 yrs (n = 243):  PbB 6.5 (±4.5), tibia 27 
(±15.6), patella 38.8 (±23.5) 

Factors that remained significantly related to 
higher levels of both tibia and patella Pb were 
higher age and measures of cumulative 
smoking, and lower levels of education.  
An increase in patella Pb from the median of 
the lowest to the median of the highest 
quintiles (13-56 µg/g) corresponded to a rise 
in PbB of 4.3 µg/dL.  Bone Pb levels 
comprised the major source of circulating lead 
in these men. 

Campbell et al. (2004) 
New York  
Unknown 

Investigated the relationship between bone 
mineral density and environmental Pb 
exposure in 35 African American children. 

High Pb exposure:  PbB levels (mean 23.6 µg/dL; 
n = 19); low Pb exposure (mean 6.5 µg/dL; 
n = 16). 

Unexpectedly, they found that children with 
high Pb exposure had a significantly higher 
bone mineral density than children with low 
Pb exposure.  They hypothesized that this 
arises from the effect of Pb on accelerating 
bone maturation by inhibition of parathyroid 
hormone-related peptide. 



 
A

X
4-10

 

 

Table AX4-4 (cont’d).  Bone Lead Measurements in Environmentally-Exposed Subjects 

Reference, Study 
Location, and Period Study Description 

Lead Measurement (SD or range) 
PbB in µg/dL, Bone Pb in µg/g Bone Mineral Findings, Interpretation 

United States (cont’d) 

Rosen et al. 
(1989)  
Bronx, NY 
Unknown 

Comparison of L-shell XRF measures 
and EDTA provocation test in lead-toxic 
children 1-6 yr old.  Eligible if PbB 25-
55 µg/dL and erythrocyte protoporphyrin 
>35 µg/dL. 

Negative EDTA test results (n = 30):  PbB 30 ± 5 
µg/dL, tibia Pb 12 ± 2 µg/g (range 7-52). 

Positive EDTA test results (n = 29):  PbB 39 ± 8 
µg/dL, tibia Pb 37 ± 3 µg/g (range 7-200). 

From PbB and LXRF alone, 90% of Pb-toxic 
children were correctly classified as being 
EDTA-positive or -negative.  LXRF may be 
capable of replacing EDTA testing. 

Kosnett et al. (1994) 
Dickson City, PA 
1991 

Aim to determine the influence of 
demographic, exposure and medical 
factors on the bone Pb concentration of 
subjects with environmental Pb exposure.  
101 subjects (49 males, 52 females; aged 
11 to 78 yrs) recruited from 49 of 123 
households geographically located in a 
suburban residential neighborhood.  
Tibia.  Multiple regression. 

Mean (SD) bone Pb12.7 (14.6). 
Log-transformed bone Pb highly correlated with 
age (r = 0.71; p # 0.0001).  Gender differences in 
log-transformed bone Pb values were 
insignificant up until the 6th decade. 

Bone Pb showed no significant change up to 
age 20 yr, increased with the same slope in 
men and women between ages 20 and 55 yrs, 
and then increased at a faster rate in men older 
than 55 yrs. 

Rosen et al. (1993) 
Moosic and Throop, PA 
1989-91 

Suburban population (Throop, n = 269) 
exposed to unusually high emissions 
during 1963-81 from nearby battery 
recycling/secondary smelter.  Moosic 
served as control community.  
Approximately 9% children aged 5-12 yr, 
15% 13-17 yr, 40% ≥ 18 yr.  Soil and 
PbB, L-shell XRF. 

No significant differences in tibia Pb found 
among three age groups in Moosic or Throop.  

Mooaic:  means 5-12 yr, 6 µg/g; 13-17 yr, 8 µg/g; 
$18 yr, 7 µg/g 

Throop:  means 5-12 yr, 12 ± 1 µg/g; 13-17 yr, 
15 ± 2 µg/g;  $18 yr, 12 ± 1 µg/g. 

No change in bone Pb with age.  Baseline 
values for bone Pb in the environmentally 
exposed population of Moosic can serve as a 
reference baseline for contemporary bone Pb 
levels in similar communities in the USA.   

Stokes et al. (1998) 
Bunker Hill, ID; Spokane, 
WA 
1994 

Examined whether environmental 
exposure to Pb during childhood was 
associated with current adverse 
neurobehavioral effects.  K-shell XRF.  
Formerly exposed as children 19-30 yr 
(n = 238, age 19-30 yr). 

Referents (n = 258) 

Exposed group: 
PbB 2.9 µg/dL; tibia Pb 4.6 µg/g. 

Referent group: 
PbB 1.6 µg/dL; tibia Pb 0.6 µg/g. 
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Table AX4-4 (cont’d).  Bone Lead Measurements in Environmentally-Exposed Subjects 

Reference, Study 
Location, and Period  Study Description 

Lead Measurement (SD or range) 
PbB in µg/dL, Bone Pb in µg/g Bone Mineral Findings, Interpretation 

United States (cont’d) 

McNeill et al. (2000) 
Idaho and Washington 
1994 

To determine if high Pb exposure in 
childhood persisted until adulthood.  
262 exposed subjects and 268 age and 
sex matched controls aged 19 – 29 yr.  
Tibia bone Pb, cumulative PbB index.  
Inverse weighted group mean data, 
linear regressions. 

Group inverse weighted mean (SEM). 

Males:  Exposed 4.54 (0.31); controls 0.03 (0.31) µg 
Pb/g bone mineral.   

Females:  Exposed 5.61 (0.43); controls 1.67 (0.43) 
µg Pb/g bone mineral.   

Lead from exposure in early childhood had 
persisted in the bone matrix until adulthood.  
Bone Pb significantly correlated with age for 
exposed groups.  No significant correlation in 
regressions for control groups with age.  
Exposed subjects had group bone Pb levels 
significantly higher (p < 0.005) than control 
subjects in 7 of 11 age groups.  Exposed 
subjects had increased current PbB 
concentrations that correlated significantly 
with bone Pb values.  Incorporation rate of Pb 
into bone 0.039 (0.003) (Fg Pb/g bone 
mineral)/ µg/dL yr). 

Mexico 

Farias et al. (1998) 
Mexico City and suburbs 
1995-96 

Examined the relation of blood and 
tibia bone Pb levels to Pb 
determinants in 100 adolescents aged 
11 to 21 yr.  LOWESS smoothing, 
multivariate regressions.   

Females (n = 62):  PbB 6.4 (±3.2), tibia 5.5(±8.6).  
Males (n = 36):  PbB 9.1 (±5.5), tibia 3.8 (±5.5). 

25 subjects had bone Pb < 0. 

Bone Pb accounted for 4.1% of variation in PbB. 

Increase in bone Pb of 21.6 µg/g was associated with 
an increase in PbB of 1.2 µg/dL. 

Predictors of bone Pb included higher traffic 
density near the home, mother's smoking 
history, and time spent outdoors.  Predictors 
of log-transformed PbB included bone Pb 
levels, male sex, use of Pb-glazed ceramics, 
and living in Mexico City.  Bone Pb 
accumulated over time constitutes a moderate 
source of circulating Pb during adolescence 

 
PbB = blood lead. 
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Table AX4-5.  Bone Lead Measurements in Occupationally-Exposed Subjects  
Reference, Study 
Location, and Period  Study Description 

Lead Measurement (SD or range) 
PbB in µg/dL, Bone Pb in µg/g Bone Mineral Findings, Interpretation 

United States 

Hu et al. (1994) 
U.S. 
1991 

Construction workers aged 23 to 67 yr 
(n = 19).  Examination of Bone Pb 
and PbB as predictors of blood 
pressure in construction workers.  
Multivariate linear regression, 
LOWESS smoothing. 

PbB 8.3 (±4.0), tibia Pb 9.8 (±9.5), patella Pb 
13.9 (±13.6). 

 

Schwartz et al. (2000b) 
U.S. 
1995 

Retired organolead employees (n = 
543).  Aim to determine influence of 
PbB, chelatable Pb, and tibial Pb on 
systolic and diastolic blood pressure.   

PbB 4.6 (±2.6), tibia Pb14.4 (±9.3). Tibia Pb was not associated with any blood 
pressure measures. 

Popovich et al. (2005) 
Idaho 

108 former female smelter employees 
and 99 referents to assess the PbB 
versus bone Pb relationship. 

Exposed:  PbB 2.73 (±2.39), tibia 14.4 (±0.5) 
Referents:  PbB 1.25 (±2.10), tibia 3.22 (±0.50) 
Pb concentrations in tibia and blood significantly 
higher in the exposed group.  Endogenous release 
rate (µg Pb per dL blood/µg Pb/g bone) in 
postmenopausal women was double the rate found in 
premenopausal women (0.132 ± 0.019 vs. 0.067 ± 
0.014). 

Higher tibia bone Pb (and PbB) was 
associated with use of estrogen (present or 
former) in both the whole referent group and 
postmenopausal women in the referent group. 

Canada 

Fleming et al. (1997) 
Canada 
1994 

Primary smelter workers, 367 active 
and 14 retired. 
PbB in 204 workers returning after a 
10-mo strike ended in 1991. 
Cumulative PbB index, K-shell 
measures with 109Cd source. 

Active (1975-81) median PbB 16.0, (1987-92) 
median PbB 8.0, tibia range 0-150, calcaneus 0-250. 
Retired tibia range 20-120, calcaneus 40-220. 
Bone Pb-cumulative PbB index slopes larger for 
retired compared with active workers, but not 
significant. 

Nonlinearities in cumulative PbB index and 
tibia and calcaneus Pb suggest differences in 
Pb transfer from whole blood to bone among 
smelter employees.  Contribution to PbB from 
bone stores at any instant in time is similar for 
all occupationally exposed populations, active 
or retired. 
Age-related variations in bone turnover are 
not a dominant factor in endogenous exposure 
of male lead workers.  More rapid absorption 
of Pb in calcaneus than tibia. 
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Table AX4-5 (cont’d).  Bone Lead Measurements in Occupationally-Exposed Subjects 

Reference, Study 
Location, and Period  Study Description 

Lead Measurement (SD or range) 
PbB in µg/dL, Bone Pb in µg/g Bone Mineral Findings, Interpretation 

Canada (cont’d) 

Fleming et al. (1998) 
Canada 
1994 

Primary smelter. 
ALAD 1-1 (n = 303) and ALAD1-2, 2-2 
(n = 65). 
PbB, serum Pb, cumulative PbB index, 
ALAD genotype, K-shell measures with 
109Cd source. 

1-1:  PbB 22.9, tibia 41.2, calcaneus 71.6 

1-2, 2-2:  PbB 25.2, tibia 42.7, calcaneus 72.3. 

Slopes of linear relations of bone Pb to cumulative 
PbB index were greater for workers homoallelic for 
ALAD 1, indicating more efficient uptake of lead 
from blood into bone; effect most significant in 
calcaneus bone and for workers hired since improved 
safety measures enacted in 1977 [ALAD1-1:  0.0528 
± 0.0028 and ALAD1-2 or 2-2:  0.0355 ± 0.0031 
(p < 0.001)]. 

Decreased transfer of PbB into bone in 
individuals expressing the ALAD2 allele 
contrasted with increased PbB.  ALAD 
genotype affected lead metabolism and 
potentially modified lead delivery to target 
organs including the brain but ALAD 
genotype did not significantly affect the net 
accumulation of lead in bone. 

Brito et al. (2000) 
Canada 
1993-98 

Aims were to:  (i) investigate the long-term 
human Pb metabolism by measuring the 
change of Pb concentration in the tibia and 
calcaneus between 1993 and 1998; and (ii) 
assess whether improved industrial hygiene 
was resulting in a slow accumulation of Pb 
in an exposed workforce.  101 workers in a 
secondary lead smelter, 51 subjects had 
similar bone Pb measurements in 1993.  
Most other subjects had been hired since 
1993.  Cumulative PbB index.  Linear 
regressions. 

Repeats (n = 51) 
1993:  Tibia 39 (±19), calcaneus 64 (±36). 
1998:  Tibia 33 (±18), calcaneus 65 (±38). 
Non-repeats (n = 50)  
1998:  Tibia 15 (±16), calcaneus 13 (±18). 
Tibia Pb decreased significantly (p  < 0.001) in the 
51 subjects with repeated bone Pb measurements.   

Tibia Pb in 1993 and changes in cumulative PbB index 
were significant predictors of changes in tibia Pb.  
An overall half-life of 15 yr (95% CI:  9, 55 yr) was 
estimated.  Adding continuing lead exposure and 
recirculation of bone lead stores to the regression 
models produced half-life estimates of 12 and 9 yr, 
respectively, for release of lead from the tibia.  Repeat 
subjects showed no net change in calcaneus Pb after 
5 yr. 

The decrease in new exposure coupled to 
release of previously stored bone Pb resulted 
in a significant decrease in tibia Pb in the 
repeat subjects.  The rate of clearance of Pb 
from the tibia of 9 to 15 yr is towards the 
more rapid end of previous estimates.  The 
lack of a significant change in the calcaneus 
Pb was surprising and if confirmed would 
have implications for models of Pb 
metabolism. 
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Table AX4-5 (cont’d).  Bone Lead Measurements in Occupationally-Exposed Subjects 

Reference, Study 
Location, and Period Study Description 

Lead Measurement (SD or range) 
PbB in µg/dL, Bone Pb in µg/g Bone Mineral Findings, Interpretation 

Canada (cont’d) 

Brito et al. (2002) 
Canada 
1994, 1999 

Evaluated endogenous release of Pb from 
bone to blood in 204 exposed subjects 
resuming their duties after a 10-mo strike 
in a primary lead smelter in 1991.  Bone 
Pb (109Cd source) measured in the tibia and 
calcaneus in 1994 (Fleming et al., 1997) 
and 1999.  A linear model used to predict 
the current PbB upon the level of lead in 
bone.  327 subjects available on both 
occasions.  Group H higher PbB and 
Group L lower PbB. 

Group H:  PbB 22.0, tibia 19.2 (n = 120) 
Group L:  PbB 20.6, tibia 82.8 (n = 45) 
Group H:  PbB 24.2, calcaneus 41.4 (n = 90) 
Group L:  PbB 20.2,calcaneus 138.2 (n = 45) 

Structural analysis of data gave slopes for tibia 
(2.0, 95% CI:  1.66-2.54) and calcaneus (0.19, 95% 
CI:  0.16-0.23) that were significantly higher than 
those predicted by the commonly used simple linear 
regression method, for tibia (0.73, 95%, CI:  
0.58-0.88) and calcaneus (0.08, 95% CI:  0.06-0.09). 

Suggested that more Pb than previously 
predicted by regression analysis is released 
from bone to blood. 

Europe 

Somervaille et al. (1988) 
England 

K-shell measures with 109Cd source on 
diverse Pb workers and controls 
Crystal glass (n = 87); Battery plant 
(n = 88); Precious metals (n = 15); 
Laboratory (n = 20). 
Cumulative PbB index. 

Crystal glass:  PbB 48.1, tibia 31.0 

Battery plant:  PbB 32.3, tibia 32.3 

Precious metals:  PbB 51.4, tibia 54.8 

Laboratory:  PbB 13.1, tibia 16.7 

Correlation coefficients between tibia lead 
and duration of employment were 
consistently higher at all three factories 
respectively (r = 0.86, p < 0.0001; r = 0.61,
p < 0.0001; r = 0.80, p < 0.0001).  Strong 
relation between tibia Pb and cumulative 
PbB index among workers in factories 
from which PbB histories were available. 

Christoffersson et al. 
(1984) 
Sweden 
Unknown 

Lead smelter employees  
Active (n = 75); Former plant (n = 32) 
Finger bone measurement with 57Co 
source. 

Active:  median PbB 53.8 (15.5), mean tibia 43 
(<20, 122) 

Former:  median PbB 24.9 (7.0), mean tibia 59.0 
(<20, 135) 

Increase of bone Pb with time of 
employment, no association between bone 
Pb and current PbB in active workers, in 
retired workers PbB rose with increasing 
bone Pb. 

Christoffersson et al. 
(1986) 
Sweden 
1978-84 

Retired lead workers. 
Group 1:  7 smelter, 1 storage battery 
monitored for 2-5 yr directly after end of 
exposure. 
Group 2:  6 battery, bone Pb measured 7-
13 yr after end of exposure.  Finger bone 
measurement with 57Co source from 4 to 
9 times. 

Group 1:  mean initial bone Pb 97 (61, 131), 
decreasing bone Pb with time half-life 6.7 yr (3.4, 15) 

Group 2:  mean initial bone Pb 72 (37, 96), mean 
half-life 8.2 yr (2.4,∞) 

Decrease of lead in bone after the end of 
exposure considerably faster than estimated 
earlier from various data on lead 
metabolism. 
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Table AX4-5 (cont’d).  Bone Lead Measurements in Occupationally-Exposed Subjects 

Reference, Study 
Location, and Period  Study Description 

Lead Measurement (SD or range) 
PbB in µg/dL, Bone Pb in µg/g Bone Mineral Findings, Interpretation 

Europe (cont’d) 

Hanninen et al. (1998) 
Finland 
Unknown 

Storage battery workers  
Grouped into those whose PbB exceeded 
50 µg/dL [High PbB (n = 28; 21 males)], 
and never [Low PbB (n = 26; 22 males)].  
Evaluation of neuropsychological 
dysfunction. 

High PbB:  average PbB 39.3 (±8.3), tibia 35.3 
(±16.6), calcaneus 100.4 (±43.1) 
Low PbB:  average PbB 29.0 (±6.2), tibia 19.8 
(±13.7), calcaneus 78.6(±62.4) 

No relation was found between the 
neuropsychological test battery and tibial 
Pb. 

Erkkilä et al. (1992) 
Finland 
Unknown 

K-shell measures with 109Cd source on acid 
battery employees and controls 
Active (n = 91); Former plant (n = 16); 
Office (n = 38); Laboratory (n = 26).  K-
shell XRF.   

Active:  PbB 30.0 (9.5), tibia 21.1 (17), calcaneus 76.6 
(55.3) 

Former plant:  PbB 12.2 (6.2), tibia 32.4 (34.9), 
calcaneus 73.5 (57.7) 

Office:  PbB 6.4 (3.3), tibia 7.7 (11.3), calcaneus 14.2 
(15.6) 

Laboratory:  PbB 3.7 (1.7), tibia 3.5 (10.8), calcaneus 
1.2 (10.6) 

Tibia Pb concentration increased 
consistently both as a function of intensity 
of exposure and duration of exposure.  
Calcaneal Pb concentration strongly 
dependent on the intensity rather than 
duration of exposure.  Biological half-life 
of Pb in calcaneus <7-8 yr periods into 
which the duration of exposure was split.  
Retired workers:  endogenous exposure to 
Pb arising from skeletal burdens 
accumulated over a working lifetime can 
easily produce the dominant contribution to 
systemic Pb concentrations once 
occupational exposure has ceased. 

Nilsson et al. (1991) 
Sweden 
1980s 

Group A:  7 retired smelter workers and 
1 battery worker monitored for ~10 yr with 
11-17 finger bone measurements with 
57Co. 

Group B:  6 retired battery workers 
monitored for up to 18.5 yr with 7-13 
finger bone measurements. 

Bone Pb values decreased over time. 
A mono-exponential retention model was used. 
Group A:  estimated half-life for bone Pb was 

6.2-27 yr. 
Group B:  half-life was 11-470 yr. 

The “shared” half-life for bone Pb was 16 
(CI:  12, 23) yr.  These values are longer 
than ones of Christoffersson et al. (1986) 
for the same two groups; no “background” 
values were subtracted in the latter case. 
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Table AX4-5 (cont’d).  Bone Lead Measurements in Occupationally-Exposed Subjects 

Reference, Study 
Location, and Period  Study Description 

Lead Measurement (SD or range) 
PbB in µg/dL, Bone Pb in µg/g Bone Mineral Findings, Interpretation 

Europe (cont’d) 

Gerhardsson et al. 
(1993) 
Sweden  
Unknown  

Pb smelter and truck assembly (referent) 
workers; Active smelter (n = 70); Retired 
smelter (n = 30); Truck assembly (n = 31); 
Retired truck assembly (n = 10).  K-shell 
measures with 109Cd source. 

Median values presented. 

Active smelter:  PbB 31.9 (5.0, 47.4), tibia 13.0 
(!4.1, 72.8), calcaneus 48.6 (0.4, 217.8) 

Retired smelter:  PbB 9.9 (3.3, 21), tibia 39.3 
(2.9, 73.4), calcaneus 100.2 (34.8, 188.9) 

Truck:  PbB 4.1 (1.7, 12.4), tibia 3.4 
(!9.4, 13.3), calcaneus 12.2 (!12.7, 43.0) 

Retired truck:  PbB 3.5 (2.2, 12.2), tibia 12.0 
(!6.7, 23.7), calcaneus 30.2 (!7.1, 56.7) 

Higher calcaneus Pb than tibia Pb in active 
lead workers suggested more rapid 
absorption over time in this mainly 
trabecular bone.  Estimated biological half 
times were 16 yr in calcaneus (95% CI:  
11, 29 yr) and 27 yr in tibia (95% CI:  16, 
98 yr).  Strong positive correlation between 
bone Pb and cumulative PbB index. 

Börjesson et al. (1997) 
Sweden 
1992 

Pb smelter and referent male metal 
workers Active smelter (n = 71); Retired 
smelter (n = 18); Referent active (n = 27); 
Referent retired (n = 8).  Similar cohort to 
Gerhardsson et al. (1993).  Finger bone 
measurement with 57Co source.  
Cumulative PbB index. 

Median values presented. 

Active smelter:  PbB 33.1 (8.3, 93), 
bone Pb 23.0 (!13, 99) 

Retired smelter:  PbB 17.2 (8.9, 33.1),  
bone Pb 55 (3, 88) 

Active referent:  PbB 3.7 (0.8, 7.0),  
bone Pb 3 (!21, 16) 

Retired referent:  PbB 3.9 (3.1, 6.2),  
bone Pb 1.5 (!3, 12)  

Multiple regression analyses showed bone 
Pb was best described by the cumulative 
PbB index, which explained 29% of the 
observed variance (multiple r2) in bone Pb 
in active workers and about 39% in retired 
workers.  Estimated biological half-life of 
bone Pb among active lead workers was 
5.2 yr (95% CI:  3.3-13.0 yr). 

Bergdahl et al. (1998) 
Sweden  
1986 

Secondary Pb smelter 
Exposed (n = 77); Referents (n = 24).  K-
shell measures with 109Cd source.  
Cumulative PbB index and (calculated) 
plasma Pb. 

Exposed:  PbB 35.0 (14, 57), tibia 25 (5, 193), 
calcaneus 52 (!20, 458) 
Referents:  PbB 5.0 (2.9, 16).  tibia 10 (!6, 36), 
calcaneus 11(!12, 61) 

Strong relationships between the tibia Pb 
(r2 = 0.78) and calcaneus (r2  = 0.80) and 
cumulative PbB index.  Half-lives of Pb in 
tibia 13-24 yr and calcaneus 12-19. 

Erfurth et al. (2001) 
Sweden 

Secondary smelter  
Active (n = 62); Retired (n = 15); 
Referents (n = 26). 
Evaluation of effects of Pb on the 
endocrine system. 
Finger bone measures with 57Co source. 

Median values presented. 

Active:  PbB 33.2 (8.3, 93.2), tibia 21 (!13, 99)  
Retired:  PbB 18.6 (10.4, 49.7), tibia 55 (3, 88) 
Referents:  PbB 4.1 (0.8, 6.2), tibia 2 (!21, 14) 

No significant associations between bone 
Pb and pituitary and thyroid hormones, 
serum testosterone, gonadotropin-releasing 
hormone and thyroid releasing hormone. 
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Table AX4-5 (cont’d).  Bone Lead Measurements in Occupationally-Exposed Subjects 

Reference, Study 
Location, and Period  Study Description 

Lead Measurement (SD or range) 
PbB in µg/dL, Bone Pb in µg/g Bone Mineral Findings, Interpretation 

Europe (cont’d) 

Roels et al. (1995) 
Belgium 

Pb smelter and others. 
Active production (n = 73); Other 
departments (n = 50).  K-shell measures 
with 109Cd source.  Cumulative PbB index. 

Active:  PbB 42.0, tibia 66.5 
Others:  PbB 14.5, tibia 31.4 

Strong relationship between bone Pb and 
cumulative PbB index in smelter 
populations (r = 0.80, p < 0.0001; age 
explained #9.5% of variance).  Slope of  
regression equation of log bone Pb versus 
log cumulative PbB index showed that 
doubling of cumulative PbB index 
corresponds to doubling of bone Pb. 

Mexico 

Juarez-Perez et al. 
(2004) 
Mexico City 
1996-7 

Lithographic print shop workers; Males, 
n = 59, 10 females; mean age 47 yrs 
Plasma Pb by ultraclean ICP-MS methods.  
K-shell measures with 109Cd source. 

PbB 11.9 (±5.8), tibia 27.6 (±18.1; ND-73.8), 
patella 46.8 (±29.3; ND-139) 

Statistically significant associations 
between:  plasma Pb and PbB, patella Pb, 
tibia Pb, age, education, use of Pb-glazed 
ceramics but not air Pb, hand Pb or hygiene 
index at work.  Multiple linear regression 
models with patella and tibia Pb as main 
predictors and adjusting for PbB and 
hygiene index explained 57% of variability 
in plasma Pb.  Negative association 
between plasma Pb and hygiene index 
suggest oral exposure and gastrointestinal 
uptake of Pb predominant source of Pb 
exposure in these subjects. 

Asia 

Schwartz et al. (2001) 
Korea 
1997-99 

Korean Pb workers (798, 639 male, 
164 female) and controls (135, 124 male, 
1 female).  Evaluation of associations 
between PbB, tibia Pb, chelatable Pb, and 
neurobehavioral functions.  K-shell 
measures with 109Cd source. 

Active:  PbB 32 (±15), tibia 37.2 (±40.4) 

Controls:  PbB 5.3 (±1.8), tibia 5.8 (±7.0). 

After adjustment for covariates, tibia Pb 
was not associated with neurobehavioral 
test scores. 
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Table AX4-5 (cont’d).  Bone Lead Measurements in Occupationally-Exposed Subjects 

Reference, Study 
Location, and Period  Study Description 

Lead Measurement (SD or range) 
PbB in µg/dL, Bone Pb in µg/g Bone Mineral Findings, Interpretation 

Asia (cont’d) 

Todd et al. (2001) 
Korea 

Korean Pb workers active (n = 723), 
retired (n = 79), controls (n = 135).  
Evaluation of associations between PbB, 
tibia Pb, chelatable Pb. 

K-shell measures with 109Cd source. 

Active:  median PbB 31.7, tibia 24.4  
(−7.4, 337.6) 

Retired:  median PbB 13.5, tibia 26.4  
(−6.7, 196.7) 

Controls:  median PbB 5.1, tibia 5.0  
(−10.9, 26.6) 

Control women higher bone Pb than men.  
Job duration, body mass index, and age 
were positive predictors of tibial Pb.  Rate 
of increase in tibia Pb with age itself 
increased with increasing age.  Tibial Pb 
stores in older subjects are less bioavailable 
and may contribute less to PbB than tibial 
stores in younger subjects. 

 
PbB = blood lead.
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Table AX4-6.  Bone Lead Contribution to PbB 

Reference, Study 
Location, and 
Period  Study Description 

Lead Measurement (SD or range) 
PbB in µg/dL, Bone Pb in µg/g Bone Mineral Findings, Interpretation 

United States 

Korrick et al. 
(2002) 
Boston, MA 
1990-95 

Nurses’ Health Study.  Cross-
sectional study of 264 elderly 
women; 46-54 yr (n = 80) 55-64 
yr (n = 102), 65-74 yr (n = 82).  
Tibia and patella Pb.  Multivariate 
linear regression models. 

46-54 yr:  PbB 2.7 (SE ±0.3), tibia 10.5 (±1.0), patella 
14.9 (±1.2) 

55-64 yr:  PbB 3.4 (±0.2), tibia 12.7 (±0.9), patella 17.0 (±1.1) 

65-74 yr:  PbB 3.3 (±0.3), tibia 16.4 (±0.9), patella 19.8 (±1.2). 

An increase from the first to the fifth quintile of tibia Pb level 
(19 µg/g) was associated with a 1.7 µg/dL increase in PbB 
(p 0.0001).   

Tibia and patella Pb values were significantly 
and positively associated with PbB but only 
among postmenopausal women who were not 
using estrogens.  Older age and lower parity 
were associated with higher tibia Pb; only age 
was associated with patella Pb.  They 
suggested the observed interaction of bone Pb 
with estrogen status in determining PbB 
supports the hypothesis that increased bone 
resorption, as occurs postmenopausally 
because of decreased estrogen production, 
results in heightened release of bone Pb stores 
into blood. 

Popovic et al. 
(2005) 
Bunker Hill, ID 
1994 

108 former female smelter 
employees and 99 referents to 
assess the PbB versus bone Pb 
relationship 

Exposed:  PbB 2.73 (±2.39), tibia 14.4 (±0.5) 

Referents:  PbB 1.25 (±2.10), tibia 3.22 (±0.50) 

Pb concentrations in tibia and blood significantly higher in the 
exposed group.  Endogenous release rate (µg Pb per dL blood/µ 
Pb/g bone) in postmenopausal women was double the rate found 
in premenopausal women (0.132 ± 0.019 vs. 0.067 ± 0.014). 

Higher tibia bone Pb (and PbB) was associated 
with use of estrogen (present or former) in 
both the whole referent group and 
postmenopausal women in the referent group.   
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Table AX4-6 (cont’d).  Bone Lead Contribution to PbB 
Reference, Study 
Location, and 
Period  Study Description 

Lead Measurement (SD or range) 
PbB in µg/dL, Bone Pb in µg/g Bone Mineral Findings, Interpretation 

Canada 

Brito et al. (2000) 
Canada 
1993-98 

Aims were to:  (i) investigate the 
long term human Pb metabolism by 
measuring the change of Pb 
concentration in the tibia and 
calcaneus between 1993 and 1998; 
and (ii) assess whether improved 
industrial hygiene was resulting in a 
slow accumulation of Pb in an 
exposed workforce.  101 workers in a 
secondary lead smelter, 51 subjects 
had similar bone Pb measurements in 
1993.  Most other subjects had been 
hired since 1993.  Cumulative PbB 
index.  Linear regressions. 

Repeats (n = 51)  
1993:  Tibia 39 (±19), calcaneus 64 (±36). 
1998:  Tibia 33 (±18), calcaneus 65 (±38). 
Non-repeats (n = 50)  
1998:  Tibia 15 (±16), calcaneus 13 (±18). 

Tibia Pb decreased significantly (p <0.001) in the 51 subjects with 
repeated bone Pb measurements.  Tibia Pb in 1993 and changes in 
cumulative PbB index were significant predictors of changes in 
tibia Pb.  An overall half-life of 15 yr (95% CI:  9, 55 yr) was 
estimated.  Adding continuing lead exposure and recirculation of 
bone lead stores to the regression models produced half-life 
estimates of 12 and 9 yr, respectively, for release of lead from the 
tibia.  Repeat subjects showed no net change in calcaneus Pb after 
5 yr. 

The decrease in new exposure coupled to 
release of previously stored bone Pb resulted in 
a significant decrease in tibia Pb in the repeat 
subjects.  The rate of clearance of Pb from the 
tibia of 9 to 15 yr is towards the more rapid end 
of previous estimates.  The lack of a significant 
change in the calcaneus Pb was surprising and 
if confirmed would have implications for 
models of Pb metabolism. 

Brito et al. (2002) 
Canada 
1994, 1999 

Evaluated endogenous release of Pb 
from bone to blood in 204 exposed 
subjects resuming their duties after a 
10-mo strike in a primary lead 
smelter in 1991.  Bone Pb (109Cd 
source) measured in the tibia and 
calcaneus in 1994 (Fleming et al., 
1997) and 1999.  A linear model 
used to predict the current PbB upon 
the level of lead in bone.  
327 subjects available on both 
occasions.  Group H higher PbB and 
Group L lower PbB. 

Group H:  PbB 22.0, tibia 19.2 (n = 120) 
Group L:  PbB 20.6, tibia 82.8 (n = 45) 
Group H:  PbB 24.2, calcaneus 41.4 (n = 90) 
Group L:  PbB 20.2,calcaneus 138.2 (n = 45) 

Structural analysis of data gave slopes for tibia (2.0, 95% CI:  
1.66, 2.54) and calcaneus (0.19, 95% CI:  0.16, 0.23) that were 
significantly higher than those predicted by the commonly used 
simple linear regression method, for tibia (0.73, 95% CI:  0.58, 
0.88) and calcaneus (0.08, 95% CI:  0.06, 0.09). 

Suggested that more Pb than previously 
predicted by regression analysis is released 
from bone to blood.   



 
A

X
4-21

 

 

Table AX4-6 (cont’d).  Bone Lead Contribution to PbB
Reference, Study 
Location, and 
Period  Study Description 

Lead Measurement (SD or range) 
PbB in µg/dL, Bone Pb in µg/g Bone Mineral Findings, Interpretation 

Mexico 

Brown et al. 
(2000) 
Mexico City 
1994-5 

Investigated determinants of bone Pb 
and PbB of 430 lactating Mexican 
women during the early postpartum 
period and contribution of bone Pb to 
PbB.  Linear regression analyses. 

PbB 9.5 (±4.5), tibia 10.2 (±10.1), patella 15.2 (±15.1).   Older age, use of Pb glazed pottery, and higher 
proportion of life spent in Mexico City were 
main predictors of higher tibia and patella Pb.  
Women in the 90th percentile for patella Pb 
had an untransformed predicted mean PbB 3.6 
µg/dL higher than those in the 10th percentile. 

Téllez-Rojo et al. 
(2002) 
Mexico City 
1994-95 

Evaluated the hypothesis that 
lactation stimulates Pb release from 
bone to blood.  Cross–sectional 
examination of breastfeeding patterns 
and bone Pb as determinants of PbB 
among 425 lactating women (mean 
age 24.8 ± 5.3 yr) for 7 mo after 
delivery.  Bone Pb at 1 mo 
postpartum.  Maternal blood samples 
and questionnaire information 
collected at delivery and at 1, 4, and 
7 mo postpartum.  Generalized 
estimating equations. 

Mean PbB decreased with time postpartum:  1 mo 9.4 (±4.4), 
4 mo 8.9 (±4.0), 7 mo 7.9 (±3.3).  

Tibia 10.6 (11.6 after correction for negative values), patella 
15.3 (16.9 after correction).  After adjustment for bone Pb and 
environmental exposure, women who exclusively breastfed 
their infants had PbB levels that were increased by 1.4 µg/dL 
and women who practiced mixed feeding had levels increased 
by 1.0 µg/dL, in relation to those who had stopped lactation.  
A 10 µg Pb/g increment in patella and tibia bone Pb increased 
PbB by 6.1% (95% CI:  4.2, 8.1) and 8.1% (95% CI:  5.2, 
11.1), respectively.   

They concluded that their results support the 
hypothesis that lactation is directly related to 
the amount of Pb released from bone. 

Garrido-Latorre 
et al. (2003) 
Mexico City 
1995 

Aim was to examine the relationship 
of PbB levels to menopause and bone 
lead levels in 232 perimenopausal 
and postmenopausal women from 
Mexico City.  Measured bone 
mineral density in addition to bone 
Pb.  Information regarding 
reproductive characteristics and 
known risk factors for PbB was 
obtained using a standard 
questionnaire by direct interview.  
Mean age of the population was 
54.7 yrs (±9.8).  Linear regression 
analyses. 

PbB 9.2 (±4.7), tibia 14.85 (±10.1), patella 22.73 (±14.9). 

A change of 10 µg Pb/g bone mineral in postmenopausal 
subjects was associated with an increase in PbB of 1.4 µg/dL, 
whereas a similar change in bone lead among premenopausal 
women was associated with an increase in PbB of 0.8 µg/dL. 

Found that postmenopausal women using 
hormone replacement therapy had lower PbB 
levels and higher tibia and patella bone Pb 
levels than non-users; patella Pb explained the 
greatest part of variations in PbB.  Found no 
association with PbB levels and did not 
describe any relationships between bone lead 
and bone density.  

 
PbB = blood lead.
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Table AX4-7.  Bone Lead Studies in Pregnant and Lactating Subjects 

Reference, Study 
Location, and 
Period  Study Description 

Lead Measurement (SD or range) 
PbB in µg/dL, Bone Pb in µg/g Bone Mineral Findings, Interpretation 

United States 

Hu et al. (1996) 
Boston, MA 
1990 

Cord PbB measured in 223 
women, 41 bone Pb measured 
at 1-4 postpartum.  ANOVA. 

Values omitted if measurement uncertainty was >10 µg/g for tibia and 
15 µg/g for patella.  

Cord PbB 1.19 (±1.32), maternal PbB 2.9 (±2.6), tibia 4.5 (±4.0) patella 5.8 
(±4.5). 

Maternal age was the only factor marginally associated with combined bone 
Pb (p = 0.08) but not individually with tibia or patella Pb.  

Umbilical cord PbB among 
women served by this Boston 
hospital declined dramatically 
from 1980 to 1990. 

Rothenberg et al 
(2000) 
Los Angeles, CA 
1995-98 

Examined bone Pb contribution to 
PbB in a group of 311 immigrant 
women (mean age 27.8 ±7.5 yr), 
99% from Latin America, during 
the 3rd trimester of pregnancy, and 
1 to 2 mo after delivery.  Multiple 
regression, variance-weighted 
least squares regression, structural 
equation modeling. 

Prenatal PbB 2.2 (+4.8/!1.0, geometric mean), postnatal PbB 2.8 
(+4.9/!1.2) (p < 0.0001), tibia 6.7(±12.5), calcaneus 8.4 (±13.2).  Variance-
weighted multiple regression and structural equation models showed that 
both calcaneus and tibia Pb were directly associated with prenatal PbB but 
only calcaneus Pb was associated with postnatal PbB.  Increasing natural log 
yrs in the United States independently predicted decreasing calcaneus and 
3rd trimester PbB. 

Suggest that while some 
exogenous Pb sources and 
modulators of PbB, such as use 
of Pb-glazed pottery and calcium 
in the diet, control Pb exposure 
during and after pregnancy, 
endogenous Pb sources from past 
exposure before immigration 
continue to influence PbB levels 
in this cohort. 

Rothenberg et al. 
(2002) 
Los Angeles, CA 
1995-2001 

Examined the effects of blood and 
bone PbB on hypertension and 
elevated blood pressure in the 3rd 
trimester and postpartum among 
1,006 mostly Latina and Afro-
American women.  Multiple and 
logistic regression. 

Returned and eligible:  3rd trimester PbB (n = 720) 1.9 (+3.6/!1.0), 
postpartum PbB (n = 704) 2.3 (+4.3/!1.2), tibia (n = 700) 8.0 (±11.4), 
calcaneus (n = 700) 10.7 (±11.9).  Returned but ineligible:  3rd trimester 
PbB (n = 279) 1.9 (+4.2/!0.8), postpartum PbB (n = 274) 2.3 (+4.7/!1.1), 
tibia (n = 263) 8.7 (±13.9), calcaneus (n = 262) 11.2 (±15.1).  For each 
10 µg/g increase in calcaneus Pb level, the odds ratio for 3rd trimester 
hypertension (systolic blood pressure $140 mmHg or diastolic blood 
pressure $90 mmHg) was 1.86 (95% CI:  1.04, 3.32).  In normotensive 
subjects, each 10 µg/g increase in calcaneus Pb level was associated with a 
0.70 mmHg (95% CI:  0.04, 1.36) increase in 3rd trimester systolic blood 
pressure and a 0.54 mmHg (95% CI:  0.01, 1.08) increase in diastolic blood 
pressure after adjusting for postpartum hypertension, education, 
immigration status, current smoking, current alcohol use, parity, age, and 
body mass index.  Tibia bone Pb was not related to hypertension or elevated 
blood pressure either in the 3rd trimester or postpartum, nor was calcaneus 
Pb related to postpartum hypertension or elevated blood pressure. 

The authors concluded that past 
Pb exposure influences 
hypertension and elevated blood 
pressure during pregnancy and 
controlling blood pressure may 
require reduction of Pb exposure 
long before pregnancy. 
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Table AX4-7 (cont’d).  Bone Lead Studies in Pregnant and Lactating Subjects 

Reference, Study 
Location, and 
Period  Study Description 

Lead Measurement (SD or range) 
PbB in µg/dL, Bone Pb in µg/g Bone Mineral Findings, Interpretation 

Mexico 

Hernandez-Avila 
et al. (1996) 
Mexico City 

Cross-sectional investigation of 
the interrelationships between 
environmental, dietary, and 
lifestyle histories, blood and bone 
Pb levels, among 98 recently 
postpartum women.  Multivariate 
linear regression.  Age 25.6 
(±6.8) yr. 

14-20 yr (n = 24):  PbB 10.4 (±4.1), tibia 11.8 (±14.9), patella 14.1 (±13.3). 
21-29 yr (n = 44):  PbB 10.3 (±4.8), tibia 10.7 (± 10.9), patella 17.1 (±13.4) 
30-43 yr (n = 27):  PbB 7.8 (± 3.7), tibia 16.3 (±8.4), patella 18.1 (±12.7). 
A 34 µg/g increase in patella Pb (from the medians of the lowest to the 
highest quartiles) was associated with an increase in PbB of 2.4 µg/dL.  
Significant predictors of bone Pb included years living in Mexico City, 
lower consumption of high calcium content foods, and nonuse of calcium 
supplements for the patella and years living in Mexico City, older age, and 
lower calcium intake for tibia bone.  Low consumption of milk and cheese, 
as compared to the highest consumption category (every day), was 
associated with an increase in tibia Pb of 9.7 µg/g. 

Suggest that patella bone is a 
significant contributor to PbB 
during lactation and that 
consumption of high calcium 
content foods may protect 
against the accumulation of Pb 
in one. 

González-Cossío 
et al. (1997) 
Mexico City 
Unknown 

Examined relationship of Pb levels 
in cord blood and maternal bone to 
birth weight.  Umbilical cord and 
maternal venous blood samples 
and anthropometric and 
sociodemographic data were 
obtained at delivery and 1 mo 
postpartum.  Bone Pb at 1 mo 
postpartum.  Multiple regression, 
LOWESS.   
Background information for 
calcium supplementation study 
Hernandez-Avila et al. (2003). 
Mother-infant pairs (n = 272). 

Maternal PbB 8.9 (±4.1), cord PbB 7.1 (±3.5), tibia 9.8 (±8.9), patella 14.2 
(±13.2).   

After adjustment for other determinants of birth weight, tibia Pb was the 
only Pb biomarker clearly related to birth weight.  The decline in birth 
weight associated with increments in tibia Pb was nonlinear and accelerated 
at the highest tibia Pb quartile.  In the upper quartile, neonates were on 
average, 156 g lighter than those in the lowest quartile. 

Bone-lead burden is inversely 
related to birth weight.   
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Table AX4-7 (cont’d).  Bone Lead Studies in Pregnant and Lactating Subjects 

Reference, Study 
Location, and 
Period  Study Description 

Lead Measurement (SD or range) 
PbB in µg/dL, Bone Pb in µg/g Bone Mineral Findings, Interpretation 

Mexico (cont’d) 

Brown et al. (2000) 
Mexico City 
1994-5 

Investigated determinants of bone 
Pb and PbB of 430 lactating 
Mexican women during the early 
postpartum period and 
contribution of bone Pb to PbB.  
Linear regression analyses. 

PbB 9.5 (±4.5), tibia 10.2 (±10.1), patella 15.2 (±15.1).   Older age, use of Pb glazed 
pottery, and higher proportion of 
life spent in Mexico City were 
main predictors of higher tibia 
and patella Pb.  Women in the 
90th percentile for patella Pb had 
an untransformed predicted 
mean PbB 3.6 µg/dL higher than 
those in the 10th percentile. 

Chuang et al. (2001) 
Mexico City 
1994-95 

Aim to estimate the contribution 
of maternal whole PbB and bone 
Pb, and environmental Pb to 
umbilical cord PbB (as a measure 
of fetal Pb exposure).  Maternal 
and umbilical cord blood samples 
within 12 hr of each infant's 
delivery.  Structural equation 
modeling.   

Bone Pb measured within 1 mo after delivery.  PbB 8.45 (±3.94, n = 608), 
tibia 9.67 (±9.21, n = 603), patella 14.24 (±14.19, n = 575). 

Tibia and patella Pb, use of Pb glazed ceramics, and mean air Pb level 
contributed significantly to plasma Pb.  An increase in patella Pb and tibia 
Pb was associated with increases in cord PbB of 0.65 and 0.25 µg/dL, 
respectively. 

Suggested that maternal plasma 
Pb varies independently from 
maternal whole PbB.  
Contributions from endogenous 
(bone) and exogenous 
(environmental) sources were 
approximately the same.  
(Plasma Pb not measured). 

Ettinger et al. (2004) 
Mexico City 
1994-95 

Aim to quantify the relation 
between maternal blood and bone 
Pb and breast-feeding status 
among 310 lactating women in 
Mexico City, Mexico, at 1 mo 
postpartum.  Breast milk 
measured.  Multiple linear 
regression, LOWESS smoothing. 

Breastfeeding:  PbB 9.3 (±4.4, n = 310), tibia 9.6 (±10.1, n = 303), patella 
14.5 (±14.9, n = 294). 

Non breastfeeding:  PbB 9.3 (±4.9, n = 319), tibia 10.5 (±10.2, n = 306), 
patella 15.2 (±16.1, n = 289).  Breast milk geometric mean 1.1 (range 
0.21-8.02) µg/L.  Breast milk Pb significantly correlated with umbilical cord 
Pb and maternal PbB at delivery and with maternal PbB and patella Pb at 
1 mo postpartum.  An interquartile range increase in patella Pb (20 µg/g) 
was associated with a 14% increase in breast milk lead (95% CI:  5, 25%).  
An IQR increase in tibia Pb (12.0 µg/g) was associated with a 5% increase 
in breast milk lead (95% CI:  !3, 14). 

Suggest that even among a 
population of women with 
relatively high lifetime Pb 
exposure, breast milk Pb levels 
are low, influenced both by 
current Pb exposure and by 
redistribution of bone Pb 
accumulated from past 
environmental exposures. 
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Table AX4-7 (cont’d).  Bone Lead Studies in Pregnant and Lactating Subjects 

Reference, Study 
Location, and 
Period  Study Description 

Lead Measurement (SD or range) 
PbB in µg/dL, Bone Pb in µg/g Bone Mineral Findings, Interpretation 

Mexico (cont’d) 

Sanín et al. (2001) 
Mexico City 
1994-95 

Examined early postnatal growth 
in a cohort of healthy breastfed 
newborns in relation to maternal 
bone Pb burden.  329 mother-
infant pairs sampled for umbilical 
cord blood at birth and maternal 
and infant venous blood at 1 mo 
postpartum.  Maternal evaluations 
at 1 mo postpartum included Pb 
measures in blood and bone.  
Primary endpoints were attained 
weight 1 mo of age, and weight 
gain from birth to 1 mo of age.  
Linear regression.  

Included in analyses (n = 329):   

Infant:  cord PbB 6.8 (±3.9), PbB 1 mo 5.7 (±3.0) 
Maternal:  PbB 9.7 (±5.2), tibia Pb 10.1 (±10.3), patella Pb 15.2 (±15.2) 
 

Excluded from analyses (n = 276): 
Infant:  cord PbB 6.3 (±3.0), PbB 1 mo 5.5 (±3.3) 
Maternal:  PbB 8.8 (±3.9), tibia Pb 9.75 (±10.3), patella Pb 14.2 (±17.3). 

Infant PbB were inversely associated with weight gain, with an estimated 
decline of 15.1 g/µg/dL of PbB.  Children who were exclusively breastfed 
had significantly higher weight gains; however, this gain decreased 
significantly with increasing levels of patella Pb.  Multivariate regression 
analysis predicted a 3.6 g decrease in weight at 1 mo of age/µg Pb/g bone 
mineral increase in maternal patella Pb levels. 

The authors concluded that 
maternal Pb burden is negatively 
associated with infant attained 
weight at 1 mo of age and to 
postnatal weight gain from birth 
to 1 mo of age. 

Gomaa et al. (2002) 
Mexico City 
Unknown 
 

Aim to compare umbilical cord 
PbB and maternal bone Pb as 
independent predictors of infant 
mental development (n = 197).  
Prospective design.  At 24 mo of 
age, each infant was assessed 
using the Bayley Scales of Infant 
Development-II (Spanish 
Version).  Multiple linear 
regression. 

Cord PbB 6.7 (±3.4), tibia 11.5 (±11.0), patella 17.9 (±15.2).  After 
adjustment for confounders, Pb levels in umbilical cord blood and patella 
bone were significantly, independently, and inversely associated with the 
Mental Development Index (MDI) scores of the Bailey Scale.  In relation to 
the lowest quartile of patella Pb, the 2nd, 3rd, and 4th quartiles were 
associated with 5.4-, 7.2-, and 6.5-point decrements in adjusted MDI scores.  
A 2-fold increase in cord PbB (e.g., from 5-10 µg/dL) was associated with a 
3.1-point decrement in MDI score. 

Suggest that higher maternal 
patella bone Pb levels constitute 
an independent risk factor for 
impaired mental development in 
infants at 24 mo of age.  This 
effect is probably attributable to 
mobilization of maternal bone Pb 
stores. 
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Table AX4-7 (cont’d).  Bone Lead Studies in Pregnant and Lactating Subjects 

Reference, Study 
Location, and 
Period  Study Description 

Lead Measurement (SD or range) 
PbB in µg/dL, Bone Pb in µg/g Bone Mineral Findings, Interpretation 

Mexico (cont’d) 

Hernandez-Avila 
et al. (2002) 
Mexico City 
1994 

Aim to evaluate the effects of 
maternal bone Pb stores on 
anthropometry at birth in 223 
mother-infant pairs.  
Anthropometric data were 
collected within the first 12 hr 
following delivery.  Maternal 
information was obtained 1 mo 
after delivery (mean age 24.4 ± 5.4 
yr).  Transformed anthropometric 
measurements to an ordinal 5-
category scale, and association of 
measurements with other factors 
evaluated with ordinal logistic-
regression models.  Cumulative 
Odds Model. 

Cord blood 7.01 (±3.5), maternal PbB 8.82 (± 4.0), tibia 10.70 (±7.58, 
adjusted for negative values), patella 15.39 (±11.18, adjusted for negative 
values).  Maternal PbB increased linearly by 0.096/µg of tibia Pb and 
0.078/µg patella Pb.  Umbilical cord PbB increased by 0.111/µg tibia Pb 
and 0.061/µg patella Pb.  Birth length of newborns decreased as tibia Pb 
levels increased (odds ratio of 1.03/µg/g bone mineral [95% CI:  1.01, 
1.06]).   

Compared with women in the 
lower quintiles of the distribution 
of tibia Pb, those in the upper 
quintile had a 79% increase in 
risk of having a lower birth 
length newborn (OR ratio 1.79; 
95% CI:  1.10, 3.22).  Patella Pb 
was positively related to the risk 
of a low head circumference 
score; this score remained 
unaffected by inclusion of birth 
weight.  The increased risk was 
1.02/ Fg Pb/g bone mineral (95% 
CI:  1.01, 1.04).  Odds ratios did 
not vary substantially after the 
authors adjusted for birth weight 
and other important determinants 
of head circumference. 

Téllez-Rojo et al. 
(2002) 
Mexico City 
1994-95 

Evaluated the hypothesis that 
lactation stimulates Pb release 
from bone to blood.  
Cross-sectional examination of 
breastfeeding patterns and bone Pb 
as determinants of PbB among 425 
lactating women (mean age 24.8 
±5.3 yr) for 7 mo after delivery.  
Bone Pb at 1 mo postpartum.  
Maternal blood samples and 
questionnaire information 
collected at delivery and at 1, 4, 
and 7 mo postpartum.  Generalized 
estimating equations. 

Mean PbB decreased with time postpartum:  1 mo 9.4 (±4.4), 4 mo 8.9 
(±4.0), 7 mo 7.9 (±3.3).  

Tibia 10.6 (11.6 after correction for negative values), patella 15.3 (16.9 after 
correction).  After adjustment for bone Pb and environmental exposure, 
women who exclusively breastfed their infants had PbB levels that were 
increased by 1.4 µg/dL and women who practiced mixed feeding had levels 
increased by 1.0 µg/dL, in relation to those who had stopped lactation.  
A 10 µg Pb/g increment in patella and tibia bone Pb increased PbB by 6.1% 
(95% CI:  4.2, 8.1) and 8.1% (95% CI:  5.2, 11.1), respectively.   

They concluded that their results 
support the hypothesis that 
lactation is directly related to the 
amount of Pb released from 
bone. 
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Table AX4-7 (cont’d).  Bone Lead Studies in Pregnant and Lactating Subjects 

Reference, Study 
Location, and 
Period  Study Description 

Lead Measurement (SD or range) 
PbB in µg/dL, Bone Pb in µg/g Bone Mineral Findings, Interpretation 

Mexico (cont’d) 

Hernandez-Avila 
et al. (2002) 
Mexico City 
1994 

Evaluated the effects that maternal 
bone Pb has on anthropometry at 
birth in 223 mother-infant pairs.  
Anthropometric data (birth length, 
head circumference) collected 
within the first 12 hr following 
delivery.  Maternal information 
was obtained 1 mo postpartum.  
Transformed anthropometric 
measurements to an ordinal 5-
category scale, ordinal logistic-
regression models. 

Participants (n = 223) Cord blood 7.01 (±3.5), maternal PbB 8.82 (±4.0), 
tibia 9.83 (±8.9), patella 14.14 (±13.0). 
Nonparticipants (n = 494):  Cord blood 6.75 (±3.50), PbB 8.47 (±4.19).  
Birth length of newborns decreased as tibia Pb levels increased.  Compared 
with women in the lower quintiles of the distribution of tibia Pb, those in the 
upper quintile had a 79% increase in risk of having a lower birth length 
newborn (odds ratio 1.79; 95% CI:  1.10, 3.22).  The effect was attenuated–
but nonetheless significant- even after adjustment for birth weight.  Patella 
Pb was positively and significantly related to the risk of a low head 
circumference score; this score remained unaffected by inclusion of birth 
weight.   

The authors estimated the 
increased risk of having a low 
head-circumference score to be 
1.02/ µg Pb/g bone mineral (95% 
CI:  1.01, 1.04).  Odds ratios did 
not vary substantially after the 
authors adjusted for birth weight 
and other important determinants 
of head circumference. 

Hernandez-Avila 
et al. (2003) 
Mexico City 
1994-95 

Tested the hypothesis that in a 
randomized trial of lactating 
women a dietary calcium 
supplement will lower PbB levels.  
Lactating women (mean age 24 yr) 
were randomly assigned to receive 
either calcium carbonate (1200 mg 
of elemental calcium daily) or 
placebo in a double-blind trial.  
Blood samples were obtained at 
baseline, and 3 and 6 mo after the 
trial began.  Primary endpoint was 
change in maternal PbB in relation 
to supplement use and other 
covariates with multivariate 
generalized linear models for 
longitudinal observations. 

Lactating calcium group (n = 296):  PbB 9.2 (±4.2), tibia 10.7 (±9.8), patella 
16.2 (±15.7) 
Lactating placebo (n = 321):  PbB 9.4 (± 5.0), tibia 9.6 (±10.3), patella 13.5 
(± 15.1) 
Women randomized to the calcium supplements experienced a small decline 
in PbB of 0.29 µg/dL (95% CI:  !0.85, !0.26).  The effect was more 
apparent among women who were compliant with supplement use and had 
high patella Pb of $5 µg/g.  Among this subgroup, supplement use was 
associated with an estimated reduction in mean PbB of 1.16 µg/dL  
(95% CI:  !2.08, !0.23), an overall reduction of 16.4%. 

Among lactating women with 
relatively high Pb burden, 
calcium supplementation was 
associated with a modest 
reduction in PbB levels. 
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Table AX4-7 (cont’d).  Bone Lead Studies in Pregnant and Lactating Subjects 

Reference, Study 
Location, and 
Period  Study Description 

Lead Measurement (SD or range) 
PbB in µg/dL, Bone Pb in µg/g Bone Mineral Findings, Interpretation 

Mexico (cont’d) 

Téllez-Rojo et al. 
(2004) 
Mexico City 
1997-99 

Tested the hypotheses that 
maternal bone Pb burden is 
associated with increasing 
maternal whole PbB and plasma 
Pb over the 3 trimesters of 
pregnancy and that this association 
is modified by rates of maternal 
bone resorption.  Urine was 
analyzed for cross-linked N-
telopeptides (NTx) of type I 
collagen, a biomarker of bone 
resorption.  Patella and tibia Pb at 
1 mo postpartum.  Mixed models. 

Participants (n = 193):   

PbB (µg/dL):  initial 7.10 (±1.72), 1st trimester 6.47 (± 0.17), 2nd 
trimester5.80 (± 0.17), 3rd trimester 6.05 (± 0.17). 

Plasma (µg/L):  1st trimester 0.13 (±1.88), 2nd trimester 0.12 (± 1.95), 3rd 
trimester 0.12 (± 1.88) (geometric means and SD)  

Bone Pb during pregnancy: 

Tibia 11.35 (±8.82, adjusted for negative values), patella 13.82 (±10.97, 
adjusted for negative values). 

Nonparticipants (n = 134): 

PbB 6.82 (±1.75), tibia 13.71 (±9.17, adjusted for negative values), patella 
11.79 (±9.75, adjusted for negative values).  

Found an increasing trend for plasma Pb among women with the highest 
bone Pb ($median level of 12.1 µg/g) but a decreasing trend among less-
exposed women(below the median level).  The observed increase reached its 
maximum among women with both the highest bone Pb and the highest 
bone resorption.  In comparison with women with a low bone Pb and a high 
NTx level, those with a high bone Pb and a high NTx level had, on average, 
an 80% higher mean plasma Pb.  In the cross-sectional analyses for each 
trimester of pregnancy, there was an increasingly stronger association 
between bone Pb and plasma Pb (log-transformed) as pregnancy progressed.  
An increase in patella lead of 10 µg/g would be associated with 9% (p = 
0.07), 24% (p < 0.01), and 25% (p < 0.01) increases in plasma Pb in the 1st, 
2nd, and 3rd trimesters of pregnancy, respectively.  The corresponding 
values for tibia lead were 8% (p = 0.16), 19% (p < 0.01), and 13% (p = 
0.01), respectively.  Dietary calcium intake was inversely associated with 
plasma lead. 

They concluded that the results 
support the hypothesis of a 
biologic interaction between 
bone Pb burden and bone 
resorption.  They also suggest 
that as pregnancy progresses, 
bone Pb may be mobilized 
increasingly into plasma. 
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Table AX4-7 (cont’d).  Bone Lead Studies in Pregnant and Lactating Subjects 

Reference, Study 
Location, and 
Period  Study Description 

Lead Measurement (SD or range) 
PbB in µg/dL, Bone Pb in µg/g Bone Mineral Findings, Interpretation 

Mexico (cont’d) 

Moline et al. (2000) 
Morelos, Mexico  
1999 

Pilot study to assess the body 
burden of lead in 24 Mexican 
women (age 21-34 yr) who were 
lactating.  Demographic and 
reproductive characteristics of 
women and potential sources of 
lead exposure were gathered by a 
direct interview.  Multiple 
regression.  Average time of 
lactation 22 (±17) months. 

PbB 4.6 (± 2.0, geometric mean), tibia 9.2 (±4.2), patella 14.8 (±8.0), 
calcaneus 11.7 (±11.2).  An inverse relationship was noted between months 
of lactation and age-adjusted calcaneus lead level (p = 0.001).  
No association was observed between age-adjusted patella or tibia lead level 
and months of lactation (p = 0.15).   

This pilot study provides further 
limited evidence for the 
hypothesis that Pb mobilization 
occurs during lactation. 

 
PbB = blood lead.
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Table AX4-8.  Bone Lead Studies of Menopausal and Middle-aged to Elderly Subjects 
Reference, Study 
Location, and 
Period  Study Description 

Lead Measurement (SD or range) 
PbB in µg/dL, Bone Pb in µg/g Bone Mineral Findings, Interpretation 

United States 

Hu et al. (1996) 
Boston, MA 
1991+  

Normative Aging Study. 

Subjects were middle-aged and 
elderly men who had community 
(nonoccupational) exposures to lead. 

Cross-sectional.  Backwards 
elimination multivariate regression 
models that considered age, race, 
education, retirement status, measures 
of both current and cumulative 
smoking, and alcohol consumption. 

47-59 yr:  (n = 116):  PbB 5.8 (±3.7), tibia 14.6 (±8.3), 
patella 23.6 (±12.4) 

60-69 yr:  (n = 360):  PbB 6.3 (±4.2), tibia 21.1 
(±11.4), patella 30.5 (±16.9) 

>70 yr:  (n = 243):  PbB 6.5 (±4.5), tibia 27 (±15.6), 
patella 38.8 (±23.5) 

Factors that remained significantly related to higher 
levels of both tibia and patella Pb were higher age 
and measures of cumulative smoking, and lower 
levels of education.  An increase in patella Pb from 
the median of the lowest to the median of the 
highest quintiles (13-56 µg/g) corresponded to a 
rise in PbB of 4.3 µg/dL.  Bone Pb levels 
comprised the major source of circulating lead in 
these men. 

Kim et al. (1997) 
Boston, MA 
1991-95 

Normative Aging Study (n = 70).  
Aim to examine age and secular 
trends in bone and PbB levels of 
community-exposed men aged 52-83 
yr.  Bone and PbB levels measured 
twice, with a 3-yr interval. 

PbB 6.7 (±1.8), tibia 17.5 (±2.0), patella 29.1 (±1.8) 
3 yr later:  PbB 5.1 (±1.4), tibia 17.9 (±1.7), patella 
22.2 (±1.8) 

Cross-sectional analysis of each set of 
measurements indicated that, on average, a 1-year-
older individual would have 2.7% and 2.4-3.2% 
higher levels of Pb in patella and tibia, 
respectively.  Secular trend over time was 
decreasing for patella Pb levels and stable for tibia 
Pb levels.   

Cheng et al. (1998) 
Boston, MA 
1991-95 

Normative Aging Study (n = 747). 

Aim to examine relationships of 
nutritional factors to body Pb burden.  
Cross-sectional. 

Multiple regression models adjusting 
for age, education level, smoking, and 
alcohol consumption. 

PbB 6.2 (± 4.1), tibia 21.9 (± 13.3), patella 
32.0 (±19.5).   

Multiple regression models men in the lowest quintile 
of total dietary intake levels of vitamin D (including 
vitamin supplements) (<179 i.u./day) had mean tibia 
and patella Pb levels 5.6 µg/g and 6.0 µg/g/ higher 
than men with intake in the highest quintile ($589 
i.u./day).  Higher calcium intake was associated with 
lower bone Pb levels, but this relation became 
insignificant when adjustment was made for vitamin 
D.  Subjects in the lowest vitamin C intake quintile 
(<109 mg/day) had a mean PbB level 1.7 µg/dL higher 
than men in the highest quintile ($339 mg/day), while 
men in the lowest iron intake quintile (<10.9 mg/day) 
had a mean PbB level 1.1 µg/dL higher than men in 
the highest quintile ($23.5 mg/day). 

Also observed inverse associations of PbB levels 
with total dietary intake of vitamin C and iron.  
Suggested that low dietary intake of vitamin D 
may increase Pb accumulation in bones, while 
lower dietary intake of vitamin C and iron may 
increase PbB.  
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Table AX4-8 (cont’d).  Bone Lead Studies of Menopausal and Middle-aged to Elderly Subjects 

Reference, Study 
Location, and 
Period  Study Description 

Lead Measurement (SD or range) 
PbB in µg/dL, Bone Pb in µg/g Bone Mineral Findings, Interpretation 

United States (cont’d) 

Hu et al. (2001) 
Boston, MA 
1991+ 

Normative Aging Study.  Aim to 
determine if ALAD polymorphism is 
associated with altered levels of lead 
in bone and blood.  Multivariate 
linear regression models controlling 
for age, education, smoking, alcohol 
ingestion, and vitamin D intake. 

ALAD 1-1 (n = 608):  PbB 6.3(±4.1), tibia 22.2 
(±13.9), patella 32.2 (±19.9) 

ALAD 1-2/2-2 (n = 118):  PbB 5.7 (±4.2), tibia 21.2 
(±10.9), patella 30.4 (±17.2) 

ALAD 1- 1 genotype was associated with cortical 
bone lead levels that were 2.55 µg/g (95% CI:  0.05, 
5.05) higher than those of the variant allele carriers. 

No significant differences by genotype with respect 
to Pb levels in trabecular bone or blood.  In 
stratified analyses and a multivariate regression 
model that tested for interaction, the relationship 
of trabecular bone Pb to PbB appeared to be 
significantly modified by ALAD genotype, with 
variant allele carriers having higher PbB levels, but 
only when trabecular bone Pb levels >60 µg/g.  
The authors suggest that the variant ALAD-2 allele 
modifies lead kinetics possibly by decreasing lead 
uptake into cortical bone and increasing the 
mobilization of lead from trabecular bone. 

Oliveira et al. (2002) 
Boston, MA 
1991-98 

Normative Aging Study. 
To determine if seasonal fluctuations 
in PbB levels are related to increased 
mobilization of bone Pb stores during 
the winter months.  Measurements of 
blood and bone Pb during the high 
sun exposure months of May-August 
(summer; n = 290); the intermediate 
sun exposure months of March, April, 
September, and October (spring/fall; 
n = 283); and the low sun exposure 
months of November-February 
(winter; n = 191). 

Mean PbB levels were slightly lower in summer 
(5.8 ± 3.4 µg/dL) compared with winter (6.6 ± 4.7 
µg/dL).  Mean bone Pb levels were higher during the 
summer than the winter months:  23.9 (±15.2) and 
20.3 (±11.3) µg/g respectively for the tibia and 
34.3 (±22.8) and 29.0 (±16.2) µg/g respectively for 
patella. 

Found a significant interaction between season and 
bone Pb with bone Pb during the winter months 
exerting an almost 2-fold greater influence on PbB 
levels than during the summer months.  The 
authors attributed this to increased mobilization of 
endogenous bone Pb stores arising potentially from 
decreased exposure to sunlight, lower levels of 
activated vitamin D and enhanced bone resorption. 
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Table AX4-8 (cont’d).  Bone Lead Studies of Menopausal and Middle-aged to Elderly Subjects  

Reference, Study 
Location, and 
Period  Study Description 

Lead Measurement (SD or range) 
PbB in µg/dL, Bone Pb in µg/g Bone Mineral Findings, Interpretation 

United States (cont’d) 

Korrick et al. (2002) 
Boston, MA 
1990-95 

Nurses’ Health Study.  
Cross-sectional study of 264 elderly 
women; 46-54 yr (80) 55-64 yr (102), 
65-74 yr (82).  Tibia and patella Pb.  
Multivariate linear regression models. 

46-54 yr:  PbB 2.7 (SE ±0.3), tibia 10.5 (±1.0), patella 
14.9 (±1.2) 

55-64 yr:  PbB 3.4 (±0.2), tibia 12.7 (±0.9), patella 
17.0 (±1.1) 

65-74 yr:  PbB 3.3 (±0.3), tibia 16.4 (±0.9), patella 
19.8 (±1.2). 

An increase from the first to the fifth quintile of tibia 
Pb level (19 µg/g) was associated with a 1.7 µg/dL 
increase in PbB (p = 0.0001).   

Tibia and patella Pb values were significantly and 
positively associated with PbB but only among 
postmenopausal women who were not using 
estrogens.  Older age and lower parity were 
associated with higher tibia Pb; only age was 
associated with patella Pb.  They suggested the 
observed interaction of bone Pb with estrogen 
status in determining PbB supports the hypothesis 
that increased bone resorption, as occurs 
postmenopausally because of decreased estrogen 
production, results in heightened release of bone Pb 
stores into blood. 

Tsaih et al. (1999) 
Boston, MA 
1991-97 

Normative Aging Study. 

Aim to evaluate hypothesis that bone 
and erythrocyte Pb make independent 
contributions to urine Pb excreted 
over 24 hour.  Urine used as a proxy 
for plasma Pb. 

Age range 53-82 yr (n = 71).  
Generalized additive model. 

PbB:  5.94 (±3.0), tibia 21.7 (±10.9), patella 31.1 
(±15.1), urinary Pb 5.69 (±1.9) Fg/day.  Both 
erythrocyte Pb and bone Pb variables remained 
independently and significantly associated with 
urinary Pb. 

Finding suggests that bone influences plasma Pb in 
a manner that is independent of the influence of 
erythrocytic lead on plasma Pb.  Reinforces 
superiority of bone Pb over PbB in predicting some 
chronic forms of toxicity may be mediated through 
bone's influence on plasma Pb.  Urinary lead might 
be useful as a proxy for plasma Pb. 

Wright et al. (2004) 
Boston, MA 
1991-97 

Normative Aging Study.  Aim to 
evaluate if hemochromatosis gene 
(HFE) was associated with body lead 
burden.  Tibia and patella bone Pb.  
DNA samples genotyped.  
Multivariate linear regression 
analyses. 

Of 730 subjects, 94 (13%) carried the C282Y 
variant and 183 (25%) carried the H63D variant.  
In multivariate analyses that adjusted for age, 
smoking, and education, having an HFE variant allele 
was an independent predictor of significantly lower 
patella Pb levels (p < 0.05). 

Suggested that HFE variants have altered kinetics 
of Pb accumulation after exposure and these effects 
may be mediated by alterations in Pb toxicokinetics 
via iron metabolic pathways regulated by the HFE 
gene product and body iron stores. 
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Table AX4-8 (cont’d).  Bone Lead Studies of Menopausal and Middle-aged to Elderly Subjects 

Reference, Study 
Location, and 
Period  Study Description 

Lead Measurement (SD or range) 
PbB in µg/dL, Bone Pb in µg/g Bone Mineral Findings, Interpretation 

United States (cont’d) 

Lin et al. (2004) 
Boston, MA 
1999-2000 

Community Lead Study.  Measured PbB 
and bone Pb levels among minority 
individuals from Boston.  Compared with 
earlier studies of predominantly white 
subjects, the 84 volunteers in this study 
(33:67 male to female ratio; 31-72 yrs of 
age) had similar educational, 
occupational, and smoking profiles and 
mean blood, tibia, and patella Pb levels.  
LOWESS smoothing curves.  Multiple 
linear regression analyses to predict 
blood, tibia and patella Pb. 

<45 yr (n = 28):  PbB 2.0 (±1.2), tibia 8.3 (±8.4), 
patella 8.9 (±14.3) 

46-60 yr (n = 41):  PbB 2.8 (±1.7), tibia 10.8 (±11.5), 
patella 11.8 (±11.4) 

61-75 yr (n = 15):  PbB 5.3 (±3.2),tibia 21.7 (±8.6), 
patella 30.9 (±15.7) 

Slopes of the univariate regressions of blood, tibia, and 
patella lead versus age were 0.10 µg/dL/yr (p < 0.001), 
0.45 µg/g/yr (p <0.001), and 0.73 µg/g/yr (p < 0.001), 
respectively. 

Analyses of smoothing curves and regression lines 
for tibia and patella Pb suggested an inflection 
point at 55 yr of age, with slopes for subjects 
≥55 yr of age that were not only steeper than those 
of younger subjects but also substantially steeper 
than those observed for individuals >55 yr of age in 
studies of predominantly white participants. 

Berkowitz et al. 
(2004) 
New York 
1994-99  

Longitudinal study of 91 premenopausal 
and perimenopausal women aged 
$ 30 yrs of age from New York who 
were undergoing surgical menopause 
(baseline; n 84) to determine if bone Pb 
values decrease and PbB values increase 
during menopause.  Tibia Pb 
concentrations measured at baseline, 6 
mo (70) and 18 mo (62) post surgery. 

Baseline:  Median PbB 2.5 (0.3, 11.7), tibia 6.1 
(!22.2, 36.4) 

6 mo:  PbB 3.2 (0.4, 12.0), tibia 6.8 (!14.2, 29.0) 

18 mo:  PbB 3.1 (0.5, 9.1), tibia 5.8 (!15.4, 24.2) 

Marginal decline in tibia Pb values between 6 and 
18 mo post surgery for women who took estrogen 
replacement therapy (ERT) but not for those who 
did not take ERT.  They concluded that there was 
no substantial mobilization of Pb (from the tibia) 
during menopause but common ERT use may have 
masked this effect, the amounts of Pb released 
were too low to detect in blood, or the numbers of 
subjects was too small to detect an effect. 

Schafer et al. 
(2005) 
Baltimore, MD 

Evaluated the relations among PbB, tibia 
Pb, and homocysteine levels by cross-
sectional analysis among subjects in the 
Baltimore Memory Study, a longitudinal 
study of 1, 140 randomly selected 
residents in Baltimore, MD, aged 50-70 
yr and 66.0% female, 53.9% white, and 
41.4% black or African American.  
Multiple linear regression analyses. 

PbB 3.5 (±2.4) µg/dL, tibia 18.9 (±12.5) µg/g, 
homocysteine 10.0 (±4.1) Fmol/L.  Tibia lead was 
modestly correlated with PbB (Pearson r = 0.12, 
p < 0.01) but was not associated with homocysteine 
levels. 

Suggested that homocysteine could be a 
mechanism that underlies the effects of lead on the 
cardiovascular and central nervous systems, 
possibly offering new targets for intervention to 
prevent the long-term consequences of lead 
exposure. 
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Table AX4-8 (cont’d).  Bone Lead Studies of Menopausal and Middle-aged to Elderly Subjects 

Reference, Study 
Location, and 
Period  Study Description 

Lead Measurement (SD or range) 
PbB in µg/dL, Bone Pb in µg/g Bone Mineral Findings, Interpretation 

United States (cont’d) 

Kosnett et al. 
(1994) 
Dickson City, PA 

Aim to determine the influence of 
demographic, exposure and medical 
factors on the bone Pb concentration of 
subjects with environmental Pb exposure. 

101 subjects (49 males, 52 females; aged 
11 to 78 yrs) recruited from 49 of 123 
households geographically located in a 
suburban residential neighborhood. 

Log-transformed bone Pb highly correlated with age 
(r = 0.71; p # 0.0001). 

Bone Pb showed no significant change up to age 
20 yr, increased with the same slope in men and 
women between ages 20 and 55 yr, and then 
increased at a faster rate in men older than 55 yr. 

Popovic et al. 
(2005) 
Bunker Hill, ID 
1994 

108 former female smelter employees 
and 99 referents to assess the PbB versus 
bone Pb relationship. 

Exposed:  PbB 2.73 (±2.39), tibia 14.4 (±0.5) 

Referents:  PbB 1.25 (±2.10), tibia 3.22 (±0.50) 

Pb concentrations in tibia and blood significantly 
higher in the exposed group.  Endogenous release rate 
(µg Pb per dL blood/ µg Pb/g bone) in 
postmenopausal women was double the rate found 
in premenopausal women (0.132 ± 0.019 versus 
0.067 ± 0.014). 

Higher tibia bone Pb (and PbB) was associated 
with use of estrogen (present or former) in both the 
whole referent group and postmenopausal women 
in the referent group. 

Canada 

Webber et al. 
(1995) 
Canada 
Unknown 

Tested hypothesis that women on 
hormone replacement therapy should 
have higher bone Pb content and lower 
plasma Pb as hormone replacement 
therapy would suppress the transfer of 
endogenous Pb to the circulation. 

56 women, some using hormone 
replacement therapy over ~4 yrs. 

Low dose hormone replacement therapy (n = 15):  
PbB 4.08 (±1.60), tibia 19.37 (±8.62), calcaneus 24.02 
(±10.88) 

Moderate dose hormone replacement therapy (n = 11):  
PbB 5.22 (±3.36), tibia 16.80 (±11.68), calcaneus 
23.83 (±14.18) 

Calcium only (n = 22):  PbB 4.6 (±1.59), tibia 11.13 
(±6.22), calcaneus 21.12 (±13.55) 

Women not taking hormones had significantly 
lower Pb values in cortical bone compared to 
all women on hormone replacement therapy 
(p = 0.007).  Showed higher tibia Pb levels but no 
increase in calcaneus Pb level or decrease in PbB. 
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Table AX4-8 (cont’d).  Bone Lead Studies of Menopausal and Middle-aged to Elderly Subjects 

Reference, Study 
Location, and 
Period  Study Description 

Lead Measurement (SD or range) 
PbB in µg/dL, Bone Pb in µg/g Bone Mineral Findings, Interpretation 

Mexico 

Garrido-Latorre 
et al. (2003) 
Mexico City 
1995 

Aim was to examine the relationship of 
PbB levels to menopause and bone lead 
levels in 232 perimenopausal and 
postmenopausal women from Mexico 
City.  Measured bone mineral density in 
addition to bone Pb. Information 
regarding reproductive characteristics 
and known risk factors for PbB was 
obtained using a standard questionnaire 
by direct interview.  Mean age of the 
population was 54.7 yrs (±9.8).  Linear 
regression analyses. 

PbB 9.2 (±4.7), tibia 14.85 (±10.1), patella 22.73 
(±14.9). 

A change of 10 µg Pb/g bone mineral in 
postmenopausal subjects was associated with an 
increase in PbB of 1.4 µg/dL, whereas a similar 
change in bone lead among premenopausal women 
was associated with an increase in PbB of 0.8 µg/dL. 

Found that postmenopausal women using hormone 
replacement therapy had lower PbB levels and 
higher tibia and patella bone Pb levels than non-
users; patella Pb explained the greatest part of 
variations in PbB.  Found no association with PbB 
levels and did not describe any relationships 
between bone lead and bone density. 

Australia 

Gulson et al. 
(2002) 
Sydney, Australia 
2000 

Environmentally exposed females (n = 7) 
and males (n = 3) aged 44-70 yr.  Treated 
for 6 mo with the bisphosphonate 
alendronate.  PbB and isotopic ratios 
measured by TIMS for 6 mo prior to 
treatment and 12 mo post-treatment.  
Bone mineral density and bone markers 
including NTx measured. 

Found a decrease in PbB concentrations and changing 
PbB isotopic composition in the direction predicted 
during treatment.  Upon cessation of treatment, PbB 
increased and the isotopic compositions changed. 

Results consistent with changes in bone remodeling 
associated with bisphosphonate use. 

 
PbB = blood lead.
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Table AX4-9.  Lead in Deciduous Teeth from Urban and Remote Environments 

Reference, Study 
Location, and Period  Study Description Lead Measurement Findings, Interpretation 

Canada 

Tsuji et al. (2001) 
Ontario, Canada 

Dentine chips from schoolchildren living 
in a remote area. 

Mean value of 9.2 µg/g dry weight (n = 61) Attributed the high values to consumption of 
lead contaminated game meat. 

Europe 

Tvinnereim et al. 
(1997) 
Norway 
1990-94 

2,746 deciduous whole teeth. Mean 1.27 ± 1.87 µg/g of dry tooth substance Observed an ~50% reduction in lead 
concentrations since the 1970s. 

Lyngbye et al. (1991) 
Denmark 

In 2,033 teeth from 1, 848 children. Geometric mean for the largest group from Arhus to 
be 8.4 µg/g (wet weight) with similar values from 
Copenhagen suburbs with a secondary lead smelter 
(9.6 µg/g) and a lead battery factory (9.9 µg/g). 

Concluded that automobile 

exhausts and indirect occupational 

exposure were important sources 

for the lead in dentine. 

Gil et al. (1996) 
Coruna, Spain 

220 whole deciduous and permanent teeth 
(one per subject). 

Permanent teeth showed higher mean values 
(13.1 ±1.1 µg/g) than deciduous teeth (4.0 ± 1.1 µg/g) 

Found no gender differences. 

Nowak and 
Chmielnicka (2000) 
Poland  

Compared permanent teeth from two 
cohorts, one from the highly polluted 
Katowice district and a control town of 
Beskid. 

In the control teeth, they observed decreases in lead 
for incisors (41.8 µg/g) to canines (37.5 µg/g) to 
molars (35.3 µg/g) to premolars (32.0 µg/g).  
However, there was no difference in the mean values 
for the two centers:  Katowice 36.5 ± 16.3 µg/g and 
Beskid 36.3 ± 11.5 µg/g. 

These values are very high compared with 
most other studies. 
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Table AX4-9 (cont’d).  Lead in Deciduous Teeth from Urban and Remote Environments 

Reference, Study 
Location, and Period  Study Description Lead Measurement Findings, Interpretation 

Mexico  

Hernandez-Guerrero 
et al. (2004) 
Mexico City 

100 healthy deciduous teeth collected 
from 2 to 13 yr old children. 

Higher mean concentrations of lead in the 10-13 yr 
old group (7.7 µg/g) than in other age groups and the 
mean concentrations were higher in girls (7.3 µg/g) 
than boys (6.3 µg/g). 

No association between pollution intensity 
and tooth lead. 

Frank et al. (1990) 
Alsace, Mexico 

Circular biopsies 500 Fm in diameter 
punched in the vertical sections of the 
crown and cervical third of each root.  The 
age of the European subjects ranged from 
10 to 80 yrs in Europe and 12 to 29 yrs in 
Mexico City.  Energy-dispersive X-ray 
fluorescence method to compare lead in 
enamel and dentine of premolars and 
permanent molars. 

Compared with the European values, there were 
~6 times higher inner coronal dentine and 7 to 
9 times higher pulpal root dentine concentrations 
for samples from Mexico City. 

The authors found no significant difference in 
the relationship between traffic and mean lead 
values for enamel and dentine in the European 
communities but a significantly higher lead 
concentration in relation to age.  The 
differences were attributed to traffic exposure. 

Asia 

Karakaya et al. (1996) 
Ankara, Turkey 

103 whole deciduous teeth from primary 
school aged children aged 7 to 12 yrs. 

Significant differences in lead for urban (4.99 ± 0.46 
µg/g dry weight) compared with suburban children 
(1.69 ± 0.25 µg/g). 
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Table AX4-10.  Lead in Deciduous Teeth from Polluted Environments 
Reference, Study 
Location, and Period  Study Description Lead Measurement Findings, Interpretation 

Europe 

Begerow et al. (1994) 
Germany 
1991 

790 children aged 6 yrs old living in 
urban and rural areas in western and 
eastern Germany.  Incisors sampled. 

Lead levels of 1.50 to 1.74 µg/g from the western sector 
and from 1.51 to 2.72 µg/g in the eastern sector. 

Major decrease (40-50%) since 1976. 

Cikrt et al. (1997) 
Czech Republic 

Compared tooth (n = 162) and PbB levels 
in children living at various distances 
from a lead smelter. 

Significant difference in the mean tooth lead for children 
from the most contaminated zone less than 0.5 km from the 
smelter (6.44 µg/g; n = 13) and those >5 km from the 
smelter (1.45 µg/g; n = 36).  PbB levels varied from 15.42 
µg Pb/100 ml (n = 6; 95% CI:  7.17, 33.17) close to the 
smelter to 4.66 µg/100 ml (n = 165, 95% CI:  4.30, 5.04) at 
larger distances. 

No descriptions of the teeth type were 
available. 

Australia 

Gulson (1996) 
Broken Hill, Australia 

36 exposed and nonexposed children 
from Broken Hill lead-zinc mining 
community.  Sectioned teeth into mainly 
enamel (incisal section) and mainly 
dentine (cervical section).  Lead isotope 
ratios and lead concentrations by TIMS  
with isotope dilution. 

For subjects with low exposure (n = 13), lead 
concentrations in the incisal section ranged from 0.4 to 3.5 
µg/g with a mean and standard deviation of 1.2 ± 0.8 µg/g 
(n = 13).  For the cervical sections in low exposure 
children, the values ranged from 0.8 to 8.3 and mean 
3.7 ± 2.4 µg/g.  For subjects with high exposure (n = 23), 
lead concentrations in the incisal section ranged from 1.0 to 
8.9 µg/g with a mean and standard deviation of 2.6 ± 1.8 
µg/g.  For the cervical sections in high exposure children 
the values ranged from 1.5 to 31.5 µg/g and mean 13.7 
± 8.0 µg/g. 

The isotopic results in dentine were 
interpreted to reflect an increased lead 
exposure from the lead-zinc-silver 
orebody during early childhood, probably 
associated with hand-to-mouth activity. 

Gulson et al. (2004) 
Lake Macquarie, 
Australia 

10 children from six houses in a primary 
zinc-lead smelter community at North 
Lake Macquarie, New South Wales, 
Australia.  Sectioned deciduous teeth 
compared with environmental samples.  
Lead isotope ratios and lead 
concentrations by TIMS with isotope 
dilution. 

PbB levels in the children ranged from 10 to 42 µg/dL and 
remained elevated for a number of years.  Median lead 
level in the enamel section of the teeth was 2.3 µg/g with a 
range from 0.6 to 7.4 µg/g; in dentine the median value was 
5.3 µg/g with a range from 1.4 to 19.9 µg/g. 

Approximately 55 to 100% of lead could 
be derived from the smelter. 

 
PbB = blood lead. 
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Table AX4-11.  Summary of Selected Measurements of Urine Lead Levels in Humans 

Reference, Study 
Location, and Period Study Description Urine Lead Measurement Comment 

United States 

CDC (2005) 
U.S. 
1999-2002 

Design:  national survey (NHANES IV) 
stratified, multistage probability cluster design 
Subjects:  children and adults ($6 yrs, n = 5140) 
in general population 
Biomarker measured:  urine lead 
Analysis:  ICP-MS 

Units:  µg/g creatinine 
Geometric mean (95% CI) 

Age (yr) 1999-2000 2001-2002 
$6: 0.72 (0.70, 0.74) 0.64 (0.60, 0.68) 
   n: 2465 2689 
6-11: 1.17 (0.98, 1.41) 0.92 (0.84, 1.00) 
   n: 340 368 
12-19: 0.50 (0.46, 0.54) 0.40 (0.38, 0.43) 
   n: 719 762 
$20: 0.72 (0.68, 0.76) 0.66 (0.621, 0.70) 
   n: 1406 1559 
Males: 0.72 (0.68, 0.76) 0.64 (0.61, 0.67) 
   n: 1227 1334 
Females: 0.72 (0.68, 0.76) 0.64 (0.59, 0.69) 
    n: 1238 1355  

Geometric mean PbB concentrations 
in age strata ranged from 0.94 to 
1.51 µg/dL.   

Schwartz et al. 
(1999, 2000b) 
U.S. 
1993-1997 

Design:  prospective 
Subjects:  adult male (n = 543) former  TEL 
manufacture workers (age range:  42-74 yrs) 
Biomarker measured:  DMSA (10 mg/kg)-
provoked urine lead 
Analysis:  GFAAS 

Units:  µg/4 hr 
Arithmetic mean (SD):   
$2 yr exposure:  17.1 (15.7) 
<2 yr exposure:  20.4 (17.9) 

Arithmetic mean (SD) PbB (µg/dL) 
was 5.0 (2.8) for workers exposed 
$2 yr and 2.8 (1.9) for workers 
exposed <2yr.  PbB was strongest 
predictor or DMSA-provoked urine 
lead. 
Arithmetic mean (SD) tibia lead (µg/g, 
XRF) was 15.6 (9.8) for workers 
exposed $2 yr and 12.1 (7.7) for 
workers exposed <2yr. 

Rabinowitz et al. 
(1976) 
New York 
NR 

Design:  experimental study 
Subjects:  adult (n:5) males, age range 25-53 yrs, 
ingested 300 µg Pb/day  (~50% as 204Pb) for 
10-210 days 
Biomarker measured:  urine lead 
Analysis:  MS 

Units:  µg/day 
Arithmetic mean (range):  36 (36-41) 

Arithmetic mean (range) PbB (µg/dL) 
was 19.4 (16.7-25.1). 
Blood-to-urine clearance estimate was 
0.19 (range 0.15-0.23) L/day (from 
Diamond, 1992). 
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Table AX4-11 (cont’d).  Summary of Selected Measurements of Urine Lead Levels in Humans 

Reference, Study 
Location, and Period Study Description Urine Lead Measurement Comment 

United States (cont’d) 

Berger et al. (1990) 
Ohio 
1983-1986 

Design:  cross-sectional, convenience sample 
Subjects:  children (n = 39), age range not reported.  
Biomarker measured:  timed urine lead 
Analysis:  AAS 

Units:  µg/day 
range:  5-70 

PbB range was 22-55 µg/dL.  Blood-to 
urine clearance estimate was 0.07 L/day 
(from Diamond, 1992). 

Europe 

Chamberlain et al. 
(1978) 
United Kingdom 
1975-1976 

Design:  experimental 
Subjects:  adult males (n = 6), intravenous injection 
of 203Pb tracer 
Biomarker:  urinary lead clearance 
Analysis:  gamma spectrometer (203Pb) 

Units:  L/day 
Arithmetic mean (range) 
Blood-to-urine:  0.09 (0.08-0.10) 
Plasma-to-urine:  20 

 

Brockhaus et al. (1988) 
Germany 
1982-1986 

Design:  cross-sectional 
Subjects:  children (n = 184), age range 4-11 yrs 
residing in 2 areas impacted by smelting operations
Biomarker measured:  urine lead  
Analysis:  GFAAS 

Units:  µg/g creatinine 
Geometric mean (GSD, range) 
Stolberg (n = 106):  9.6 (2.3, 0.2-43.0) 
Dortmund (n = 78):  6.7 (2.0, 1.6-41.0) 

Geometric mean PbB levels were 
~7 µg/dL. 

Koster et al. (1989) 
Germany 
NR 

Design:  cross-sectional 
Subjects:  adult (n = 46, 40 males) hospital 
workers, age range 20-78 yr. 
Biomarker measured:  urine lead 
Analysis:  GFAAS 

Units:  µg/24 hr-1.73 m2 (adult body surface area) 
Arithmetic mean (range):  6.8 (2.3-18.9) 

Arithmetic mean (range) PbB (µg/dL) 
was 7.6 (2.6-18.7). 
Blood-to-urine clearance estimate was 
0.15 L/day (from Diamond, 1992). 

Australia 

Gulson et al. (2000) 
Australia 

Design:  longitudinal 
Subjects:  women (n = 58) during pregnancy, 
age range 18-35 yrs 
Biomarker measured:  blood-to-urine clearance 
Analysis:  TIMS 

Units:  µg/h 
Arithmetic mean (SD, range):  3.2 (0.8-10.2) 
Geometric mean:  2.7 

Reported blood-to-urine clearance 
corresponds to ~0.08 L/day. 
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Table AX4-11 (cont’d).  Summary of Selected Measurements of Urine Lead Levels in Humans 

Reference, Study 
Location, and Period Study Description Urine Lead Measurement Comment 

Asia 

Araki et al. (1986, 
1990) 
Japan 
NR 

Design:  cross-sectional 
Subjects:  adult (n = 19) male, gun metal foundry 
workers, age range 34-59 yr. 
Biomarker measured:  urine lead 
Analysis:  AAS 

Units:  µg/24 hr 
Arithmetic mean (range):  94 (37-171) 

Arithmetic mean plasma concentration 
was 0.67 µg/dL (range 0.37-0.92). 
Plasma-to urine clearance estimate was 
22 L/day.   
Blood-to-urine clearance estimate was 
0.33 L/day (from Diamond, 1992). 

Lee et al. (1990) 
Korea 
NR 

Design:  cross-sectional 
Subjects:  adults (n = 95) male workers in lead 
smelting, battery manufacture, PVC-stabilizer 
manufacture facilities, age range:  19-64 yrs; 
reference subjects (n = 13), age range 22-54 yr. 
Biomarker measured:  DMSA (10 mg/kg)-
provoked urine lead 
Analysis:  GFAAS   

Units:  µg/4 hr 
Arithmetic mean (SD, range) 
Lead workers:  288.7 (167.7, 32.4-789) 
Reference:  23.7 (11.5, 10.5-43.5) 

Arithmetic mean (SD, range) PbB 
concentration (µg/dL) was 44.6 (12.6, 
21.4-78.4) in lead workers and 5.9 (1.2, 
4.0-7.2) in reference subjects.   
PbB was strongest predictor or DMSA-
provoked urine lead. 

Schwartz et al. 
(2000a), Lee et al. 
(2001) 
Korea 
1997-1999 

Design:  Cross-sectional 
Subjects:  Adult lead (inorganic) workers  
(n = 798, 634 males), age range 18-65 yrs. 
Biomarker measured:  MSA (10 mg/kg)-provoked 
urine lead 
Analysis:  GFAAS   

Units:  µg/4 hr 
Arithmetic mean (SD, range) 
186 (208, 4.8-2100) 

Arithmetic mean (SD, range) PbB 
(µg/dL) was 32.0 (15, 4-86).  PbB was 
strongest predictor or DMSA-provoked 
urine lead.  
Arithmetic mean (SD, range) tibia lead 
(µg/g, XRF) was 37.1 (40.4, -7 to 338). 

 
AAS - atomic absorption spectroscopy; PbB = blood lead; ET-AAS - electro-thermal atomic absorption spectrometry; GFAAS - graphite furnace atomic absorption 
spectroscopy; ICP-AES - inductively coupled plasma/atomic emission spectroscopy; ICP-MS - inductively coupled plasma-mass spectrometry; MS - mass spectrometry;  
NR - not reported; Pct - percentile; TEL -tetraethyl lead; TIMS - thermal ionization mass spectrometry. 
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Table AX4-12.  Summary of Selected Measurements of Hair Lead Levels in Humans 
Reference, Study 
Location, and 
Period Study Description Hair Lead Measurement Comment 

United States 

DiPietro et al. 
(1989) 
GA, SC, TX, VA 
1976-1980 

Design:  Cross-sectional (random sample from NHANES 
II, HHANES Stands) 
Subjects:  adults (n = 270, 200 males; age range:  
20-73 yrs) from general population  
Biomarker measured:  Hair lead 
Analysis:  ICP-AES 

Units:  µg/g 
Geometric mean (10-90th Pct range) 
2.42 (<1.0-10.8) 

Hair lead level varied with hair treatment (e.g., 
shampoo, coloring). 

Tuthill (1996) 
MA 
NR 

Design:  Cross-sectional 
Subjects:  children (n = 277, 141 males,  
 age range 6.5-7.5 yrs) 
Biomarker measured:  Hair lead 
Analysis:  ICP-AES 

Units: µg/g 
<0.1-0.9 :  13.5% 
1-1.9: 40.8% 
2-2.9:  25.6% 
3-3.9: 9.0% 
$4:  11.1% 

Study examined associations between hair lead 
levels and attention-deficit behaviors. 

Europe 

Annesi-Maesano 
et al. (2003) 
France 
1985, 1991-1992 

Design:  cross-sectional 
Subjects:  mother (mean age 29 yr)-infant pairs (n:374) 
Biomarker measured:  hair lead 
Analysis:  ICP-AES 

Units:  µg/g 
Arithmetic mean (SD): 
Infant:  1.38 (1.26) 
Mother:  5.16 (6.08) 

Mean PbB concentrations were 96 µg/dL (SD 58) 
in mothers and 67 (SD 48) in infant cord blood.  
Infant hair-cord PbB correlation (Spearman, r) 
was 0.21 (p < 0.01). 

Drasch et al. (1997) 
Germany 
1993-1994 

Design:  cross-sectional 
Subjects:  adults (n = 150, 75 males; age range:  16-93 
yrs) from general population with no known occupational 
exposure 
Biomarker measured:  hair lead (post-mortem) 
Analysis:  ET-AAS  

Units:  µg/g 
Median (range):  0.76 (0.026-20.6) 
25-75th Pct range:  0.45-1.48 

Median PbB (µg/dL) was 2.8 (range <0.9-16.1).  
Median temporal bone lead was 2.84 µg/g (range 
0.25-22.3),  Hair lead correlation (Spearman r) was 
0.35 (p < 0.001) for blood, 0.10 (p > 0.05) for 
temporal bone, and 0.16 (p > 0.05) for body 
burden.0.512 for liver (p = 0.003) and 0.57 
(p = 0.001) for kidney. 

Gerhardsson et al. 
(1995b) 
Sweden 
NR 

Design:  cross-sectional 
Subjects:  adult male smelter workers (n = 32) and 
referents (n = 10) 
Biomarker measured:  hair lead (post-mortem) 
Analysis:  XRF  

Units:  µg/g 
Median (range): 
Active workers:  8.0 (1.5-29,000) 
Retired workers:  2.6 (0.6-9.3) 
Reference:  2.05 (0.3-96) 

Based on reported a cumulative annual PbB index 
of 1,374 µg/dL and average duration of 
employment of 31.4 yrs, average PbB may have 
been ~44 µg/dL in workers.  Hair lead correlation 
(Spearman, r). 
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Table AX4-12 (cont’d).  Summary of Selected Measurements of Hair Lead Levels in Humans 

Reference, Study 
Location, and 
Period Study Description Hair Lead Measurement Comment 

Europe (cont’d) 

Esteban et al. 
(1999) 
Russia 
1996 

Design:  cross-sectional 
Subjects:  children (n = 189, 110 females; age rage 
1.9-10.6 yr) living in the vicinity of lead battery and 
leaded glass manufacture facilities. 
Biomarker measured:  hair lead 
Analysis:  ICP-AES 

Units:  ng/g 
Geometric mean (range):   
5.4 (1-39.2) 
90th Pct:  ~15  

Geometric mean PbB was 8.5 µg/dL 
(range 3.1-35.7); log PbB = 1.44 + 0.35  
(log hair) + 0.24 (gender), r2 = 0.20. 

 
AAS - atomic absorption spectroscopy; PbB = blood lead; ET-AAS - electro-thermal atomic absorption spectrometry; GFAAS - graphite furnace atomic absorption 
spectroscopy; HHANES - Hispanic Health and Nutrition Examination Survey; ICP-AES - inductively coupled plasma/atomic emission spectroscopy; ICP-MS - inductively 
coupled plasma-mass spectrometry; NR - not reported; Pct - percentile. 
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