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Executive Summary 

In 2011, EPA contracted with Ken Small of UC Riverside to update and enhance an existing model to 
estimate the VMT rebound effect for light-duty vehicles, defined as the change in vehicle miles 
traveled resulting from a change in fuel economy. The updates included using more recent state-
level data for travel, as well as methodological enhancements to explore potential asymmetric 
responses depending on the direction of fuel cost changes, and to evaluate the role of media 
coverage of energy costs on driver’s response. The resulting report by Ken Small, with contributions 
by Kent Hymel, is entitled “The Rebound Effect from Fuel Efficiency Standards: Measurement and 
Projection to 2035.” 

Prior to the release of the Final Report from Small and Hymel, EPA contracted with ICF 
International to conduct a peer review of the Small and Hymel report. The three peer reviewers 
selected by ICF were Drs. Kenneth Gillingham (Yale University), David Greene (University of 
Tennessee), and James Sallee (University of Chicago). EPA would like to extend its appreciation to 
all three reviewers for their efforts in evaluating this survey. The three reviewers brought useful 
and distinctive views in response to the charge questions. 

This document contains three main components: 

I.	 Peer Review of Small and Hymel Report on the Rebound Effect for Light-Duty Vehicles, 
Conducted by ICF International 
1. Introduction 
2. Selection of Peer Reviewers 
3. The Peer Review Process 
4. Summary of Reviewer Comments
 

Appendix A. Resumes and Conflict of Interest Statements
 

Appendix B. Charge Letter
 
Appendix C, D, and E. Complete Reviews
 

II.	 Draft Report - Peer Reviewed Version, “The Rebound Effect from Fuel Efficiency 

Standards Measurement and Projection to 2035”
 

III.	 EPA’s Response to Peer Review Comments 
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Acronyms and Abbreviations
 

Acronym / Abbreviation Stands For 

3SLS Three‐Stage Least Squares 

AEO Annual Energy Outlook 

CAFE Corporate Average Fuel Economy 

EPA U.S. Environmental Protection Agency 

FHWA Federal Highway Administration 

GHG Greenhouse Gas 

ICF ICF International 

NHTSA National Highway Traffic Safety Administration 

OTAQ Office of Transportation and Air Quality 

S&H Small & Hymel 

UKERC United Kingdom Energy Research Center 

VMT Vehicle Miles Traveled 

WAM Work Assignment Manager 
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Peer Review of December 2013 LDV Rebound Report by Small and HymelIntroduction 

1. Introduction 
The Office of Transportation and Air Quality (OTAQ) of the U.S. Environmental Protection Agency (EPA) 

is responsible for developing regulations to reduce the emissions of greenhouse gases (GHG) from light‐

duty vehicles in the U.S. The regulatory option of encouraging the adoption of advanced technologies 

for improving vehicle efficiency can result in significant fuel savings and GHG emission benefits. At the 

same time, it is possible that some of these benefits might be offset by additional driving that is 

encouraged by the reduced costs of operating more efficient vehicles. This so called “rebound effect”, 

the increased driving that results from an improvement in the energy efficiency of a vehicle, must be 

determined in order to reliably estimate the overall benefits of GHG regulations for light‐duty vehicles. 

Dr. Ken Small, an Economist at the Department of Economics, University of California at Irvine, with 

contributions by Dr. Kent Hymel, Department of Economics, California State University at Northridge, 

have developed a methodology to estimate the rebound effect for light‐duty vehicles in the U.S. 

Specifically, rebound is estimated as the change in vehicle miles traveled (VMT) with respect to the 

change in per mile fuel costs that can occur, for example, when vehicle operating efficiency is improved. 

The model analyzes aggregate personal motor‐vehicle travel within a simultaneous model of aggregate 

VMT, fleet size, fuel efficiency, and congestion formation. The model uses three‐stage least squares 

(3SLS) in order to account for the endogeneity of explanatory variables. The results contain both short‐

run and long‐run estimates based upon lagged effects within annual data. For VMT, the behavioral 

responses underlying short run effects could include changes in travel mode, discretionary trips, 

destinations, or the combining of several trips into a single chain. Long‐run responses might include 

changes in the vehicle stock, job or residential relocations, and changes in land use. 

The model is estimated using a cross‐sectional, time series data set with each variable measured for 50 

U.S. states, plus District of Columbia, annually for years 1966‐2009. Variables are constructed from 

public sources, mainly the U.S. Federal Highway Administration, U.S. Census Bureau, and U.S. Energy 

Information Administration. 

Since the effectiveness of regulatory efforts to reduce GHG emissions is strongly influenced not only by 

the technical attributes of vehicles, but also by vehicle usage levels, it is important to assure that the 

methodologies considered by the U.S. EPA for estimating VMT rebound have been thoroughly 

examined. Comprehensive, objective peer reviews like the one described here are an important part of 

that examination process. 

This report details the peer review of the subject report, The Rebound Effect from Fuel Efficiency 

Standards: Measurement and Projection to 2035 (December 24, 2013). A number of independent subject 

matter experts were identified and the process managed to provide reviews and comments on the 

ICF International 1‐1 January 31, 2014 
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Introduction 

methodology of the report. This peer review process was carried out under EPA’s peer review 

guidelines1. 

This report is organized as follows: 

 Chapter 2 details the selection of the peer reviewers 

 Chapter 3 details the peer review process 

 Chapter 4 summarizes the reviews 

 Appendix A provides resumes and conflict of interest statements for the three selected reviewers 

 Appendix B provides the charge letter sent to the selected reviewers 

 Appendix C, D and E provide the actual reviews submitted by the three selected reviewers 

1 
U.S. Environmental Protection Agency, Peer Review Handbook, 3rd Edition with appendices. Prepared for the U.S. EPA by 
Members of the Peer Review Advisory Group, for EPA’s Science Policy Council, EPA/100/B‐06/002. Available at 
http://www.epa.gov/peerreview 

ICF International 1‐2 January 31, 2014 
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Peer Review of December 2013 LDV Rebound Report by Small and HymelSelection of Peer Reviewers 

2. Selection of Peer Reviewers 
The EPA and ICF WAM compiled a list of 14 reviewers who would be capable of reviewing the subject 

report. They are listed in Table 2‐1. 

Table 2‐1. Potential Reviewers 

Potential 
Reviewer 

Available Affiliation Degree 

David Greene Yes Senior Fellow in the Howard H. Baker, 
Jr. Center for Public Policy and a 
Research Professor of Civil and 
Environmental Engineering, the 
University of Tennessee 

Ph.D., Geography and 
Environmental Engineering 

Lucas Davis No – too 
busy 

Associate Professor 
University of California, Berkeley 

Ph.D., Economics 

Joshua Linn Yes Fellow (indefinite appointment), 
Resources for the Future 

Ph.D., Economics 

Jonathan Rubin Yes Professor, Margaret Chase Smith 
Policy Center and School of 
Economics, University of Maine 

Ph.D., Agricultural Economics 

Sarah West Yes Professor, Macalester College, 
Economics 

Ph. D., Economics 

James Sallee Yes Assistant Professor, Harris School of 
Public Policy Studies 
University of Chicago 

Ph.D., Economics 

Kenneth 
Gillingham 

Yes Assistant Professor of Economics, 
School of Forestry & Environmental 
Studies, Yale 

Ph.D., Management Science & 
Engineering and Economics 

Chris Knittel No response William Barton Rogers Professor of 
Energy Economics 
Massachusetts Institute of Technology 
Sloan School of Management 

Ph.D., University of California, 
Berkeley 

Mark Jacobson Yes Associate Professor, University of 
California 

Ph.D., Economics 

David Rapson Yes Assistant Professor of Economics, UC 
Davis 

Ph.D., Economics 

Soren T. 
Anderson 

No – too 
busy 

Assistant Professor 
Michigan State University 
Department of Economics 

Ph.D., Economics 

Hunt Allcott Yes Assistant Professor of Economics, New 
York University 

Ph.D., Public Policy 

ICF International 2‐1 January 31, 2014 



                       
       

           

 
 

     

             
       

     

 
       

       
         

               
     

     
 

                                  

                                        

 

       

     
 
 

   
 

   

 
         
 

    
 

   

   

   
             
 

     
 

   

   

   
           
   

 

   

                               

   

            
    

 
 

   

       
    

   

   
    

    
     

        
   

   
 

                 

                    

 

    

   
 
 

  
 

  

  
     
 

  
 

  

  

   
       

 
   

 

  

  

   
       

  
 

  

                

      

Peer Review of December 2013 LDV Rebound Report by Small and Hymel 
Selection of Peer Reviewers 

Potential 
Reviewer 

Available Affiliation Degree 

Steve Sorrell Yes Senior Lecturer (SPRU ‐ Science and 
Technology Policy Research, The 
Sussex Energy Group 

Ph.D. by publication ‐ Analyzing 
controversies in energy policy: 
the evidence for rebound 
effects and global oil depletion, 

Todd Litman Yes Executive director of the Victoria 
Transport Policy Institute 

Masters of Environmental 
Studies 

The three selected reviewers are listed in Table 2‐2. Each had the necessary expertise, were available to 

review the report in a timely manner and had no conflict of interest. All were agreed upon by the EPA 

WAM. 

Table 2‐2. Final Reviewers 

Reviewer Contact Information 
Necessary 
Expertise 

Conflict of 
Interest 

Kenneth Gillingham 

Yale University 
School of Forestry & Environmental 
Studies 
P: 203‐436‐5465 
kenneth.gillingham@yale.edu 

Yes No 

David Greene 

University of Tennessee 
Howard H. Baker, Jr. Center for Public 
Policy 
P: (865) 974‐3839 
dgreen32@utk.edu 

Yes No 

James Sallee 

University of Chicago 
The Harris School of Public Policy Studies 
P: 773‐316‐3480 
sallee@uchicago.edu 

Yes No 

Resumes and conflict of interest statements for the three reviewers can be found in Appendix A. 

ICF International 2‐2 January 31, 2014 



                       
     

           

      
                                   

                                

                             

                         

                                

                         

   

                                

                                

                                 

                                   

                               

           

   

            
   

    
                  

                

               

             

                

             

  

                

                

                 

                  

                

      

      

Peer Review of December 2013 LDV Rebound Report by Small and Hymel 
Peer Review Process 

3. Peer Review Process 
Once the three reviewers had been decided upon and approved by the EPA WAM, a charge letter and 

the subject report were sent to each reviewer via secure email. Shortly after distributing the charge 

letter (see Appendix B) and supporting materials for the peer review, a teleconference was held 

between the selected peer reviewers, the EPA WAM, EPA‐identified relevant project‐related staff and 

ICF staff to clarify any questions the peer reviewers may have regarding the report/written materials. At 

the conference call, EPA provided technical and/or background information on the particular report 

under review. 

During the review process, no reviewers had questions. Each reviewer provided a written peer review in 

a timely manner. These were sent to ICF who forwarded them directly to the EPA WAM. 

ICF managed the peer review process to ensure that each peer reviewer had sufficient time to complete 

their review of the data analysis by the deliverable date specified (January 17, 2014). ICF adhered to the 

provisions of EPA’s Peer Review Handbook guidelines to ensure that all segments of the peer review 

conformed to EPA peer review policy. 

ICF International 3‐1 January 31, 2014 
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Peer Review of December 2013 LDV Rebound Report by Small and HymelSummary of Review Comments 

4. Summary of Review Comments 

In this section, review comments from the three reviewers are summarized. Full comments (including 

those in addition to the charge questions) can be found in Appendix C for Kenneth Gillingham, Appendix 

D for David Greene and Appendix E for James Sallee. Responses are summarized below relative to the 

charge questions. 

4.1. Responses to Charge Questions 

What are the merits and limitations of the authors’ approach for estimating the vehicle miles 
traveled (VMT) rebound effect for light‐duty vehicles? Are key assumptions underpinning the 
methodology reasonable? The VMT rebound effect is defined here as the change in VMT 
resulting from an improvement in the light‐duty efficiency. 

The reviewers highlighted a number of merits to the authors’ approach. All three reviewers generally 

agree that authors’ selection of FHWA data to be appropriate for this study. Sallee mentioned that the 

aggregate data used in the report suffer from measurement problems, but due to data gaps in other 

sources, the data used for this report may be the best available at this time. Other highlighted merits 

include the authors’ accurate understanding of the direct rebound effect and an understanding of 

estimation issues, resulting in a robust and accurate estimate of the VMT rebound effect. 

All three reviewers believed that the assumptions underpinning the methodology were generally 

reasonable and consistent with the best methods employed in current research in this area. The 

reviewers did discuss other factors that could be considered or evaluated in more depth. For example 

Greene noted that the analysis omits part of the effect of increased vehicle prices on the long‐run cost 

per‐mile of travel. An increase in the capital cost of a vehicle also affects the long‐run cost of vehicle 

travel via usage‐induced capital depreciation. Sallee noted that the data used provides no way to model 

the relationship between vehicle age and VMT. 

Is the implementation of the authors’ methodology appropriate for producing estimates of 
the VMT rebound effect? Specifically, are the input data and the methodology used to 
prepare the data appropriate? Are sound econometric procedures used? Does the model 
appropriately reflect underlying uncertainties associated with the assumptions invoked and 
the parameters derived in the model? 

All three reviewers generally thought the authors’ approach was appropriate and was representative of 
best practices. They noted that the research did suffer from some data limitations that the author and 
the literature more broadly were aware of. A number of tests for robustness and points for additional 
clarification were suggested. 

Sallee noted that most of the independent variables were not independently measured, but imputed 
using methodologies that may differ across states and over time. On‐road fuel economy may vary over 
time, even for the same vehicle, due to changes in driving conditions, such as congestion or degree of 
urbanization. While the existing time series data is the best available, there are significant changes that 

ICF International 4‐1 January 31, 2014 
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have occurred over time that affect the interpretation of the results. The authors’ have documented 
most of these issues. 

Greene notes that “the estimates presented by S&H are based on the maintained hypothesis of 
economically rational behavior, in the sense that consumers are assumed to respond to changes in fuel 
cost per mile in the same way whether caused by changes in fuel price or changes in fuel economy”, but 
that the research also demonstrates that the consumer response to fuel economy is less than the 
response to changes in fuel price, which are more salient to the consumer. 

Gillingham notes that standard time series econometric approaches were not used. The paper does 
account for first order autocorrelation, but second order autocorrelation was not considered, which 
could introduce some bias into the standard errors. 

The methodology used in this report attempts to account for asymmetric responses to 
increases vs. decreased in per mile fuel costs (and fuel prices). Does the report’s finding of an 
asymmetric response seem reasonable given the methodology that the author’s employed? 
In particular, do the authors’ preferred model specifications (3.21 b and 4.21 b) seem 
appropriate for capturing driver response to an increase in fuel efficiency? 

All three reviewers found the authors’ finding of an asymmetric response to be reasonable, and that 

models 3.21b and 4.21b were well chosen as the preferred models. Gillingham raises the following 

question: If asymmetries come about because of the differing salience of increases and decreases in 

gasoline prices, should we expect the same effects to apply for changes in vehicle fuel efficiency? 

The report describes a methodology for projecting the VMT rebound effect for light‐duty 
vehicles forward in time. The concept of dynamic rebound is introduced to quantify the 
rebound effect over the period of a vehicle lifetime, during which time the variables that 
influence the rebound effect are changing. Is this methodology reasonable and appropriate, 
given the inherent uncertainty in making projections about how future drivers will respond to 
a change in the fuel efficiency of their vehicles? 

All three reviewers agree that the dynamic rebound effect should be used to quantify the rebound 

effect over the period of a vehicle lifetime. Gillingham suggests that a nonlinear extrapolation (that is 

asymptotic with 0) may be more appropriate when extrapolating out as far as 2030. Greene and Sallee 

agree with Gillingham that the rebound effect should not go to 0 and suggest truncating at a value 

above 0. Sallee notes that it would be instructive to have the authors compare the dynamic rebound 

forecast to a forecast that assumes a constant rebound over time. 

Refer to Appendix C, D, and E for further details on the all the reviewers’ comments. 

ICF International 4‐2 January 31, 2014 
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December 18, 2013 

Dr. David L. Greene 
Senior Fellow, Howard H. Baker, Jr. Center for Public Policy 
1640 Cumberland Avenue 
Knoxville, TN  37996-3340 

Subject: Peer Review of Light-Duty Vehicle Rebound Effect Research 

Dear Dr. Greene, 

ICF International has been contracted by EPA to facilitate a peer review. In late November we 
corresponded by email and you indicated your availability to participate as a paid reviewer to review Ken 
Small and Kent Hymel’s report “The Rebound Effect from Fuel Efficiency Standards: Measurements and 
Projection to 2035”.  You have been selected to participate on this panel.  ICF will compensate you 
$3,000 for your services. This charge letter provides you with a list of directed questions for your review, 
the review schedule, and the materials we would like you to send to us at the conclusion of the review. In 
addition, attached to this letter is a copy of the report that we would like you to review. 

Charge Questions 
Listed below are the four directed questions we would like you to pay special attention to when 
conducting your review: 

Element 1: 
What are the merits and limitations of the authors’ approach for estimating the vehicle miles traveled 
(VMT) rebound effect for light-duty vehicles? Are key assumptions underpinning the methodology 
reasonable? The VMT rebound effect is defined here as the change in VMT resulting from an 
improvement in light-duty vehicle efficiency. 

Element 2: 
Is the implementation of the authors’ methodology appropriate for producing estimates of the VMT 
rebound effect? Specifically, are the input data and the methodology used to prepare the data appropriate? 
Are sound econometric procedures used? Does the model appropriately reflect underlying uncertainties 
associated with the assumptions invoked and the parameters derived in the model? 

Element3: 
The methodology used in this report attempts to account for asymmetric responses to increases vs. 
decreases in per mile fuel costs (and fuel prices). Does the report's finding of an asymmetric response 
seem reasonable given the methodology that the authors employed? In particular, do the authors' preferred 
model specifications (3 .21 b and 4.21 b) seem appropriate for capturing driver response to an increase in 
fuel efficiency? 

100 Cambridgepark Drive, Suite 500  Cambridge MA 02140  617.250.4200     617.250.4261 fax   www.icfi.com 

http:www.icfi.com


 
 
 
 

 

 

 

 

 
 

 
  

 

 
   

 
 
 
 
 

 
 
 

 
 

 
 

  

  

 

 

 
  

 

Element 4: 
The report describes a methodology for projecting the VMT rebound effect for light-duty vehicles 
forward in time. The concept of dynamic rebound is introduced to quantify the rebound effect over the 
period of a vehicle lifetime, during which time the variables that influence the rebound effect are 
changing. Is this methodology reasonable and appropriate, given the inherent uncertainty in making 
projections about how future drivers will respond to a change in the fuel efficiency of their vehicles? 

Schedule 
The schedule for this peer review is as follows: 

December 18, 2013: Charge letter distributed to reviewers 
Early January, 2014: Kick-off conference call with reviewers 
January 17, 2014: Comment/review due via email to Larry.orourke@ICFI.com 

The kick-off conference call will be an opportunity for you to speak with the other reviewers, ICF and 
EPA staff to provide you with any clarification you may require. 

Materials 

Upon completion of your review, you should submit your report under a cover letter that states 1) your 
name, 2) the name and address of your organization, and 3) a statement of any real or perceived 
conflict(s) of interest. 

Should you have any questions or concerns, feel free to contact me via phone at 617-250-4226 or by 
email at Larry.orourke@icfi.com. In addition, the EPA project manager for this effort is Jeff Cherry and 
he may be reached at 734-214-4371. We will send you a meeting request for the kick-off conference call 
shortly.  Thanks for your participation! 

Sincerely, 

Larry O’Rourke 
Manager, ICF International 

Attachment: The Rebound Effect from Fuel Efficiency Standards: Measurements and Projection to 2035 

mailto:Larry.orourke@icfi.com
mailto:Larry.orourke@ICFI.com
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Review of Small and Hymel (2013) 
The Rebound Effect from Fuel Economy Standards: Measurement and Projection to 2035 

By: Kenneth Gillingham, Yale University 
January 2014 

Overview 

This review of the final report by Ken Small and Kurt Hymel “The Rebound Effect from 
Fuel Efficiency Standards: Measurement and Projections to 2035” first provides a brief 
overview and then quickly turns to the four charge questions. 

The report follows the methodology of Small and Van Dender (2007) and Hymel 
et al. (2010), with updated data and some minor additions. This is a thoughtful and 
careful effort aiming to address a difficult question: the change in VMT resulting from 
an increase in light-duty vehicle efficiency across the entire United States. 

The primary methodology is to bring together aggregate state-level data on driving 
per adult M, fuel prices, vehicle stocks , fuel intensity, urbanization, and congestion. 
The authors then estimate a system of simultaneous equations to address endogeneity 
in key regressors, such as the cost per mile of driving. The system of equations is clearly 
summarized in Hymel et al. (2010) as follows: 

mvmat = αmvmai,t−1 + αmvveht + αmc congt + βm 
3 X

m (1)1 pmt + βm + uK1cap1t + βm 
t t 

v vveht = αvveht−1 + αvmvmat + βv 
1 pvt + βv 

2 pmt + βv 
3Xt + ut (2) 

f f f ff intt = α f f intt−1 + α f mvmat + β1 p f t + β2 ca f et + β3 X
f 
+ u (3)t t 

= αcm c ccongt vmat + cap2t + βc 
3Xt + �t . (4) 

Here vmat is natural log of the vehicle miles travelled per adult M, veht is the natural 
log of the number of vehicles per adult, f intt is the natural log of the fuel intensity (i.e., 
1/fuel economy), and congt is the log of the hours of travel delay per adult. In addition, 
pmt is the log price per mile of driving, cap1t is the log total length of roads divided by 
state land area, pvt is the log of an index of the price of a new vehicle, ca f et is a pre­
estimated measure of stringency of CAFE standards, cap2t is the log of urban lane miles 
per adult, and the X’s are additional variables such as the square of price, interactions 
between pm and the other variables, time trends, and state fixed effects. All variables 
are normalized for ease of interpretation. 

The approach assumes first order autocorrelation in the error term for equations (1), 
(2), and (3). Identification of the key parameter of interest (the price elasticity of VMT 
demand βm 

1 ) relies primarily on within-state time series variation in M and the price of 



  

  

 

 


 

1 gasoline (conditional on the other covariates). The fuel cost per mile coefficient βm is 
potentially endogenous because fuel economy itself is endogenous. This endogeneity is 
addressed by including another equation for the fuel intensity (3). Equation (2) addresses 
a potential endogeneity in veht and also allows for an interpretation of the effect of a 
change in fuel economy on the size of the vehicle stock. 

If I understand correctly, the model is estimated in the same way as Small and Van 
Dender (2007), using a modified Cochrane-Orcutt transformation and nonlinear least 
squares (to address autocorrelation in the context of a lagged dependent variable). 

The results are presented with equation (4) (from Hymel et al. (2010)) both included 
and not included. The results are largely in line with the results in the previous two 
papers and other previous papers in the literature. With the updated dataset covering 
1966-2009, there is a short-run rebound effect on the order of 5%, a long-run effect on 
the order of 28-30%, evidence of the rebound effect declining with income, and evidence 
of a greater response when gasoline prices are increasing than decreasing. There is also 
some evidence of a structural break in 2003, with slightly larger rebound effects after 
this year. The rebound effect is then projected forward linearly using forecasts of key 
variables. When this leads to a negative rebound effect, it is replaced by zero. 

Now I turn to each of the four charge questions. Since questions 1 and 2 are so closely 
linked, I will address them together. 

Elements 1 and 2 

Element 1: What are the merits and limitations of the authors’ approach for estimating the 
vehicle miles traveled (VMT) rebound effect for light-duty vehicles? Are key assumptions under­
pinning the methodology reasonable? The VMT rebound effect is defined here as the change in 
VMT resulting from an improvement in light-duty vehicle efficiency. 

Element 2: Is the implementation of the authors’ methodology appropriate for producing esti­
mates of the VMT rebound effect? Specifically, are the input data and the methodology used to 
prepare the data appropriate? Are sound econometric procedures used? Does the model appropri­
ately reflect underlying uncertainties associated with the assumptions invoked and the parameters 
derived in the model? 

There are many merits to the authors’ approach for estimating the VMT rebound 
effect. It tackles a difficult question using what is likely the best data publicly available 
across all of the United States. It carefully considers many estimation issues and provides 
estimates that appear to be reasonable. It provides a valiant (and reasonable) attempt at 
forecasting the VMT rebound effect forward. There is no question that it was a major 
effort and a thoughtful one at that. It would be difficult to do much better given the task 
at hand. 

As in any study, there are also limitations, most of which the authors recognize. All 
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of these limitations relate to the difficulty of the question being asked. I will address 
these limitations next, emphasizing unavoidable challenges of estimation and providing 
a few suggestions. 

1. To begin, the definition of the VMT rebound effect is vague. This is not the au­
thors fault, for they are clear about the question they intend to answer. But, the 
definition, “the change in VMT resulting from an improvement in light-duty ve­
hicle efficiency,” provides much room for different interpretations. It provides no 
guidance on whether the improvement is costly, leading to higher vehicle prices or 
costless, leading to lower vehicle prices. Similarly, it does not specify whether other 
attributes of vehicles change along with vehicle efficiency. On one (unlikely) ex­
treme, one could imagine expensive improvements in light-duty vehicle efficiency 
that also involve a trade-off leading to less desirable characteristics of the vehicles. 
At this extreme, the number of vehicles in the fleet would decline (vehicles are 
more expensive and less exciting) and at the same time driving is less exciting, so 
people drive less. This would suggest a very small rebound effect. Consider an­
other (also unlikely) extreme, where improvements in light-duty vehicle efficiency 
are free and lead to no change in the attributes of the fleet. This would suggest a 
larger rebound effect. This extreme is the assumption made in the report. If we are 
discussing a tightened greenhouse gas (GHG) standard for light-duty vehicles, the 
truth could be expected to be somewhere in the middle. Put in terms of the no­
tation in the report, the methodology estimates εM , where M̂ includes both the ˆ ,pm
driving response and the “fleet size” response. In the report, the fleet size response 
is positive, for vehicles are more efficient and no more expensive. This is entirely 
consistent with what the authors state they intend to do, but not likely to be the 
case in the real world. If the vehicle fleet shrinks (or stays constant), we would 
expect fewer additional miles driven than in the results. Thus, for this reason the 
results are likely a slight over-estimate of the rebound effect from a GHG standard. 

2. A second limitation, heterogeneity, is entirely a data limitation. The authors clearly 
recognize this. The only way data can be assembled on all states in the U.S. over 
time is to use aggregate data at the state level. Despite improvements in data 
availability in some states, this is the best we can do for all states. Using aggregate 
data masks known heterogeneity in the rebound effect, which may be important 
for projecting the rebound effect forward. This is recognized clearly by the authors 
on page 3: “In particular, the model assumes that changes in fleet average fuel 
economy will have the same impact on behavior whether those changes are caused 
entirely by new vehicles entering the fleet, or partly by new vehicles and partly by 
the retirement of older ones. It should be adequate insofar as the pattern of mileage 
driven by vehicle age is reasonably stable; if it is not, a more fine-tuned analysis 
tracking elasticities by vehicle age would reveal additional effects not captured 
here.” I believe this is an important caveat, given that elasticities do vary by vehicle 
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age (I can see this in my own work). However, there is not much that can be done 
about this using aggregate data. Is this a major bias? It’s hard to say. It is not even 
clear what the direction of the bias would be, since it could go either way. I see 
this as an assumption worth noting, as the authors clearly do, and an area worth 
researching further in the future. But I don’t see any way around this given the 
current U.S.-wide question being asked. 

3. Another limitation is the reliance on within-state time series variation in the study. 
Relying on time series variation is not necessarily a problem, but using a time 
series over many years typically lends itself to using time series approaches. For 
example, testing for the order of autocorrelation and for unit roots are common 
time series approaches. To its credit, the methodology does account for first-order 
autocorrelation. But what if the data are second-order autocorrelated? In this case, 
the coefficients could still be consistently estimated, but the standard errors would 
be incorrect. This raises a possible issue of incorrect standard errors. It is not clear 
what the direction of the bias in standard errors would be. 

4. Similarly, since the time series econometric approaches are not used, one might 
have expected the standard panel data approach that includes time fixed effects to 
be employed. The dataset would make this possible. In this case, the identify­
ing variation would be gasoline price shocks off the mean. I am sure the authors 
have considered and run such a specification before. I suspect one of two things 
happened: either there was not enough variation and the estimates were all statis­
tically insignificant, or the results were crazy because the variation identifying the 
coefficients was not reliable variation. So instead, the paper includes linear time 
trends in each equation. These are helpful and much better than nothing. They do 
not control for other changes as flexibly as fixed effects, but they do retain more 
variation. Another possibility could be decade fixed effects or a quadratic or higher 
order polynomial in time. Would inclusion of these further time controls make a 
major difference? Perhaps not, but it could be worth discussing and exploring as 
further robustness checks. The direction of the bias would again be unclear. One 
way in which it might not make a difference is if the time-varying unobservables 
was only correlated with fuel intensity, which is effectively instrumented for in the 
third equation. 

5. Another limitation is the difficulty in finding great instruments for the fuel cost per 
mile and fuel intensity. The system of equations can be thought of in an instrumen­
tal variables context. So the system of equations must have exclusion restrictions 
(i.e., variables that are not in the first equation, but are in the third equation) in 
order to address the possible endogeniety of the pmt variable. In my read of the 
report and previous papers, it looks to me like the only exclusion restrictions are 
the CAFE stringency variable ca f et and lagged fuel intensity f intt−1 (although it is 
a little odd to me that vmat is in the third equation; usually one would expect to 
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see vmat−1 so that the lagged variable is an instrument for itself). So one way of 
looking at the results is that we are instrumenting for pmt with the CAFE variable 
and lagged fuel intensity. Are these good instruments? Perhaps one could argue 
so, although they are not obviously so. The identification of the rebound effect 
does in part rest of this assumption. There is a similar assumption for the vehicle 
stock variable veht, where the price of vehicles and the lagged vehicle stock are the 
exclusion restrictions that help identify the vehicle stock variable veht in equation 
(1). I am not going to say that these exclusion restrictions are flat-out wrong, for I 
imagine you could argue for them and I personally would have a very tough time 
finding much better ones in this context. The bottom line is that βm is a difficult 1 
coefficient to reliably identify with aggregate data, so there is reason to be at least 
somewhat cautious. 

6. As the CAFE stringency variable ca f et is a key exclusion restriction, it is impor­
tant to understand how it was derived. It was cleverly constructed, as a predicted 
variable using vehicle efficiency data prior to the implementation of CAFE stan­
dards in 1977. In this sense, I like the variable and think it is useful. However, 
given that it is a predicted variable, we know that using a predicted variable in 
an estimation means that we really have a two-step estimation approach, which 
requires adjusting the standard errors for the standard error in the first stage. One 
could easily get around this (and address any possible autocorrelation without the 
modified Cochrane-Orcutt approach) using bootstrapped standard errors. This is 
what I would suggest as another robustness check. Typically, bootstrapped stan­
dard errors lead to larger standard errors, but given how statistically significant the 
coefficients are in the current estimation, I would still expect statistical significance 
for the key coefficients of interest. Note that the coefficients themselves would not 
change. 

7. A final limitation relates to the assumption of no measurement error in the vari­
ables, which may be important given the sources of the data (which to my knowl­
edge are the best available for data of this ilk). Hymel et al. (2010) provide a 
very clear caveat on this point on page 1227: “Perhaps the greatest danger is that 
persistent measurement error in a given state (across years) could cause an overes­
timate of the coefficient in a given equation on the lagged value of the dependent 
variable. This coefficient is crucial in estimating the relationship between short-run 
and long-run elasticities. Thus the rather large difference we find between these 
elasticities (roughly a factor of five in the VMT equation) might be partly caused by 
measurement error.” I think this is a fair caveat that applies equally to this report. 
If we have classical measurement error in the regressors, we would expect attenu­
ation bias of the coefficients, so βm could be biased downwards; thus it would be 1 
an under-estimate of the true value. The two things that can be done for this are to 
use instruments (which is done for some of the variables) and be very careful with 
the data collection process, which I believe they have been. 
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8. An assumption (not necessarily limitation) worth highlighting is the choice of a 
partial-adjustment model with a lagged dependent variable. There is a long his­
tory in energy economics using partial-adjustment models. They rely on a few 
assumptions. First, for consistency, there cannot be autocorrelation in the errors, 
otherwise there is an endogeneity issue. I believe that the methodology in the re­
port addresses this concern. Second, for the interpretation of long-run elasticities, 
one must believe that we are in a dynamic system converging to an equilibrium 
response and that the structure we have put on this dynamic system is correct. 
Many, if not most applied econometricians today harbor some doubts about this 
approach, but we cannot rule it out. It relies on variation in the previous year’s 
dependent variable to provide guidance on how quickly we are moving to a hypo­
thetical equilibrium. Is this variation free of confounds? Hard to say. In any event, 
it is a major assumption that may be reasonable, even if many economists feel more 
comfortable with research designs where the identification is cleaner and there is 
no lagged dependent variable. The robustness check that many economists would 
want to see is the coefficient on pmt when the first equation is estimated separately 
and without the lagged dependent variable. From Small and Van Dender (2007), 
we can see that estimating the first equation separately does not change the coeffi­
cient on pmt much (an increase to -0.085). It would be nice to know what the result 
would be without the lagged dependent variable as well. At the end of the day 
though, these assumptions may be defensible. 

To summarize, while there are many merits to this study, there are also some limita­
tions. Some are data limitations and some should best be thought of as possible concerns 
that perhaps warrant further robustness checks and thought. I should emphasize that 
all applied econometric work has possible concerns and it is impossible to address them 
all. My overall take is that given the state of the literature, the coefficient estimates in 
this report provide a reasonable sense of what the VMT rebound effect is in the U.S. on 
average over the period 1966-2009. 

Element 3 

Element 3: The methodology used in this report attempts to account for asymmetric responses 
to increases vs. decreases in per mile fuel costs (and fuel prices). Does the report’s finding of 
an asymmetric response seem reasonable given the methodology that the authors employed? In 
particular, do the authors’ preferred model specifications (3.21 b and 4.21 b) seem appropriate for 
capturing driver response to an increase in fuel efficiency? 

This report uses a well-established approach to account for asymmetric responses to 
increases and decreases in per mile fuel costs based on variation in fuel prices. There are 
many energy economics papers that indicate a greater response to price increases than 
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price decreases, and the authors find results that corroborate this literature. I believe the 
sign and relative magnitudes of these results, with the caveats above applying of course. 

That said, I agree with the authors in questioning whether the driver response to an 
increase in fuel efficiency would be different than the response to gasoline prices. The 
asymmetries could come about for two primary reasons. First, gasoline price increases 
could be more salient than price decreases. Second, investments could be made when 
gasoline prices are high, limiting a short-run downward response when gasoline prices 
drop. Both factors probably play a role, and Figures 4.2 and 4.3 may be consistent with 
both. 

But if asymmetries come about because of the differing salience of increases and de­
creases in gasoline prices, should we expect the same effects to apply for changes in 
vehicle fuel efficiency? My first inclination is that the answer is “not necessarily.” Per­
haps the downward price movement would be the better indicator of what the response 
would be to an increase in fuel efficiency, which is effectively what the asymmetric re­
sponse results do. But given that saliency of the gasoline price may be different than 
saliency of the fuel price per mile, I see this as a relatively strong assumption. 

The authors clearly recognize this, but must use the variation in the data that they 
have. Given the strong assumption, I would be more more comfortable using the results 
assuming the symmetric response. This seems to me to be a more neutral assumption, 
for it is effectively the mean effect. Fortunately, it does not make a huge difference. 

Element 4 

Element 4: The report describes a methodology for projecting the VMT rebound effect for light-
duty vehicles forward in time. The concept of dynamic rebound is introduced to quantify the 
rebound effect over the period of a vehicle lifetime, during which time the variables that influence 
the rebound effect are changing. Is this methodology reasonable and appropriate, given the inher­
ent uncertainty in making projections about how future drivers will respond to a change in the 
fuel efficiency of their vehicles? 

Truly projecting the VMT rebound effect for light-duty vehicles forward in time re­
quires a detailed model of the vehicle stock, along with elasticity estimates for each part 
of the age profile of the vehicle stock. It would involve allowing new vehicles to enter 
into the stock, which would lead to several dynamics. These new vehicles are more 
efficient, so they are driven more. Households also switch a bit to these vehicles from 
others, likely less-efficient vehicles, reducing emissions, but perhaps leading to a slightly 
more miles driven. Similarly, older vehicles are driven a bit less. As well, different types 
of people may switch to the new vehicles (e.g., people who have long commutes). 

The authors face real data limitations that prevent this ideal modeling of the fleet. 
Instead they cleverly develop a “dynamic” rebound effect. The dynamic rebound effect 
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attempts to take into account a variety of factors: the transition from the short-run to 
long-run rebound effect, the change in income, urbanization/congestion over time, and 
the decrease in driving from vehicles along the vehicle age profile. From my perspective, 
given the caveat that a true vehicle stock model is unavailable, this approach is sound 
for estimating the VMT rebound effect going forward in the next several years. 

I am less comfortable linearly extrapolating as far out as 2030. It is very likely that 
the relationship between the rebound effect and income is relatively linear within the 
observed range of the variables, but moving forward, I believe it is less likely that the 
relationship would continue. The issue is quite clear in the need to truncate the rebound 
effect for any given state and year at zero. It seems more likely that there would be a 
smooth decline in the rebound effect that asymptotes to a level above zero. Congestion 
would reach saturation. Consumers would be wealthier so perhaps would be driving so 
much more that the utility of driving on the margin is very low (which could imply a 
larger rebound effect). These are just two possibilities. Perhaps with some exploration 
the authors could estimate a non-linear specification a nonlinear effect that asymptotes. 
If we must extrapolate out to 2030, I would feel more comfortable with this approach 
than allowing the rebound effect for some states to approach zero and then be zeroed 
out. 

Would such an approach change the results much? I suspect not, but it is worth 
considering. 
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Review of “The Rebound Effect from Fuel Efficiency Standards: Measurement and Projection to 2035” 

by Kenneth A. Small and Kent Hymel, December 24, 2013. 

David L. Greene 

January 16, 2014 

I have carefully read the paper, “The Rebound Effect from Fuel Efficiency Standards: Measurement and 

Projection to 2035” by Small and Hymel. This review is based on the December 24, 2013 corrected 

version. 

Element 1: 

What are the merits and limitations of Small's approach for estimating the vehicle miles traveled (VMT) 

rebound effect for light‐duty vehicles? Are key assumptions underpinning the methodology reasonable? 

The VMT rebound effect is defined here as the change in VMT resulting from an improvement in light‐

duty vehicle efficiency. 

Response 

The Small & Hymel (S&H) approach for estimating the direct rebound effect is theoretically and 

methodologically rigorous and has been executed by the researchers without errors, to the best of this 

reviewer’s knowledge. It has both merits and limitations, as do all existing studies of this phenomenon. 

Merits 

The authors demonstrate an accurate understanding of the direct rebound effect as distinguished from 

other definitions of the rebound effect. The model they have formulated and the data they use are 

appropriate for measuring the direct rebound effect. 

The system of equations used to estimate the rebound effect allows for fuel intensity (the inverse of 

miles per gallon)1 to affect vehicle travel via, 1) the effect of a change in fuel cost per mile on miles 

traveled per adult person, 2) the effects of fuel cost per mile on automobile ownership and 3) the effect 

of increased travel on traffic congestion (4‐equation model). This formulation allows for quantification 

of the importance of these potential pathways by which fuel intensity might affect vehicle travel. The 

general similarity in results between S&H’s 4‐equation system and their 3‐equation system (omitting 

congestion) adds to the evidence that the estimates are robust. 

The lagged adjustment formulation used in the S&H model allows for estimation of both short‐run and 

long‐run rebound effects. The authors have used appropriate econometric methods for estimating this 

1 The terms “fuel economy” and “fuel intensity” are used throughout this paper. Fuel economy is defined as miles 
per gallon of motor fuel. Fuel intensity is the inverse of fuel economy. 
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type of model in a system of equations, taking into account the possibility that error terms within each 

equation may be correlated over time, a potentially serious issue for such lagged adjustment models. 

The approach makes use of a large volume of data covering the fifty states and the District of Columbia 

over a period of 44 years. The source of data for vehicle travel is the U.S. Department of Transportation, 

Federal Highway Administration (FHWA), which collects the data from the individual states. These data 

have been scrutinized by the FHWA and checked against other data, such as permanent and periodic 

traffic counts. The data are certainly not ideal (there is no ideal source for VMT data) but are very 

unlikely to misrepresent year‐to‐year changes in vehicle travel due to the very large number of 

permanent and temporary traffic counters in use across the United States. In their estimation methods, 

the authors have used appropriate statistical procedures to account for any persistent state‐specific 

errors. Aggregate vehicle travel data, such as used in this study, are appropriate for estimating the 

direct rebound effect since it is the effect of changes in fuel intensity on total vehicle travel that is of 

greatest relevance to the Environmental Protection Agency’s (EPA) and National Highway Traffic Safety 

Administration’s (NHTSA) rulemakings. Other sources of data, such as household travel surveys, cover a 

large fraction of total vehicle travel but omit vehicle travel by businesses and governments and also by 

heavier vehicles. Furthermore, models estimated on survey data generally do not insure that the 

estimated individual household changes integrate to the total national change. Total national vehicle 

travel as reported in the FHWA’s table VM‐1 is also a useful data source for estimating the rebound 

effect but the quantity of data available is smaller by a factor of 50. 

There have been many studies of the rebound effect and S&H include the most important research 

papers in their review. In general, the studies based either on a national vehicle travel data time series, 

time series cross‐sectional state vehicle travel data or panel survey data (covering several years and 

including significant fuel price changes) are very consistent with the empirical findings of S&H. S&H 

demonstrate that when their estimation is restricted to the time periods covered by previous studies, 

the rebound effects estimated by their method are very close to the central tendency of the studies. 

Higher estimates of the direct rebound effect have come from studies in other countries and from U.S. 

studies using only a single year of survey data. Statistical analysis based on a single year of survey data 

is prone to spurious correlations. In general, models attempting to explain variations in vehicle travel 

based on a single year of survey data have low explanatory power (in the statistical sense, i.e., low R2). 

This makes controlling for factors that may influence both fuel economy and vehicle travel critical for 

obtaining coefficient estimates that are not biased by correlations with omitted variables. More robust 

estimates are likely to be obtained using time‐series, cross‐sectional data sources, such as used by S&H. 

S&H have carefully investigated the possibility that the rebound effect is not constant over time. They 

test this possibility first by estimating different rebound effects for different periods of time without 

consideration of what might be causing any changes. They also test for a varying rebound effect by 

means of a formulation the authors have used in previously published papers that estimates 

correlations between the rebound effect and income and fuel price. The limitations of the latter 

method for forecasting purposes are discussed below. However, the authors have shown significant 

correlations and have proposed a plausible theoretical explanation for the results. 
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S&H have also investigated the possibility that fuel price and fuel intensity may affect vehicle travel 

differently, and that fuel price (or fuel cost per mile) rises and reductions may not have equal effects. 

This is important because the rebound effect, strictly speaking, pertains only to fuel intensity and not to 

fuel price yet many studies rely on estimation methods that constrain the elasticities of fuel price and 

fuel intensity to be equal but opposite in sign. For the purposes of the EPA, it is the effects of fuel 

intensity reductions that are of interest rather than the effects of fuel intensity increases. In theory, the 

effects could be symmetrical but, as S&H note, there is a substantial literature that indicates that market 

responses to fuel price rises and fuel price reductions are not symmetrical. The rigorous investigation of 

this issue is a valuable contribution about which more will be said below. The results confirm that 

responses to fuel price or fuel cost per mile reductions are smaller than the responses to increases. 

They also find that it is not possible to estimate a statistically significant effect of fuel intensity alone 

using their data and methods. This latter result is consistent with the small number of other studies that 

have reported on this issue. 

The inability to estimate the separate effects of fuel price and fuel efficiency on VMT is worthy of further 

investigation. The authors’ decision to proceed using fuel cost per mile is consistent with the 

interpretation that this outcome is caused by a poor sample design for the fuel efficiency variable. That 

is, the fuel efficiency of the on‐road vehicle fleet changes very gradually and thus tends to follow a 

smooth trend, making it difficult to distinguish the effects of fuel intensity from other smoothly trending 

variables. In addition, state‐level fuel economy is not directly measured but estimated by the states by 

various methods (e.g., by dividing fuel use by vehicle travel). Fuel prices on the other hand, have 

changed relatively quickly and by relatively large amounts. Fuel prices are also based to a large extent 

on direct measurements. This makes it easier to accurately estimate at least the short‐run price effect. 

The authors’ decision is therefore a prudent one given the information available. It is also appropriate 

for them to note that, if anything, it is more likely to result in an overestimate of the rebound effect. 

Given the above, the authors recommend using the rebound effect estimated using cost per mile, which 

constrains the price and fuel intensity elasticities to be equal in magnitude and opposite in sign. This is 

the most important assumption of their study, since without it the estimated rebound effect would not 

be statistically significant from zero. They also note that this assumption, in all likelihood, leads to an 

overstatement of the rebound effect. Their decision seems prudent although it is a subjective one and, 

strictly speaking, not supported by the empirical data. The alternative would be to assign a value of zero 

to the rebound effect. This, however, would imply that drivers do not behave rationally from an 

economic perspective, since they would treat changes in cost caused by changes in the price of fuel 

differently from changes in cost due to changes in fuel intensity. Economic theory suggests that such a 

conclusion should itself be supported by more evidence than the lack of statistical significance of the 

fuel intensity coefficient. S&H present their reasoning on this issue transparently, as they should. 

Limitations 

In their review of the literature, S&H should have included the important review of studies of the 

rebound effect by Sorrell (2007) and companion reports by the UK Energy Research Center (Sorrell and 

Dimitropoulos, 2007; Dimitropoulos and Sorrell, 2006). Since the UKERC study is a review of the 
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literature, by itself it does not add much new material to the S&H review but it does cover more of the 

literature and reaches conclusions that support S&H’s interpretation of the literature. 

The definition of the rebound effect on p. 6 is the definition appropriate when fuel economy 

improvements come about due to pure technological change. That is, the improvement in fuel economy 

does not involve trading off purchase cost or other vehicle attributes (e.g., size, acceleration) for fuel 

economy. The rebound effects of fuel efficiency due to pure technological change versus fuel economy 

standards are almost certainly different. Technological change shifts the trade‐off between fuel 

economy and cost (or other attributes) while standards generally cause manufacturers to move to a 

different location within the same trade‐off function. Of course, technological change is always 

occurring and there is the likelihood that standards induce technological change but the basic point 

remains valid since standards, in general, will induce a trade‐off of fuel economy for other vehicle 

attributes, especially manufacturing cost. For the purposes of evaluating the EPA/NHTSA rule makings, 

trade‐offs with vehicle cost are highly relevant. 

Although the study does a good job of recognizing and describing a wide range of pathways for the 

rebound effect, it omits part of the effect of increased vehicle prices on the long‐run cost per mile of 

travel. According to all studies of which I am aware, including the rule making itself, the 2025 fuel 

economy and greenhouse gas (GHG) standards are expected to result in an increase in the long‐run cost 

of manufacturing vehicles. The increased cost will cause an increase in vehicle transaction prices, 

assuming only that vehicles’ selling prices increase with increasing long‐run average cost. The S&H 

model allows the increase in vehicle price to affect VMT through the effect of new vehicle prices on the 

vehicle stock and the effect of vehicle stock on vehicle travel. But an increase in the capital cost of a 

vehicle also affects the long‐run cost of vehicle travel via usage‐induced capital depreciation. This 

mechanism is not included in either the 3‐equation or 4‐equation versions of the model and could be 

important because capital costs are a large fraction of total vehicle ownership costs. 

The potential for feedback effects to be generated via institutional processes is appropriately 

acknowledged but a potentially important one is missing. That is the effect of major fuel economy 

improvements on highway user fees. In the past, fuel economy improvements have been second only to 

inflation as a threat to Highway Trust Fund revenues (e.g., Greene, 2011). Historically, motor fuel taxes 

have been raised by federal and state governments in order to maintain adequate funding for highway 

construction and maintenance. Whether this will continue to be the case in the future and what type of 

tax may be used (possibly one that does not fall on motor fuel) are open questions but certainly relevant 

ones. Raising motor fuel taxes would, ceteris paribus, increase the retail price of motor fuel, thereby 

increasing the fuel cost per mile of travel and partially offsetting the rebound effect of fuel intensity. A 

careful review and analysis of this subject would likely lead to the conclusion that raising fuel taxes in 

order to maintain highway user fee revenues should be included in regulatory analyses of the rebound 

effect. This is not something that S&H need to include in their econometric analysis but it should be 

mentioned in the discussion of possible institutional effects. 
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Summary for Element 1 

In brief, S&H’s study is a technically proficient assessment of the rebound effect of fuel economy on 

vehicle travel using appropriate state‐level vehicle travel and associated data. The conclusions drawn 

are well supported by the empirical analyses in this paper and, in general, by the previous literature. 

The authors have made several important contributions: 

1.	 Re‐estimating the rebound effect using more recent state‐level data and demonstrating the 
consistency of their historical estimates with the central tendency of the existing literature. 

2.	 Estimating the effects of income and fuel price on the size of the rebound effect over time and 
showing the ability of these factors to statistically explain a large portion of the apparent 
changes. 

3.	 Testing the potential asymmetry of response to increases and decreases in fuel cost per mile. 
The analysis also shows that the asymmetric response to fuel price changes implies a smaller 
rebound effect than that found assuming a symmetric response to fuel cost per mile. 

4.	 The projections of future rebound effects are useful but may understate the rebound effect in 
cases where many states’ rebound effects approach zero. This is likely a consequence of the 
linear functional form and truncation rule and could be an artifact of those assumptions. 

Overall, this paper makes an important contribution to the literature and, like the authors’ previous 

work, represents the current state of knowledge about the rebound effect of motor vehicle fuel 

economy on vehicle travel. 

Element 2: 

Is the implementation of the Small methodology appropriate for producing estimates of the VMT 

rebound effect? Specifically, are the input data and the methodology used to prepare the data 

appropriate? Are sound econometric procedures used? Does the model appropriately reflect underlying 

uncertainties associated with the assumptions invoked and the parameters derived in the model? 

Response 

The S&H method represents best practice and is appropriate for producing estimates of the rebound 

effect. As discussed above, the data used are well suited to the problem. The econometric methods are 

also appropriate and consistent with the state of practice. Incorporating uncertainty, on the other hand, 

poses a difficult challenge that has not yet been given much attention in the literature on the rebound 

effect. There are uncertainties due to data shortcomings, issues with the experimental design available 

in the historical record, uncertainties due to model formulation, uncertainties inherent in econometric 

estimation and uncertainties about the future state of the world. S&H have addressed many of these 

issues by constructing alternative projections based on different assumptions. These are useful. 

However, adequately addressing uncertainty and incorporating it into a projection methodology 

requires an identification of the nature of the uncertainties to be included, which should follow from the 

purpose for representing uncertainty. It is not clear to this reviewer what the goal of including 

5
 



 
 

                                 

     

   

                                         

                                  

                              

                       

                            

                                    

                                       

                                

                              

                       

             

                                 

                             

                              

                               

                                          

                             

                                  

                                 

                                       

                                     

                                    

                                  

                               

                                      

                                   

 

               

                                   

                              

                                     

                                   

                                  

                                

                        

                 

   

  

                     

                 

               

            

              

                  

                    

                

               

            

       

                 

               

               

                

                     

               

                 

                 

                    

                   

                  

                 

                

                   

                  

 

        

                  

               

                   

                  

                 

                

            


 

uncertainty is, and therefore it is not possible to give a definitive response concerning the S&H method’s 

handling of uncertainty. 

Data Definitions 

It would be helpful to the reader for S&H to spend a little more time explaining the nature of the state 

level data. According to this reviewer’s understanding, state level data include VMT and fuel use by all 

vehicle types, not only the light‐duty vehicles affected by past fuel economy regulations. This introduces 

substantial heterogeneity in the vehicle populations across states, from motorcycles to diesel‐powered 

18‐wheelers, although light‐duty vehicles still predominate. Fuel intensity is believed by this reviewer to 

be total state highway use of motor fuel (not only gasoline) divided by total state highway vehicle travel. 

It would be helpful to clarify these definitions in the report to alert the reader to the meaning of the 

data and possibly help interpret the results. It is likely that state‐specific constants will account for 

much of the differences across states in the composition of traffic. Remaining effects of heterogeneity 

are not likely to cause important problems for estimating the rebound effect. 

Cost per Mile versus Fuel Intensity Rebound 

The question of whether the data actually support the existence of a rebound effect for fuel economy 

has been addressed above and is mentioned again here to emphasize its importance and the 

uncertainty it creates. The estimates presented by S&H are based on the maintained hypothesis of 

economically rational behavior, in the sense that consumers are assumed to respond to changes in fuel 

cost per mile in the same way whether caused by a change in fuel price or a change in fuel economy. 

However, the new research presented by S&H concerning the asymmetry of responses sheds new light 

on this subject, as explained in greater detail in Element 3. The consequence of the analysis of 

asymmetry is that there is now strong evidence that the market response to reductions in fuel intensity 

(a goal of the fuel economy and GHG standards) is less than the response of the market to increases in 

the price of fuel, and that it is also smaller than estimates of the rebound effect based on the 

assumption of a symmetrical response to changes in fuel cost per mile. This finding of S&H is potentially 

of major significance. It implies that the best estimate of the rebound effect for the purpose of 

estimating the effects of fuel economy and GHG standards is the asymmetric elasticity of reductions in 

fuel cost per mile. Since it is a relatively novel result with respect to the rebound effect, further research 

is warranted, yet the results presented by S&H are strong and should now represent the current state of 

knowledge. 

Statistical Insignificance of Endogenous Variables in Some Equations 

S&H do not provide an adequate discussion of the fact that some of the endogenous variables in either 

the 3‐ or 4‐equation models are not statistically significant. For example, in the 3‐equation models, vma 

does not appear to be statistically significant at the 0.05 level in any of the equations for vehicle stock, 

and pf+vma is not statistically significant in the equation for fint in models 3.3, 3.18, 3.21b, or 3.29 

(Table B1). In the 4‐equation models, pf+vma is not statistically significant in the equation for fint in 

models 4.3, 4.13, 4.21, and possibly 4.23. This calls into question the necessity for the simultaneous 

equation framework, at least as formulated, and requires explanation. The secondary, simultaneous 
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equation effects are small relative to the direct effect of pm in the vma equation and so the empirical 

significance of these pathways is not great but it would be interesting to see if the hypothesis of 

simultaneity is rejected by the data or not. 

In particular, the equation for fint in table 4.2 raises questions. Why it is preferable to interact fuel price 

and VMT rather than test also for the main effects of the two variables? As explained on p. 30, the 

interacted fuel cost variable turns out not to be statistically significant. This result increases the need 

for an explanation of the choice of this formulation. Is this a parsimonious way of getting both variables 

into the fint equation? Would they be less statistically significant individually? And if neither vehicle 

travel nor the price of fuel is statistically significant in the equation for fuel intensity, doesn’t this 

undermine the rationale for including this equation in a system of equations? If this is the best 

formulation and yet the log of fuel price times VMT is not statistically significant in the equation for fint 

then it would seem that the data do not support including fint in a simultaneous equation formulation. 

Again, this does not appear to be of great practical importance since the simultaneous equation effects 

are relatively small. 

A Caveat on Long‐run and Short‐run Effects and Lagged Adjustment Models 

The lagged adjustment model used by S&H is a useful formulation and widely adopted for modeling 

phenomena such as aggregate VMT. However, it implies two important maintained hypotheses. The 

first is that the correlation between the dependent variable and its lagged value measures only the 

adjustment process. If there are other causes of a strong positive correlation, the long run elasticities 

will be overestimated. By using econometric methods that allow for error correlation in the lagged 

adjustment equation S&H have taken a prudent step to deal with possible correlation between the 

current and lagged values of the dependent variable from that source. Second, it implies the same 

adjustment rate for all variables, which would seem to be a special case. These observations do not 

diminish the value of this analysis or others using the lagged adjustment formulation but are something 

to be borne in mind when interpreting results. 

The Effect of Vehicle Cost on Vehicle Use 

The S&H model allows changes in vehicle price to affect vehicle travel via its effect on the size of the 

vehicle stock. However, this may not be adequate since increased vehicle cost also affects the cost per 

mile of travel to the extent that use of a vehicle depreciates its value. There is no question that capital 

depreciation is a component of the long‐run cost per mile of travel. The question is how important it is 

as a determinant of long‐run travel demand. 

Estimates of the elasticity of total vehicle travel with respect to car purchase cost were found in at least 

one literature review to have a central tendency of ‐0.19 in the short run and ‐0.42 in the long run 

(Goodwin et al., 2004, table 7). While the plurality of studies reviewed come from the United States, the 

majority do not. In addition, it is not clear from the study cited how many studies combine the effect of 

purchase cost via the size of the vehicle stock with the effect of purchase cost via long‐run cost per mile. 

Nonetheless, for illustrative purposes only, I will use the ‐0.4 elasticity. If a doubling of fuel economy 

caused a 10‐20% increase in VMT at a cost of $2,000 per vehicle for vehicles with a prior average cost of 
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$25,000, the 8% increase in vehicle cost would reduce VMT by about 3%, offsetting 15‐30% of the 

estimated rebound effect. This reviewer is not arguing here that these numbers correctly represent the 

magnitude of this possible effect for the United States but rather to illustrate the possibility that there 

may be an important issue here that is worthy of formal investigation. 

Element 3: 

The methodology used in this report attempts to account for asymmetric responses to increases vs. 

decreases in per mile fuel costs (and fuel prices). Does the report's finding of an asymmetric response 

seem reasonable given the methodology that Small employed? In particular, do the authors' preferred 

model specifications (3 .21 b and 4.21 b) seem appropriate for capturing driver response to an increase in 

fuel efficiency? 

On this subject, S&H have produced potentially important results. Their analysis supports the inference 

that rebound estimates based on a symmetric response to fuel cost per mile overstate the rebound 

effect of fuel intensity. The price asymmetry model has been found in other studies of the response of 

gasoline demand to gasoline price and petroleum demand to petroleum price. Thus, it is very likely that 

the difference between rises in fuel cost per mile and decreases in fuel cost per mile is attributable to 

asymmetric market responses to rises in the price of fuel and not to asymmetric responses to changes in 

fuel intensity. This would mean that the symmetric model, by estimating an average effect of rises and 

reductions in fuel cost per mile, would overestimate the effect of reductions in fuel cost per mile. S&H’s 

results confirm this. This result is important because it implies that for purposes of estimating the 

rebound effect of fuel economy regulations, the asymmetric elasticity of a reduction in fuel cost per mile 

should be a more accurate estimate of the rebound effect than the fuel cost per mile elasticity 

estimated assuming a symmetric relationship between fuel cost per mile and vehicle travel. 

The analysis of the possibly asymmetric effects of fuel price rises and cuts appears to be separating price 

effects (which are asymmetric) from fuel intensity effects (which are not asymmetric). As the authors 

explain, in the asymmetric model the rebound effect is mathematically the sum of the asymmetric 

effects. The partial effect of fuel efficiency (holding other variables constant) does not depend on 

whether prices are rising or falling. Rather, it is the effect of the price of gasoline that depends on 

whether prices rise or fall. Thus, this reviewer concurs with the authors’ decision to adopt this result in 

their preferred models (3.21 b and 4.21 b), especially since these empirical results are also consistent 

with their earlier inference that by using fuel cost per mile alone (based on a symmetric model) one 

would almost certainly overestimate the rebound effect. 

Generally, two possible explanations are put forward for the asymmetrical response to fuel price rises 

and cuts. The first is that consumers are more likely to extrapolate fuel price rises than cuts and thus 

respond more strongly to fuel price rises when purchasing durable goods. The second explains the 

persistence of asymmetry in the long run as a consequence of technological change or public policy (i.e., 
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efficiency standards) induced by fuel price rises. In either case, the asymmetry method used in this 

section of the paper should be able to separate these irrelevant effects from the rebound effect. 

Empirically, the effects of fuel price and fuel intensity changes are not the same (see above). The 

asymmetric model offers a logical explanation of the conundrum. 

Because the media and price volatility effects almost certainly apply to the effects of price but not fuel 

efficiency, the authors are correct in abandoning the models including these variables. The anomalous 

results in certain formulations also support this decision. As the authors note, the erratic behavior of 

the Asymmetry model 3.23 suggests that it is not a plausible model. Because the asymmetric models 

are also not able to separately estimate the fuel price and fuel efficiency effects, as the authors note, 

their preference for the models of section 4.4.1 is well reasoned. 

In this and previous work, S&H have found that the rebound effect varies with income. In this study, 

they also found that it varies with the price of fuel. It would be interesting to test whether changes in 

the distribution of income as well as average income have affected the rebound effect. There is some 

evidence that the distribution of income has affected the growth rate of aggregate VMT. The result that 

the rebound effect varies with income and fuel price is both important and useful for analyzing the 

future costs and benefits of fuel economy and GHG regulations. 

Element 4: 

The report describes a methodology for projecting the VMT rebound effect for light‐duty vehicles forward 

in time. The concept of dynamic rebound is introduced to quantify the rebound effect over the period of a 

vehicle lifetime, during which time the variables that influence the rebound effect are changing. Is this 

methodology reasonable and appropriate, given the inherent uncertainty in making projections about 

how future drivers will respond to a change in the fuel efficiency of their vehicles? 

The dynamic rebound model provides a reasonable method of accounting for the fact that as fuel 

economy improvements penetrate the vehicle stock, new vehicles have higher fuel economy than older 

vehicles. What is not clear is how much of an improvement this method makes over basing the rebound 

effect on the vehicle miles weighted average fuel intensity of the vehicle stock. If distributional effects 

were important (if it were important to know how much the usage of different vehicles changed), 

detailed modeling of changes in vehicle use in the vehicle stock by vintage would be necessary. It is not 

clear that this is necessary for EPA’s analysis of the costs and benefits of fuel economy regulations. That 

said, there is no compelling reason not to use the dynamic method proposed by S&H. 

In this and previous papers, the authors have presented strong evidence that the rebound effect has 

changed over time and that the changes are correlated with changes income and fuel price. The income 

result was also confirmed in a recent study using national time series data (Greene, 2012). There is also 

theoretical justification for including these effects, since income affects the value of travelers’ time and 
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fuel prices affect the fuel cost share of the long‐run cost per mile of travel. Thus, it is appropriate to 

include these effects in the forecasting model. While there is uncertainty about future incomes and fuel 

prices, basing the estimated rebound effect on price and income assumptions used elsewhere in the 

estimation of costs and benefits of the standards will result in a more consistent assessment. That said, 

the linear extrapolation of the income and price effects is problematic. Whatever the correct functional 

form may be, it is not linear over the full range of possible future incomes and fuel prices. This leads to 

the problem of rebound effects with theoretically implausible signs, which the authors have addressed 

by truncation at zero. Truncation at zero is better than not truncating at zero. A better functional form 

should be sought that approaches zero as income goes to infinity and fuel price goes to zero. 

Final Comments 

The S&H analysis is very well done, uses appropriate models, data and econometric methods and makes 

several important contributions to knowledge of the rebound effect. The results are consistent with 

both the central tendency of other estimates in the literature and with the best studies contained in the 

peer‐reviewed literature. The range of issues investigated and statistical tests performed is a particular 

strength of the analysis. The projected rebound effects are useful and plausible. The results are useful 

to EPA as they now stand. The issues raised in this review and those noted below suggest avenues of 

additional research and model development that may or may not lead to improvements in the model as 

currently recommended by S&H. 

The chief limitations of the study are the possibly inadequate representation of the effect of vehicle 

purchase costs on the long‐run cost per mile of vehicle travel, the need for an interpretation of the lack 

of statistical significance of key endogenous variables in many of model equations, and the truncation of 

the rebound effect in the projecting model when the estimated rebound effect becomes negative. 

It is appropriate to adopt the models that include the asymmetric response to reductions in fuel 

intensity (models 3.21b and 4.21b) as the current best estimates of the rebound effect. The finding of 

asymmetry in the elasticity of cost per mile should be incorporated in the projection methodology. It is 

statistically significant and consistent with the peer‐reviewed published literature. It also addresses the 

inability to estimate a significant elasticity for fuel intensity alone and the conclusion that the rebound 

effect is thereby overestimated. Use of the “price cut” elasticity of fuel cost per mile from the 

asymmetric model has the advantage of at least removing the fuel price rise asymmetry from the 

estimated rebound effect. 

S&H’s investigation of how the rebound effect may vary systematically with other factors is an 

important contribution to the understanding of the rebound effect. Incorporating rebound effects that 

vary with income (value of time) and fuel price (fuel cost share of operating costs) in forecasting the 

rebound effect is supported both theoretically and empirically. The fact that the rebound effect varies 

with both income (interpreted as representing the value of time) and fuel price (perhaps representing 

the fuel cost share of the long‐run costs of vehicle travel) suggests that an alternative model formulation 

explicitly including all the important long‐run costs of vehicle travel (and the elasticities of substitution 
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among them) might produce an improved forecasting model. Such an approach might also permit 

inclusion of use‐related depreciation as a component of the cost per mile of travel. Fuel cost is not the 

only component of the long‐run cost of vehicle travel. The short‐run cost of travel includes the traveler’s 

time and the long‐run cost includes many factors, notably the capital cost of the vehicle. 

The assumption of constant elasticity (as a function of income and fuel price) should be considered only 

one possible functional form. In particular, it is recommended that forecasts of the rebound effect be 

based on a more explicit representation of the total cost of vehicle travel, including fuel, maintenance, 

capital and travelers’ time costs. Because in the end S&H are left with only a partial explanation for the 

apparent increase in the rebound effect after 2003, understanding the correct functional form of the 

rebound effect should be given a higher priority. 

It would also be appropriate to update the projected rebound effect estimates using the most recent 

Annual Energy Outlook (e.g., 2014 Early Release). Undoubtedly this was not available at the time the 

study was carried out. 
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Summary statement: 

“The Rebound Effect from	
  Fuel Efficiency Standards: Measurement and Projection to 2035”,
written by Kenneth Small (with contributions from	
  Kent Hymel), uses an appropriate
methodology and defensible assumptions. It uses the best available data	
  (given	
  significant	
  
constraints on what is available), and emphasizes modeling choices and specifications that
are sensible	
  and	
  consistent with	
  both	
  theory	
  and	
  data. As a reviewer, I agree with most of
the assumptions and emphases in the paper. Where	
  I do disagree	
  (detailed	
  below),	
  I 
believe that the preference of one method or specification over the other involves an
element of subjective judgment about	
  how	
  to weigh the costs	
  and benefits	
  of different 
approaches. I did not identify	
  any issues that I believe are objectively incorrect. Thus, while	
  
I might have made some different choices myself, I believe that the choices made in the
report are defensible. 

My detailed comments are included below in a numbered list, categorized according to the
four	
  charge questions that were given to me by ICF International. I did not restrict myself
to comments on how the immediate report ought to be changed given realistic constraints
on time and effort; many of my comments are intended to point to areas where future
reports could, in my opinion, make the biggest improvements. My comments should be
read	
  in that light. 

Before proceeding to those comments, two issues are worth highlighting.	
  First	
  is a bi 
picture	
  question regarding methodology and data.	
  This report	
  uses	
  data aggregated	
  to	
  the	
  
state-­‐by-­‐year level over five decades. Recent research (e.g., work by Kenneth Gillingham	
  
and joint work	
  by Chris Knittel and Ryan Sandler) has made use of microdata from	
  vehicle 
odometers, which is available for some cars in some recent years in some states. The
aggregate data used in the Small report analyzed here suffer from	
  measurement problems 
(detailed	
  below, see item	
  7) and limit the available econometric identification strategies
(see items 1-­‐3). The odometer microdata suffer from	
  limited coverage, both	
  across	
  states	
  
and over time, and existing estimates are focused on a short-­‐run elasticity	
  that is 
inconsistent with some of the measures emphasized in the report. In the end,	
  which data	
  
and methodology should be preferred likely	
  depends on exactly	
  what specification	
  one 
wishes to use. I think that a case can certainly be made for sticking with the aggregate data
used in the Small report, but I suspect that, in the near future when researchers have
gained access to data from	
  a somewhat more representative set of states and have a few
more years worth of data, that the case for the microdata will become stronger. In any case,	
  
it would be very valuable to know how projections based on the microdata estimates
compare to those used here, were	
  it possible	
  to	
  construct such	
  projections. 

The second issue worth highlighting is how the report models the relationship between
income and the rebound effect for use in projections. In brief, the literature seems
consistent in finding evidence that the rebound effect varies over time and that, on a
decadal time scale, the effect is smaller in more recent years than in prior decades. The
paper posits that this may be due to rising income. This is theoretically sensible in that the 
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total	
  cost	
  of driving involves a cost of time as well as a cost of fuel, and as income rises, so
does the wage and hence the time cost of driving, which eventually comes to dominate the
price per mile. In the report’s projections, with income projected to rise, the rebound	
  effect 
is quickly driven to zero in many states, which greatly affects the final estimates. But, given
the nature of the identification, which relies on time series correlations between income
and the rebound effect (see items 1-­‐3),	
  it is difficult to have confidence that income is the 
driving factor. Even if income is the driving force in the historical data, it is not certain that
it will continue to have the same relationship in the future. One must make a stand on the
relationship between income and this elasticity, and the one that the paper makes is
consistent with economic theory and with the data. 

Thus, as with many modeling decisions, I think the paper’s choice on how to handle this is
defensible,	
  though	
  alternative	
  choices might be defensible as well (see item	
  11).	
  I highligh 
this issue in	
  particular because it	
  appears to be pivotal	
  to the results.	
  Below,	
  I include	
  a few	
  
thoughts on how the projections might be refined (item	
  13) and how this issue might affect 
which results are most useful to report	
  (item	
  14). Here, I want to make the point that an
additional analysis that could corroborate the relationship between income and the VMT
elasticity	
  would	
  be	
  very valuable. 

I would find it	
  reassuring	
  if the cross-­‐sectional relationship between income and the 
rebound	
  effect was similar to the estimated aggregate time-­‐series relationship. According
to the research cited in the report, the available microdata evidence suggests otherwise;	
  it 
finds that	
  the	
  rebound	
  effect is U-­‐shaped in income. A rationale for this	
  is that wealthier	
  
people have more travel options, which makes them	
  more responsive. This factor competes
against the time cost factor, and at different levels of income different factors dominate,
resulting in a U-­‐shape. The projections	
  might change significantly	
  if the relationship	
  
between income and the elasticity is U-­‐shaped in the time series. This depends on whether	
  
or not future aggregate income is high enough to reach the upward sloping	
  portion	
  of the U. 

Rather than using a cross-­‐section	
  of microdata, one could look at a cross-­‐section	
  of states 
states	
  (or countries)	
  to	
  see how estimated elasticities are correlated with income. For 
example, one could estimate the VMT-­‐elasticity separately for each state for some span of
years (say, a decade) not controlling for income and then see how that correlates with state
income. Are wealthier states less responsive? One might reasonably argue that	
  the cross-­‐
sectional relationship between income and the VMT elasticity is a fundamentally different
parameter	
  than	
  the	
  over-­‐time relationship, but they seem	
  to me to be based on the same 
theoretical arguments. As a result, I would like to see some sort of corroborating	
  
evidence—either in this report or in a completely separate study—though I recognize that	
  
the suggestions made here are themselves far from	
  perfect. 
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Element	
  1: What are	
  the merits and limitations of the	
  authors’ approach for estimating the	
  
vehicle miles traveled (VMT) rebound effect for light-­‐duty	
  vehicles? Are	
  key assumptions 
underpinning the	
  methodology reasonable? The	
  VMT rebound effect is defined here	
  as the	
  
change in VMT resulting from an improvement in light-­‐duty	
  vehicle efficiency. 

1. The paper	
  uses a panel regression, but it is best	
  understood as deriving results form	
  
time-­‐series	
  variation because the panel regressions do not include time period fixed
effects and the lion’s share of variation in the key measures come from	
  the time-­‐
series. In most cases, the	
  extra credibility	
  that is often	
  attributed	
  to	
  panel data 
models comes from	
  their ability to include both time and entity level fixed	
  effects.	
  
The report does not use time fixed effects, and generally has very sparse controls for
time. The most important variable in the analysis is the price of gasoline. This is
measured at the state-­‐year	
  level,	
  but once state fixed effects are controlled for,	
  a vast	
  
majority of the variation in the data will be attributable to fluctuations in the global
oil price	
  (or national gasoline	
  price). 

I do not necessarily advocate that the paper add time period fixed effects; if year
fixed effects were added, the remaining variation in gasoline prices that would
identify	
  the	
  coefficients	
  would	
  be state-­‐specific	
  fluctuations	
  in gasoline prices in	
  
each time period, which often	
  represent short run	
  imbalances in local supply	
  and	
  
demand that should not be expected to persist (and therefore may have a limited
impact on behavior).	
  In that sense,	
  the report	
  uses the best	
  available variation,	
  but 
this implies that the paper’s results are largely driven by the national time series	
  in 
gasoline prices and VMT, which has implications discussed in the next two points. 

2. The nature	
  of the	
  panel identification	
  means that, in my judgment, the additional
benefit of having 51 states as opposed to 1 national time series may be somewhat
overstated. I do not see mention in the paper of any attempt to control for
correlation across states in error terms. The standard way of handling this is to
cluster standard errors on some larger level of observation, the rule of thumb being
“at the level	
  of variation in the key independent variable”. Given my argument above
that identification is driven primarily by the national price of gasoline, one might
interpret this as implying that standard errors should be clustered at the time
period level (year), though technically most of the variables vary at the state-­‐by-­‐
year level.	
  I suspect that if the standard errors were clustered on time period that
much of the added precision that results from	
  moving from	
  a national time series to 
a panel	
  regression	
  would be lost. To be clear, none of this implies bias in any
coefficients, but the confidence one might have in distinguishing between certain
specifications might be reduced by attention to the standard errors. As with other
issues, I believe there is ambiguity here, and one could perhaps defend more
vigorously	
  the	
  decision not to	
  cluster. 

3. The nature of the panel identification also opens the possibility for standard omitted
variable bias problems. With sparse time controls and trending variables, anything 
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that	
  is correlated with gasoline prices as well	
  as with VMT per adult	
  could induce 
bias. Some factors that might be relevant are the fraction of driving that	
  is personal 
as opposed to work-­‐related,1 the quality of automobiles,2 commuting norms,
changes in the fraction of families with two wage-­‐earners,	
  the	
  expansion	
  of urban	
  
sprawl,	
  etc.	
  This is especially important for an analysis that spans so great a time
frame. The report attempts to control for measures of the most important variables,
but it	
  is a priori difficult to	
  be	
  confident that all such	
  secular	
  trends	
  have	
  been	
  
accounted for by a limited number of demographic variables. What is usually done
in response is to	
  (a)	
  show precisely	
  how sensitive	
  the	
  coefficients	
  of interest are	
  to	
  
the inclusion	
  of the available set	
  of controls and (b) show	
  the robustness of the 
coefficient to many additional tweaks. 

Along these lines, an appealing permutation would be to add state-­‐specific time
trends, and to add differential time trends for different periods of time where	
  we	
  
have reason to believe that there might be structural breaks. (The appendix to	
  the	
  
2007 working paper indicates that three distinct time trends are used, but this
includes a single trend for all years after 1980, which may be inadequate. Moreover,
I did not see the set of time controls used spelled out clearly in the current report.) I
suspect that the	
  author	
  has	
  tried	
  these permutations,	
  and I recognize	
  that the tests 
for structural breaks	
  in the	
  data do not yield	
  conclusive	
  results upon which to base	
  
these decisions.	
  But, I would hope to see greater evidence of robustness	
  of the 
results to richer controls for time, and perhaps to a broader set of demographic and
vehicle market controls. 

4. The report argues that a secondary pathway through which CAFE standards might
impact VMT is through the overall size of the car market. The idea is that fuel
economy standards will cause people to buy more cars because fuel efficiency
standards	
  lower	
  the	
  cost of driving, which	
  thus	
  increases	
  the	
  value	
  of owning	
  a car, 
holding	
  prices constant. (This is the	
  difference between	
  M and 𝑀 in the	
  report.)	
  This 
argument is present in much of the related literature. 

I find this objectionable from	
  a theoretical point of view. In a standard market
model, the imposition of fuel economy standards could not raise the value of cars 
(net of price) on average.	
  The market should be offering cars that have a bundle of
attributes that maximizes private value to consumers. The introduction of fuel	
  
economy standards forces automakers to alter the mix of attributes they offer—
perhaps through changes in technology	
  or through a shift	
  from size and	
  

1 The price sensitivity of miles driven for work is likely different than miles driven for
personal reasons because of the difference in who is paying for fuel and whether time is
uncompensated. The data used on VMT do not distinguish these types of driving.
2 The time cost of driving is a function of the opportunity cost of driving and of the flow
utility of being in the car. More comfortable cars with improved media, and cell phones,
may substantially lower the cost of driving in that dimension. 
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performance to economy. If standards force this mix to be altered, it is counter	
  to	
  
theory to suggest that this will create attribute mixes that consumers prefer,
conditional on price (which	
  is controlled	
  for in the	
  regressions). 

This reasoning could be wrong if another market failure exists, such as the idea that
consumers are myopic and thereby underappreciate the value of fuel economy. In
that	
  case, consumers could conceivably have increased private utility from	
  the 
standard.	
  But,	
  even this	
  scenario	
  does not rationalize	
  an	
  increase	
  in the	
  size of the	
  
vehicle market because, if consumers are myopic, then they won’t recognize that	
  the 
new vehicle fleet is preferable—the market was providing the fleet that seemed to be 
value maximizing.	
  This suggests that the market should shrink. It seems to me that
the final effect on market size depends on whether the standards raise or lower
producer mark-­‐ups over marginal cost in equilibrium, which is theoretically
ambiguous. 

Importantly, the report de-­‐emphasizes this channel, which is found to be quite
small. So, while I disagree	
  at points with the report	
  on this issue, I do not think it has 
an important impact on the	
  final projections. 

5. This report introduces measures of media attention,	
  which are	
  new to the literature.	
  
This is used in two	
  ways,	
  one is as	
  an	
  additional regressor, another	
  is as	
  an	
  auxiliary	
  
data series useful for aiding	
  interpretation.	
  I agree	
  with	
  the	
  latter	
  usage,	
  but not the	
  
former. Media mentions of gasoline prices is not well motivated as an independent
regressor from	
  a theoretical standpoint. It is meant, I believe, as a measure of the
salience of gasoline prices. But, the media surely reflects public attention as much as
it dictates	
  it.	
  Thus, it is fundamentally endogeneous. As such, I prefer models that do
not include it as a regressor.	
  

At other times in the report, the media mention series is looked at by itself as an
interesting time series that might help interpretation. I think it is appropriate to use
in this	
  sense—if it is a proxy for an endogenous measure of salience or awareness,
then it may be useful to look at this series and see if it happens to line up with the
time pattern of coefficient estimates from	
  the baseline model, as a way of perhaps
interpreting what is going on in the main estimates. In the end,	
  the report	
  does not 
emphasize these results over others, which mitigates my concern. 

6. One weakness of the aggregated data	
  used	
  in this	
  report is that it provides	
  no 
immediate way of modeling the relationship between vehicle age and VMT. Given
the lack of data on this, it seems appropriate for the report to abstract from	
  such 
issues, but this	
  points	
  to	
  another	
  area where	
  the	
  odometer microdata could be 
useful.	
  Those	
  data	
  could be used to detail	
  the age-­‐VMT	
  relationship and	
  to	
  see how it 
changes over time and in	
  response to fuel	
  price shocks and regulation.	
  Such 
information might be especially useful in refining the dynamic rebound	
  effects 
emphasized in the report. 
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Element	
  2: Is the	
  implementation of the	
  authors’ methodology	
  appropriate for producing 
estimates of the	
  VMT rebound effect? Specifically, are	
  the input data and the	
  methodology
used to prepare	
  the data appropriate? Are sound econometric procedures used? Does the	
  
model appropriately	
  reflect underlying uncertainties associated with the	
  assumptions invoked 
and the	
  parameters derived in the	
  model? 

7. The report suffers from	
  crucial data limitations, of which the author	
  and the	
  
literature more broadly are well	
  aware.	
  The key problem	
  is that most of the 
dependent variables are not independently measured, but are instead imputed
based on possibly inconsistent procedures across states and over time and through
a methodology that is not well explained by the Federal Highway Administration.	
  To 
recap, states	
  generally	
  have	
  good	
  data on gallons	
  of fuel sold, because	
  they	
  collect 
taxes by the gallon.	
  States themselves,	
  or the FHWA, use some estimate of fuel 
efficiency of the	
  vehicles	
  on the road to translate gallons sold into VMT (M),	
  b 
calculating	
  that M = F / E-­‐hat,	
  where	
  E-­‐hat is their estimate and F is fuel consumed. 
The fuel intensity	
  is measured in the report as 1/E = F/M,	
  where	
  again	
  VMT	
  is 
imputed based on E-­‐hat.	
  Then, Gas	
  Price per mile is calculated as Gas Price / E = Gas 
Price * M/F = Gas	
  Price / E-­‐hat.	
  Thus, the measurement of all of the most important 
variables	
  depends on some estimate of efficiency that states are using, which may be
inconsistent across states and over time,	
  or that the FHWA	
  is using, which at best is 
based on	
  surveys 5-­‐years apart and may be wiping out differences across states by 
using	
  national averages for imputation.	
  Any errors in measuring E are being	
  passed 
through the system	
  because it	
  is an input	
  into	
  all of the	
  relevant variables,	
  which	
  
may create mechanical correlations across all of the variables of interest. 

The author is aware of these issues and articulates them	
  (although much of the 
discussion	
  is found	
  only	
  in the	
  working paper version of Small	
  and Van	
  Dender),	
  so 
raising the	
  issue	
  would	
  be	
  belaboring the	
  point, but for three reasons. One	
  is that 
this fundamental concern about data is an argument for shifting regulatory impact
analysis from	
  the type of methodology used here and towards a reliance	
  on the	
  new 
odometer-­‐based microdata sooner rather than later. 

A second is that it raises some concerns about the CAFE variable used in the paper,	
  
which is imputed based on the relationship between fuel economy and VMT in the
years before CAFE.	
  What were	
  states or the	
  FHWA doing to impute fuel economy 
before EPA	
  ratings existed in 1978? This is especially important because the CAFE 
variable	
  used in the	
  paper, which	
  is theoretically	
  very clever,	
  is based	
  entirely	
  on a 
projection forward from	
  data on fuel economy demand for the period before CAFE
was in place, which is a period in which there were no government measures of fuel
economy. How could states have had meaningful estimates of the on-­‐road	
  fuel 
economy of the vehicles in their state prior to those years? Why do we think	
  that	
  
consumer demand for fuel economy would be the same before and after labels were
introduced? How did they even know how efficient were the models in the earlier 
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years? 

A third is that it is worth pointing out that the relationship	
  between gallons of
gasoline consumed (the only thing actually measured directly) and VMT depends on 
average on-­‐road fuel economy, not EPA	
  ratings. As driving conditions vary, the 
relationship between VMT	
  and	
  on-­‐road economy will	
  differ.	
  In particular,	
  in 
observations	
  with	
  greater	
  urbanization	
  and	
  greater congestion, the more miles will
be spent in settings that garner lower average mpg for a given vehicle. A recent
working paper by Ashley Langer and Shaun	
  McRae suggests	
  that there	
  is huge	
  
variation	
  in on-­‐road	
  fuel economy for identical vehicles. 

8. There are some important differences in the estimates depending on whether or not
the latest years of data are included. I think it is arguably preferable to omit the
financial crisis, which	
  would	
  include	
  both	
  2008	
  and	
  2009 in annual data.	
  The paper	
  
does not report results that omit only those two years. One might make the case that
the baseline specification	
  should include data	
  only up to 2007. 

Element3:	
  The methodology used in this report attempts to account for asymmetric 
responses to increases vs. decreases in per mile	
  fuel costs (and fuel prices). Does the	
  report's 
finding of an asymmetric response seem reasonable	
  given the	
  methodology that the	
  authors 
employed? In particular, do the	
  authors' preferred model specifications (3 .21 b and 4.21 b)	
  
seem appropriate	
  for capturing driver response	
  to an increase	
  in fuel efficiency? 

In brief, I agree with the choice of models 3.21b and 4.21b as the preferred model. 

9. There are two types of asymmetry discussed in the analysis. One is that drivers may
respond	
  differently to changes in fuel economy than to changes in fuel prices,	
  so that 
price-­‐per-­‐mile is not a sufficient measure of the price to which consumers respond. I
am sympathetic to the idea that there could be a difference, primarily because of the
salience	
  of the	
  fuel price. However, I think that the	
  appropriate	
  null hypothesis,	
  
based on	
  theory, is that consumers make decisions based on price-­‐per-­‐mile. In the
absence of compelling evidence that consumers react differently	
  to	
  the	
  two	
  
components of price, I think that the report should focus on estimates that assume
symmetry in this dimension. This is what the report chooses to do,	
  and it is reflected	
  
in the preferred models of 3.21b and 4.21b. 

10. The second type	
  of asymmetry is in whether the rebound effect is different for price-­‐
per-­‐mile increases as compared to decreases. The report ultimately favors a model
in which	
  fuel price increases	
  yield	
  larger	
  responses than	
  fuel price decreases,	
  and	
  it 
is deemed preferable to use a model based on asymmetry of fuel price, not
asymmetry of price per mile. 

Here, I think the preferred specification is more ambiguous than with regard to the
other symmetry question, but I am	
  in agreement with the author on the preferred 
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methodology. There does seem	
  to be sufficiently strong evidence of an asymmetric 
response, in this	
  paper	
  and	
  throughout the literature,	
  to use a model that allows for 
this difference. 

Theoretically, it is sensible to assume that the asymmetry lies in increases or
decreases in the cost per mile (e.g., model 3.29), but the added econometric
challenge	
  of solving	
  the	
  additional endogeneity problem that	
  is induced by this
specification leads me to conclude that models based on asymmetry in fuel prices
(not price per mile) are preferable,	
  for practical	
  reasons.	
  Thus,	
  I agree with the
report’s choice of models 3.21b and 4.21b as the baseline preferred model. 

Element 4:	
  The report describes a methodology	
  for projecting the	
  VMT rebound effect for 
light-­‐duty vehicles forward in time. The	
  concept of dynamic rebound is introduced to quantify	
  
the rebound effect over the	
  period of a vehicle	
  lifetime, during which time	
  the variables that 
influence the rebound effect are	
  changing. Is this methodology	
  reasonable and appropriate, 
given the	
  inherent uncertainty	
  in making projections about how future	
  drivers will respond to 
a change	
  in the	
  fuel efficiency	
  of their vehicles? 

In summary, I think that the paper makes defensible projections. That is, all of the
assumptions used in the models that	
  are projected out	
  to 2035 are reasonable. I 
agree with the report that the baseline statistic should be the dynamic rebound
effect, which is the most theoretically relevant statistic for most applications. 

11. I do think,	
  however,	
  that an appealing	
  alternative is to simply take the best available 
estimates of the	
  rebound	
  effect from	
  recent years, say 2000 to 2007,	
  and project	
  this 
forward	
  as	
  a constant rebound	
  effect over all future	
  years without	
  conditioning	
  on	
  
changes in income and other interacted variables.	
  This alternative	
  is dubious in that 
it assumes that whatever conditions are at work in the most recent decade of data 
will	
  continue to be true in	
  the future.	
  But, it avoids dangers	
  of extrapolating	
  out of 
context.	
  That is, in the	
  face	
  of the	
  inherent uncertainty in making projections two 
decades	
  into	
  the	
  future,	
  a conservative methodology is to simply take the best
available recent estimate and assume that it will be constant	
  in	
  the future.	
  If I were	
  
the author of the report,	
  I would provide such an estimate alongside the dynamic 
rebound	
  effects	
  that are	
  reported. An additional benefit of this alternative is that it
would allow for direct comparison to the projections that would come from	
  using
odometer microdata estimates of the rebound effect, which could	
  be	
  used for this	
  
“straight line” projection, but may be harder to integrate into the dynamic estimates
emphasized in the report. 

12. I do have	
  a question/concern	
  about the way that	
  fuel price	
  volatility	
  is represented	
  
in the projections.	
  My understanding is that the AEO projects a smooth gasoline
price into the future. This is fine for models that do not include asymmetry, but for
models that do include asymmetry, a smoothly evolving gasoline price series and an
alternative that has the same average trend but experiences movement up and 
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down around the trend will not produce the same rebound effect. 

If this correct, then it is important for the models using asymmetry of adjustment to
fuel price	
  increases	
  and	
  decreases	
  to be based on some reasonable projection of
volatility. (I have in mind using the AEO projection of gasoline prices and the annual
volatility around a trend from	
  the last 20 or 30 years to draw random	
  forecasted 
paths of the gasoline	
  price,	
  and then averaging	
  the rebound effect	
  projections that	
  
result over many such paths.) I suspect	
  that this will increase	
  the rebound effect for 
the asymmetric models,	
  but that	
  the effect on the	
  forecasts will be small. 

13. With rising income, the rebound effect is driven to zero in the projections, but the
effect is truncated at zero so that it cannot become negative. Might it be preferable
to truncate at a value above zero?	
  Even as average income rises in the next two
decades, many individuals will remain at lower income levels and would therefore
be expected to remain responsive	
  to	
  fuel costs.	
  Thus, it is hard	
  to	
  see the	
  logic	
  in 
expecting	
  that the	
  average	
  rebound	
  effect could	
  go all the	
  way	
  to	
  zero in the	
  near 
future, so that some baseline above zero may be a more appropriate point of
truncation.	
  It would be ad hoc to choose some point, but 0 is actually an ad hoc point
itself, given that it is meant to represent an average. 

14. There is a great deal of uncertainty	
  surrounding the	
  final projections,	
  due to	
  
uncertainty in the estimated coefficients, the possibility of model error,	
  and the 
uncertainty in the forecasted inputs (like the price of gasoline and future income).
The report lists point estimates for forecasts and includes a few different
specifications	
  and	
  three	
  forecasted	
  futures	
  that vary	
  the	
  path	
  of the	
  future	
  price	
  of 
oil. Additional representations of uncertainty might be appropriate. 

A first possibility is to include standard errors around the forecasted values that
reflect the sampling uncertainty in the model estimation (i.e., the standard errors on
the coefficients). This should be conceptually straightforward, though it multiplies
the number of numbers that must be reported in a table by two (though it is just
shading	
  in a figure). 

The price of oil makes a substantial difference to the bottom	
  line estimates. Thus,	
  
depending on what the EPA	
  foresees as the final use of this report, it may be worth
providing additional detail about the oil price scenarios that the AEO is using (are
these meant to represent extremes of a spectrum	
  of plausible paths? Or are they	
  
likely scenarios?).	
  Or perhaps additional	
  results should be presented.	
  That	
  would 
depend	
  on the	
  intentions	
  of the	
  user	
  of the	
  report. 

A fuller version way of representing forecast and coefficient uncertainty is to model
the uncertainty in	
  the forecasted variables and provide a collection	
  of different	
  
model results based on random	
  draws of these variables. I think this would be 
useful in making clearer which parameters are really pivotal, so users know where 
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to draw	
  their attention.	
  If, for example, all that really matters is income growth 
relative	
  to	
  oil price	
  growth, then I would	
  like	
  to	
  see a focus	
  on that relative	
  
parameter and to have spelled out for me why the range of estimates actually span
the useful	
  set	
  of scenarios to study.	
  I recognize that	
  this is a tall order and would 
perhaps require	
  a substantial	
  separate	
  analysis. 

In terms of model error, which is more difficult to represent, the report lists
projections for several	
  different	
  specifications,	
  which is useful.	
  The one thing that 
could	
  perhaps be	
  useful is to provide some explicit comparison, along the lines
mentioned above, of how these projections differ from	
  a projection that uses just the 
VMT elasticity estimate taken from	
  the most recent decade of data and projected 
forward	
  without reducing	
  it based on income and other demographic trends (the 
straight line	
  projection).	
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This report discusses empirical values of the “rebound effect” for travel in passenger vehicles in the 
United States. The rebound effect refers to effects on the amount of travel that arises from changes in the 
fuel efficiency for light-duty motor vehicles (passenger cars and light trucks), caused in turn by 
regulations or technological developments. We briefly discuss the literature, then summarize previous 
empirical estimates done at University of California at Irvine in collaboration with Kurt Van Dender and 
Kent Hymel. Finally we present updated empirical estimates, which take advantage of newer data through 
the year 2009, and derive the implications of the updated estimates for the rebound effect in the time 
frame 2010-2035. 

The literature review and empirical methodology are described more fully in two published articles 
(Small and Van Dender 2007a; Hymel, Small, and Van Dender 2010), and even more fully in the working 
papers from which the published articles ware derived (Small and Van Dender 2007b). The empirical 
estimates have been updated subsequently, by adding five new years of data, namely 2005-2009. The 
projections are our own, and use a new methodology developed for this project which improves on that 
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used for earlier reports by K. Small to EPA and an older report to the California Air Resources Board 
(Small and Van Dender 2005). 

1. Background and definitions 

1.1 Determinants of motor-vehicle travel 

The rebound effect is simply a statement of the near-universal economic principle of downward-sloping 
demand: when the price of a good or service decreases, people purchase more of it. In this case the 
service is passenger transportation, and its price to the user includes the cost of fuel. If the amount of 
service is measured as vehicle-miles traveled (VMT), then the component of price accounted for by fuel 
cost, here called “fuel cost per mile” PM, is equal to the price of fuel Pf (e.g. stated in $/gallon) divided by 
fuel efficiency E (e.g. stated in vehicle-miles/gallon): 

EPP fM /= . (1) 

Thus if fuel efficiency E is increased, fuel cost per mile decreases, and since this is part of the price paid 
by consumers to drive, they will increase their VMT. See Greening, Greene and Difiglio (2000) for a 
more extended discussion. 

The responsiveness of demand to price is often summarized as a ratio of the percent change in demand, 
∆M/M, to the percent change in price causing it, ∆PM/PM, where M designates VMT in mathematical 
equations and ∆ designates a change in a quantity. A ratio such as this is called an elasticity, usually 
defined for the situation when ∆PM is very small so that the ratio becomes a derivative. Therefore we 
define the elasticity of vehicle-miles traveled with respect to cost per mile as follows: 

PM dMε = ⋅ (2) M ,PM M dPM 
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where the derivative dM/dPM is simply the limit of ∆M/∆PM as ∆PM becomes very small. An equivalent 
way to write this is in terms of the natural logarithms of M and PM, which we denote by lower-case letters 
vma and pm, respectively. (The notation vma stands for vehicle-miles per adult member of the population, 
which is how we define M in our empirical work.) Of course the equation for vma contains other variables 
besides pm, and these are held constant when considering the effects of pm; this makes the derivative in 
(2) a partial derivative, denoted using the symbol ∂. The elasticity written in this form is: 

∂(vma )ε = , (3) M ,PM ∂( pm) 

which could be a single coefficient in the equation for vma or, if pm enters in more than one way, a 
combination of several coefficients. 

One of the confusing aspects of the literature is that few studies have accounted for the fact that fuel 
efficiency E is not simply mandated, but chosen jointly by consumers and motor-vehicle manufacturers, 
within certain constraints set by regulation. Therefore one might ask the meaning of considering a change 

applying to a state. The first dependent variable is VMT, written mathematically as M; it is a function of 
PM (as already described), the size of the vehicle fleet, V, and various socio-demographic characteristics 

characteristics. Note that we do not distinguish among vehicles of various ages: thus implicitly we ignore 

variable, fuel intensity 1/E (the inverse of fuel efficiency), is presumed to be chosen based on a 
combination of motives including the wish to conserve on the cost of traveling M miles, the need to meet 
various regulations on fuel efficiency and/or emissions, and tradeoffs with vehicle performance; in our 
empirical work E is assumed to be a function of M, price of fuel PF, a variable measuring the stringency 
during any given year of the US federal Corporate Average Fuel Economy (CAFE) regulations, and other 
characteristics. This system is summarized in the left panel of Table 1.1. 

in E as though it could simply be set by fiat. In our empirical work, Van Dender and we meet this 
challenge by defining a system of three simultaneously determined travel-related quantities, each 

including income. The second dependent variable is V, which is a function of several things reflecting the 
demand for owning vehicles: a price index PV of new vehicles, the amount of travel M (since new 
vehicles are purchased in large part to supply desired travel), the price of travel PM, and other 

possible effects of these variables on the age composition of the fleet. Finally, the third dependent 

Table 1.1. Simultaneous Equation Systems 

Three-equation system Four-equation system 
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(without congestion) (with congestion) 

Equation (dependent 
variable) 

Symbol Equation (dependent 
variable) 

Symbol 

Level Logarithm Level Logarithm 

VMT per adult M vma VMT per adult M vma 

Vehicle stock per adult V vehstock Vehicle stock per adult V vehstock 

Fuel intensity of vehicles 1/E fint Fuel intensity of vehicles 1/E fint 

Congestion delay per adult C cong 

An implicit assumption in the use of aggregate data is that that the response to aggregate changes in fuel 
efficiency (or other variables) does not depend significantly on how those changes are distributed among 
segments of the population. This could occur, for example, if drivers are sufficiently homogeneous. In 
particular, the model assumes that changes in fleet average fuel economy will have the same impact on 
behavior whether those changes are caused entirely by new vehicles entering the fleet, or partly by new 
vehicles and partly by the retirement of older ones. This assumption enables us to apply the results of the 
model to regulations that specifically impact new vehicles only. It should be adequate insofar as the 
pattern of mileage driven by vehicle age is reasonably stable; if it is not, a more fine-tuned analysis 
tracking elasticities by vehicle age would reveal additional effects not captured here. 

It is worth noting that our system accounts for the effects of a change in regulations through two potential 
pathways. We illustrate for an increase in fuel-efficiency standards, with no change in vehicle price. First, 
the regulations increase the average fuel economy of the fleet, and that in turn reduces the cost per mile of 
travel, PM, through equation (1); this may directly reduce the amount of travel because of downward-
sloping demand as just discussed. Second, the size of the vehicle fleet may increase because vehicles are 
now more useful, in the sense that they can be driven more cheaply; this change in vehicle fleet size may 
further affect M since, as already noted, M is expected to be a function of V as well as other things. We 
estimate a simultaneous-equations model of M, V, and E that fully accounts for these effects. Empirically, 
we find that the first path is by far the dominant one, so that one could ignore the second path as an 
approximation; this may simply indicate that vehicle purchases are governed mainly by factors other than 
the cost of driving. 

Our model, through the influence of fuel cost on fuel efficiency, implicitly incorporates some changes in 
the relative prices of vehicles of different sizes and types. (For example, vehicle manufacturers may 
respond to a fuel efficiency regulation by offering discounts on their fuel-efficient vehicle types.) 
However, the description just given of the effects of regulations assumes that the average price of new 
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vehicles, PV, is held fixed. Of course, the full effect of a regulation would also include any change in this 
average price on new-vehicle sales. In many cases this would work in the opposite direction to that arising 
from a change in fuel cost: if fuel cost declines due to regulations that force manufacturers to raise vehicle 
prices, those higher prices would tend to reduce vehicle sales and thus, ultimately, travel, thereby 
offsetting some of the rebound effect. Furthermore, changes in new-vehicle sales would also change 
scrappage rates and the price structure of used vehicles of different ages. These effects are not usually 
considered part of the “rebound effect”, although that is just a matter of definition. Hence they are not 
discussed here;1 but they are important to consider as part of the full effects of a regulatory change. 

In order to distinguish the ultimate effect of both pathways on VMT, we use the symbol ˆ

where εM,V denotes the direct elasticity of travel with respect to vehicle fleet, εV,M denotes the direct 

with respect to cost per mile of travel. All the quantities on the right-hand side of (4) are measured 
directly as coefficients, or combinations of coefficients, of the three equations in our model. 

M ,PMˆε 
M to designate 

the combined effect, and designate its elasticity with respect to cost per mile as , reserving the 

symbol εM ,PM for the changes operating through the first pathway only. Small and Van Dender (2007a) 

show that these quantities are related by: 

ε +ε εM ,PM M ,V V ,PM= (4) ε M̂ ,PM 1− ε M ,V εV ,M 

elasticity of vehicle fleet with respect to amount of travel, and εV,PM denotes the elasticity of vehicle fleet 

In later published work in collaboration with Kent Hymel, the model described above was extended to 
account for the interrelationship between travel and congestion, denoted by C and measured empirically 
by estimated annual hours of delay due to congestion per adult. To accomplish this, a fourth equation is 
added to the model predicting the amount of congestion in a state, averaged over both its urban and non-
urban areas. At the same time, the equation for vehicle-miles traveled is modified to include an influence 
from congestion. The expectation is that more VMT causes congestion to rise, but that rise in congestion 
also inhibits VMT. The result of these simultaneous influences is captured by the simultaneous estimation 
and application of the VMT and congestion equations. 

1 In principle the effect of any specified changes in average new-vehicle price due to regulations could be analyzed 
using the results of the vehicle-fleet equation in our model, since that equation includes the variable PV, which is an 
index of nationwide new-car prices. However, the model does not estimate the coefficient of new-vehicle price very 
precisely, because there is little variation in that variable (none across states); so we would have less confidence in 
using it for that purpose. Probably a better approach for analyzing effects on vehicle purchases would be to consider 
the entire range of vehicle sizes and models and how consumers shift between them. 
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The result is that in the four-equation model, which includes congestion, equation (4) is modified by 
adding an additional term in the denominator: 

ε + ε εM ,PM M ,V V ,PMε ~ = (4a) 
M ,PM 1− ε ε − ε ⋅ εM ,V V ,M M ,C C ,M 

where εM,C is the direct elasticity of VMT with respect to congestion (presumably negative), and 
conversely εC,M is the direct elasticity measuring how congestion is created by VMT (presumably 
positive). The combined additional term, -εM,C⋅εC,M, is expected to be positive (because the minus sign 
cancels the negative sign of εM,C); therefore its presence reduces the magnitude of the rebound effect. 
However, Hymel, Small, and Van Dender (2010) find this reduction to be numerically small, and more 
than offset by the effects of other changes in the specification of the model and of including three 
additional years (2002-2004) in the data used to estimate it. 

1.2  Definition of the rebound effect: short-run and long-run 

While terminology differs among authors, PMM ,ˆε is conceptually what most writers have meant when 

discussing the rebound effect. To summarize: it measures the ratio of the responsiveness of travelers to 
the change in fuel efficiency resulting from regulations (with both expressed in percentage terms), while 
recognizing that the change in fuel efficiency is not directly set by regulations but rather results from a 
complex interactive process. This responsiveness accounts for both the direct effect of fuel efficiency on 
the cost of using a given vehicle, and the indirect effect on travel through changes in the number of 
vehicles purchased, but all the while holding average new-vehicle prices constant. 

Our analysis, like nearly all in the literature, assumes that this responsiveness to fuel efficiency arises only 
through the effect of fuel efficiency on fuel cost per mile. However, this assumption is debatable and is 
not inherent in the definition of the rebound effect. Thus, one could posit that VMT responds to fuel price 
pF and the exogenous components of fuel efficiency E separately and not just as a function of their ratio 
pM≡pF/E. We explore this question at several points in this report, but basically are unable to resolve it 
conclusively. 
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Because the elasticity ε ˆ is expected to be negative, it is convenient to express the rebound effect bS M ,PM 

as a number that is normally positive: 

b̂ S = −ε ˆ (5) 
M ,PM 

It is also common to express the rebound effect as a percentage rather than a fraction. Thus, if 

=-0.2, we say the rebound effect is 20%. 

The empirical equation systems just discussed also account for the slowness with which changes can 
occur, especially changes in the vehicle fleet size and average efficiency, which require purchases and 
retirements of vehicles. They are able to do this because we observed a location (a state or District of 
Columbia) every year – making the data set a cross-sectional time series, sometimes also called a panel 
data set. Slow adjustment is accounted for by assuming that each of the three behavioral variables 
explained by the models (M, V, and E) depends not only on the factors already mentioned, but also on the 
previous year’s value of that same quantity (called a lagged value of that variable). This is equivalent to 
assuming that there is a desired level of M, V, or Fint≡1/E, and that any deviation between this desired 
level and the level attained in the previous year is diminished in one year by a fraction (1-α), where α is 
the coefficient of the lagged value of the variable. We allow α to differ across the three equations and 
denote its corresponding values by αm , αv, and αf. Note that congestion formation is an engineering rather 
than a behavioral relationship, so no lag is postulated for that equation. 

This slow adjustment process means that the short-run response (that occurring in the same year) is 
smaller than the long-run response. Continuing to use the notation for the elasticity determined 

within this system, it is now a short-run elasticity because the long-run response is accounted for 
elsewhere in the equation (through the lagged variables). We represent the corresponding short-run and 
long-run rebound effects as bS and bL, respectively. They are approximately related by: 

PMM ,ˆε 

PMM ,ˆε 

S − ε
L b M̂ ,PMb ≅ = (6) 

1 −α m 1 −α m 
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where αm is the coefficient of the lagged dependent variable in the equation explaining vma. A more 
precise relationship accounts for the fact that in the full three-equation and four-equation systems, the 
lagged values in more than one equation can affect the long-run response; specifically, the long-run 
rebound effect for the three- and four-equation models are:2 

mv	 v v 

b̂ L 
− ε M ,PM −α β 2 /(1−α )

=	 (7) 
m mv vm v(1−α ) −α α /(1−α ) 

mv	 v v 

b ~ L − ε M ,PM −α β 2 /(1−α )
=	 (7a) 

m mc cm mv vm(1−α −α α ) −α α /(1 

where: 

•	 αv is the coefficient of the lagged dependent variable in the equation explaining the logarithm of 
vehicle stock; 

•
 

•
 

•
 

•
 

• 

In addition to accounting for lagged values within the system determining our dependent variables, our 
empirical system accounts for the possibility that the error terms in each equation are correlated over 
time. That is, for any given state, the unknown random factors affecting a dependent variable may have 

)vα− 

αmv is the coefficient of vehicle stock in the equation explaining vma; 

αvm is the coefficient of vma in the equation explaining vehicle stock; 

αmc is the coefficient of congestion in the equation explaining vma; 

αcm is the coefficient of vma in the equation explaining congestion; and 

v 
2β is the coefficient of pm in the equation explaining vehicle stock. 

some elements that are the same year after year. Most of these common factors are accounted for by a 
“fixed effects” specification, in which a distinct constant term is estimated for every state instead of just 
one for the entire system.3 Empirically, the effects of lagged dependent variables are difficult to 
distinguish from those of autocorrelation, a problem plaguing earlier studies investigating changes over 

2 See Small and Van Dender (2007a), equation (7); and Hymel, Small, and Van Dender (2010), equation (14a). 
3 This is one of two common specifications for panel data, the other being “random effects.” A hypothesis test 
known as a Hausman test soundly rejects random effects in favor of fixed effects for this data set. 
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time; we are able to distinguish them because of the long time period covered by our panel data set: 36 
years in the 2007 published paper, 39 years in the 2010 published paper, and 44 years in this report. 

There are many ways besides those considered here that regulations on fuel efficiency or related 
quantities might affect travel. As already noted, such regulations may raise vehicle prices, which would 
affect the vehicle fleet size and thus, indirectly, the amount of travel. Regulations may affect fuel prices 
through the impact of aggregate demand for fuel on petroleum markets. They may influence technological 
developments, thereby affecting the costs and performance of future vehicles. A broader analysis of the 
effects of fuel efficiency on travel might account for such factors, but they are outside the realm of the 
“rebound effect” as we define it here and as most researchers have used the term.4 An advantage of our 
more restricted definition is that it is a purely behavioral measure, not depending on supply factors (e.g. 
the cost to manufacturers of meeting efficiency standards) or macroeconomic conditions (e.g. the 
responsiveness of world oil prices to a particular policy in the US), and thereby more likely to be a stable 
number applicable to many situations. However, it is important to be aware that if regulations raise the 
price of new vehicles, then the response to that price rise would tend to offset somewhat the rebound 
effect, as defined here, by curtailing the number of vehicles available to travelers. Similarly if regulations 
curtail U.S. oil demand enough to lower world oil prices and this translates into a lower domestic gasoline 
price, some additional travel will be stimulated as a result. 

1.3 Dynamic rebound effect 

A vehicle owner responds to a change in fuel efficiency not just in the first year or some hypothetical year 
in the distant future, but continuously over that lifetime. Thus, the partial adjustment mechanism 
postulated here, which is the basis for the distinction between short-run and long-run responses, implies a 
continuing gradual change in VMT each year over the vehicle’s life. But at the same time, the driving 
force itself, i.e. the short-run rebound effect (5), is changing because the interaction variables that help 
determine it (income, fuel cost per mile, urbanization, and possibly congestion) are changing. Thus, the 
vehicle owner adjusts dynamically to both sources of change simultaneously. The results of tracking this 
process can be expressed as the percentage increase in the vehicle’s lifetime VMT divided by the 
percentage decrease in fuel cost per mile that caused it. That ratio is here called the dynamic rebound 
effect. 

4 Greene (1992) and Gillingham (2011) refer to our definition, combined with any effect due to higher vehicle 
prices, as the “direct” rebound effect. This constrast with the “indirect” rebound effect caused by income effects 
(people having more money to spend after fuel purchases on other goods that use energy) and the “macroeconomic” 
rebound effect (changes in energy use arising from effects of an energy policy on economy-wide prices and growth 
rates). See Gillingham (2011, pp. 25-26). 
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Calculating the dynamic rebound effect requires disaggregating the vehicle fleet by age, even though that 
was not done in estimation. Thus, it involves an interpretation of what is happening within the aggregates 
in the observed data. Specifically, the calculation relies on the assumption mentioned earlier that drivers 
react the same way to a hypothetical difference in fuel cost per mile whether it occurs at time of purchase 
or later. It works as follows. Consider the owner of a vehicle purchased in year t deciding how much to 
drive in year (t+τ). This owner is postulated to have a target amount of travel based on the average annual 
mileage for vehicles of age τ, adjusted for the short-run rebound effect as calculated by (5) using values 
of interacting variables for year (t+τ). Most of these interacting variables (income, urbanization, and 
congestion) are simply as projected for that year. The other, fuel cost per mile, is projected based on fuel 
prices for year (t+τ) but holding fuel efficiency constant at the value that prevailed when the car was 
purchased (year t).5 

But this target mileage is not achieved immediately, because of the adjustment lags measured by the 
coefficient αm of the lagged dependent variable in the VMT model. The partial adjustment mechanism 
implies that the actual mileage Mt in year t+τ will be the weighted average of the previous year’s 

mileage, Mτ-1, adjusted for the natural evolution due to the age-mileage profile { }0 
τM , and the target 

mileage, with weights αm and (1-αm), respectively: 

0 

1 
0 

0 

1 )1)(1( ττt 
Lm 

τ 

τ 
τ 

m 
τ Mbα 

M 
MMαM + 

− 
− −−+= 

 

where τt 
Lb + 

 
is the long-run rebound effect in year t+τ for a vehicle purchased in year t, and 

0 
τM is the 

normal mileage for a car of this age: thus 
0)1( ττt 

L Mb +− 
 

is the target mileage. The dynamic rebound 

effect D 
tb is then the fractional increase in mileage over the car’s entire life that results from a fractional 

increase δ in fuel efficiency: 

5 The underlying hypothesis here is that it is new vehicle owners whose travel changes, and this calculation tracks 
how it changes over that and subsequent years. Since the model itself does not distinguish new vehicle owners, the 
change in fuel efficiency they experience is diluted by the fuel efficiency of existing used vehicles (assumed 
unchanged by the regulations, as discussed earlier). But the resulting change in VMT of new vehicle owners is also 
diluted by VMT of existing vehicle owners, so that the ratio which defines the rebound effect still applies to the 
aggregates. 
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T 01 M − MD τ τbt = ∑ 0 . (9) 
δ τ =0 M τ 

The full calculation is described in somewhat greater detail in Appendix C. 


Thus, for example, suppose a regulation in year 2020 results in a fractional increase δ in fuel efficiency of 
new vehicles purchased that year. Income is rising and fuel price is falling, starting in year 2020 and 
lasting over those vehicles’ lifetimes. (Roughly this is what is projected in the “Low oil price” scenario 
presented later.) Then the “target” response of VMT to a change in fuel efficiency for a new vehicle 
purchased in year 2020 is getting smaller in magnitude as the vehicle ages, due to the effects of 
interacting variables. But at the same time the driver is gradually adjusting to the change that began in 
that year, meaning the response is shifting gradually from the short-run response to the long-run response. 
These two forces work in opposite directions so the net result could be to either raise or lower the rebound 
effect; in practice it usually implies a dynamic rebound effect between the short-run and long-run values. 

In effect, this calculation takes account of both the gradual transition from short run to long run behavior 
over the life of the vehicle, and the changing values of the rebound effects indicating changing 
responsiveness to fuel cost. Iteration of (8) over additional values of τ shows that all the terms in the 
numerator of (9) are proportional to δ, so the value chosen for δ does not affect the result. 

2.  Prior Literature 

The first part of this section of the report is adapted from the review by Hymel, Small, and Van Dender 
(2010), covering literature mostly before 2000—but with the addition of a recent meta-analysis covering 
that same literature. The second part updates the review with a discussion of more recent studies. 

2.1  Earlier Literature 

Prior research has measured the rebound effect for passenger transport using a variety of data sources and 
statistical techniques. Most but not all estimates lie within a range of 10 to 30 percent (expressing the 
elasticity as an absolute value and as a percentage instead of a fraction). Greening, Greene, and Difiglio 
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(2000) and Small and Van Dender (2007a) contain more complete reviews of the earlier literature. A few 
key contributions are highlighted here. 

The great majority of estimates are based on one of three types of data. The first and probably least 
satisfactory is a single time series, either of an entire nation or of a single state within the U.S. Examples 
are Greene (1992) and Jones (1993). These studies have difficulty distinguishing between autocorrelation 
and lagged effects, and of course suffer from a small number of data points. 

Second, some studies have instead used state-level panel data, most often from the US Federal Highway 
Administration (FHWA). Haughton and Sarkar (1996), using such data from 1970-1991, estimate the 
rebound effect to be 16% in the short run and 22% in the long run. They account for endogenous 
regressors, autocorrelation, and lagged effects. Their study is comparable in many ways to that of Small 
and Van Dender (2007), although the latter uses a longer time period, 1966-2001, and estimates three 
equations simultaneously explaining VMT, vehicle stock, and fuel efficiency. Small and Van Dender 
estimate the rebound effect to be 4.5% in the short run and 22.2% in the long-run on average, and also 
find evidence that it has declined substantially over time due mainly to rising per-capita incomes. Barla et 
al. (2009), applying the Small and Van Dender methodology to Canadian data, obtain short- and long-run 
rebound effects of around 8% and 20%, respectively. Due to their shorter time series (1990 to 2004) and 
more limited cross section (15 provinces), they are not able to investigate changes in these elasticities 
over time. 

A third type of data is from individual households. Mannering (1986), using a US household survey, finds 
that how one controls for endogenous variables in a vehicle utilization equation strongly influences the 
estimated rebound effect. He estimates the short- and long-run rebound effects (constrained to be 
identical) to be 13-26%. Goldberg (1998) estimates a system of equations using data from the Consumer 
Expenditure Survey for years 1984-1990. In a specification accounting for the simultaneity of the two 
equations, she cannot reject the hypothesis of a rebound effect of zero. Greene, Kahn and Gibson (1999) 
estimate the rebound effect to be 23% on average using a simultaneous-equation model of individual 
household decisions. West (2004), using the Consumer Expenditure Survey for 1997, obtains a somewhat 
larger VMT elasticity higher than these other studies, although her focus is mainly on how behavior 
differs across income deciles.6 

6 West reports an elasticity of VMT with respect to total operating cost (not just fuel cost) of -0.87 in the most fully 
controlled specification. Presumably this is a long-run elasticity. If fuel accounted for 50 percent of operating cost, 
roughly consistent with Small and Verhoef (2007, p. 97), this would imply an elasticity with respect to fuel cost per 
mile of -0.435. As West notes, there are other reasons why this elasticity is not strictly comparable to others in the 
literature, one being that it represents a behavior for the entire household with fuel efficiencies (hence fuel cost per 
mile) averaged across its vehicle holdings. 
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The studies based on individual households in a single cross-section suffer from a limited range for fuel 
prices, a key variable for understanding the rebound effect. This disadvantage is partly overcome by 
Dargay (2007), who observes repeated cross sections of different individuals in the UK. She estimates 
short- and long-run rebound effects of 10% and 14%, respectively, but suggests that this long-run value 
may be an underestimate. 

Three reviews—Goodwin et al. (2004), Graham and Glaister (2004), and Brons et al. (2008)—provide 
systematic statistical analyses of various studies. In the first two, estimated short- and long-run rebound 
effects (based on fuel-price elasticities) average about 12 percent and 30 percent, respectively. In the 
third, which is a meta-analysis of 43 studies containing 176 distinct elasticity estimates, the implied 
rebound effects are larger: 17 percent short run and 42 percent long run for the United States, Canada, and 
Australia.7 Brons et al. also find that studies using lagged values have a slightly smaller rebound effect 
(by about 3 percentage points) than these values.8 Although the study by Brons et al. separately identifies 
elasticities of driving per car and of car ownership, just as we do, they have only three observations of the 
former and fifteen of the latter; so in fact their coefficients are mostly identified by variations among 
studies of total price elasticity of gasoline consumption, and thus are only an indirect measure of the 
responsiveness of driving. 

Most of the studies just reviewed agree on long-run elasticities between -0.15 and -0.30 during the time 
period of roughly the last third of the twentieth century. In addition, the differences among the studies 
point out the importance of model specification. How one deals with dynamics — by including lagged 
effects, autoregressive errors, both, or neither — can have a major impact on results. In particular, 
omitting such dynamic effects appears to result in over-estimates of the magnitude of the elasticities in 
question. In addition, results of US studies are sensitive to how they account for the influence of the US 
Corporate Average Fuel Efficiency (CAFE) standards, which went into effect in 1978. 

7 To calculate these numbers we begin with the sums of estimated “baseline” elasticities for kilometers per car and 
for car ownership, i.e. columns (3) and (4), as shown in the last two rows of their Table 6, p. 2117. These baseline 
estimates are defined as the values predicted by their meta-analysis model with all dummy variables taking their 
most common value. This results in is short- and long-run driving elasticities of -0.331 and -0.581 percent, 
respectively. The model includes a dummy variable “UCA” for studies in the US, Canada, or Australia, whose most 
common value is zero; so we add the sum of columns (3) and (4) for the coefficient of UCA, which is +0.165, 
resulting in elasticities of -0.166 and -0.416, respectively. There is considerable uncertainty around these values, as 
the standard error of the coefficient of UCA in the equation predicting kilometers per car is very large (0.480). 

8 This statement is based on the sum of coefficients of the dummy variable “Dynamic” in columns (3) and (4) of 
their Table 6; that sum is 0.027. 
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2.2 Recent Literature 

More recent literature has extended this work in several directions, especially paying close attention to the 
means of identification and controls for bias due to omitted variables. Particularly relevant to this report 
are studies seeking to determine whether the determinants of the rebound effect or of the price-elasticity 
of gasoline have changed in the decade starting in 2000. (We refer to such changes as structural change, 
meaning changes in the manner in which underlying factors influence the elasticities, as opposed to 
simply changes in those factors themselves.) Because that decade is characterized by more closely spaced 
price fluctuations than has been typical, observers have sometimes noted substantial changes in behavior. 

Brand (2009) summarizes some simple calculations of the VMT- and price-elasticities with respect to fuel 
price, based on observations before and after a sharp increase in fuel prices: specifically, by comparing 
the first ten months of 2007 and the first ten months of 2008. A calculation based on U.S. national 
statistics yields a short-run VMT-elasticity of -0.12. This involves no controls, and Brand points out that 
VMT was trending upward at 2.9% per year over a prior 21-year period of relatively stable prices, which 
to us suggests a correction to this elasticity of -0.029, bring it to approximately -0.15.9 

Hughes et al. (2008) undertake a more detailed analysis, using models with some control variables, to 
compare the price-elasticity of gasoline in the years 1975-80 with that in the years 2001-06. They find a 
large decline in magnitude, from -0.21 to -0.08 in what appear to be their favored specification. In the 
case of the later period, that specification treats fuel price as endogenous, estimating it with instrumental 
variables in a standard manner that accounts for price being determined simultaneously by demand and 
supply relationships. This finding suggests that the VMT elasticity declined by a similar amount, since it 
is a component of the fuel-price elasticity and no one has suggested that the other main component (the 
elasticity of fuel efficiency) has been demonstrated to change significantly. 

Hughes et al. also test whether the price-elasticity declines in magnitude with income, as found by Small 
and Van Dender (2007) and Hymel et al. (2010). They find instead an effect in the opposite direction. 
Thus, they explain the decline in price elasticity as likely due to factors other than those we suggest here. 
Specifically, they cite suburbanization and declining public transit service, both of which lock travelers 
more firmly into automobile use, and increased fuel efficiency, which is also consistent with one of the 
findings of Small and Van Dender (2007) and Hymel et al. (2010). Interestingly, Litman (2010) cites 
these same factors in a heuristic argument for an opposite argument: Litman suggests these factors were 

9 Brand asserts without explanation a different number, -0.21, for the VMT elasticity accounting for the trend. 
Litman (2010, abstract) cites Brand and an unpublished study by Charles Komanoff as supporting an elasticity of 
-0.15. 
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strong during the 1970-2000 period but likely less important during the 2000’s. We have not seen any 
formal argument, either theoretical or empirical, for why these factors should have a major effect in either 
direction. 

There are some limitations to the Hughes et al. results which make them less than decisive. The limitation 
to a single five-year period for each estimation reduces the precision of their estimates compared to ones 
that use longer time series. Also, they do not account for a full range of dynamic effects, as we think is 
especially necessary to fully capture behavior in the rapidly changing 2000-2006 period.10 

Greene (2012) carries out a number of analyses similar to those of Small and Van Dender (2007), using 
national rather than state data but extending the sample to year 2007. Greene confirms several results of 
Small and Van Dender: in particular, he finds a similar value for the price-elasticity of VMT, finds that it 
has declined over time, and finds that it declines with income. 

Two recent studies make use of odometer readings from California’s smog test—arguably the most 
accurate available measure of VMT—to provide estimates of the elasticity of VMT with respect to either 
fuel price or fuel cost per mile, both using very large samples of individual vehicles. The first, by Knittel 
and Sandler (2012), takes advantage of the existence of regions in which older vehicles must take a smog 
test every two years. They use test data from 1998 through 2010 and a simple log-log specification, with 
control variables for demographics and whether the vehicle is a light truck, and with fixed effects 
representing year, vintage, and make. Knittel and Sandler interpret the resulting elasticities as covering a 
time period of two years, since that is the time interval over which VMT is measured. The estimates of 
VMT elasticity with respect to fuel cost per mile vary between -0.14 and -0.26, depending on whether or 
not the make is subdivided further in defining fixed effects.11 

The second study using California smog test data is by Gillingham (2013). Gillingham combines the test 
data for years 2005-2009 with micro observations of new-vehicle registrations in 2001-2003, in order to 
observe VMT over a several-year period, typically six or seven years due to the requirement that vehicles 
are tested at those ages. (There are also some observations over four to six years for vehicles that are sold 

10 To be more precise, they do not include lagged endogenous variables or autocorrelation in any of what we would 
consider their preferred model results, namely those using instrumental variables to control for simultaneity between 
supply and demand factors. 

11 These numbers are the range of coefficients of log (dollars per mile) in Table 18.3 for Models 2, 4, and 5. In other 
models, the authors find heterogeneity with respect to the size of the dollars per mile variable. They explore 
heterogeneity further in a more recent working paper, in which they find the VMT elasticity to vary between -0.11 
and -0.18 across quartiles of fuel efficiency (Knittel and Sandler 2013, Table A.2, next to last column). 
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before six years have passed.) He finds an elasticity of VMT with respect to gasoline price of -0.25, a 
finding quite robust to various specification checks. Gillingham interprets this as roughly a two-year 
elasticity, because it is identified mainly by a price spike between 2007 and 2009. This means of 
identification is also a weakness of the study: during this same time interval the economy entered the 
most significant recession since the 1930s, accompanied by drastic turmoil in housing markets including 
foreclosures requiring many people to move. Despite controlling for macroeconomic conditions through a 
measure of unemployment and a consumer confidence index, one must worry that gasoline prices are 
correlated with unobserved factors related to tumultuous economic conditions that also influence the 
amount of driving. 

The two studies just described have the advantage of very large samples of individuals, permitting greater 
precision in estimation as well as accounting for heterogeneity across individuals. Both studies also 
assume that VMT responds to contemporaneous gasoline prices, without explicit lags. Yet the suggestive 
evidence shown by Knittel and Sandler, comparing graphs of gasoline prices and VMT over time, appears 
to show a one to two year lag. As already noted, our analysis of earlier studies suggests that omitting such 
dynamic effects may cause the estimated elasticities to be somewhat larger in magnitude than the true 
short-run (or even two-year) elasticities, especially when the observations are averaged over periods of 
more than a year as is the case in both of these studies. 

Molloy and Shan (2010) provide an intriguing look at one possible source of VMT response to fuel price: 
changes in household location. They analyze how housing construction within small areas responded to 
fuel prices over the period 1981 to 2008.12 Their model includes lags up to four years, which they found 
sufficient to account for virtually all the observed responses. Their results imply that a one percent 
increase in gasoline price reduces construction over the next four years by one percent, which is 0.03 
percent of the total housing stock (Table 2). This result suggests one possible explanation for why Small 
and Van Dender (2007) and Hymel et al. (2010) find substantial lags in the response of VMT to changes 
in fuel cost. 

Our conclusion from the more recent literature is that it raises the strong possibility that the rebound 
effect has become larger during the 2000s. But not enough time has passed to allow definitive tests, 
especially because other factors were changing so drastically during that same time period. Our response 
to this situation in our own study is twofold. First, we investigate explicitly whether there is a structural 
break in the determinants of VMT during the decade 2000-2009. Second, we consider some other 
explanations for changes in behavior over this time: specifically, asymmetries between response to rising 
and falling gasoline prices, and possible behavioral responses to intense media attention to fuel prices. 

12 The areas are “permit-issuing places, which are usually small municipalities” (Molloy and Shan 2010, p. 5). 
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2.3  Is the rebound effect the same as the responsiveness to price of fuel? 

As noted in Section 1.2, one can challenge the assumption that people respond with the same elasticity to 
fuel price and to the inverse of fuel efficiency. This assumption is prevalent both because it is 
theoretically attractive, based on full consumer rationality, and because it is difficult to separate the two 
effects empirically. Nevertheless, only a few studies have tested the assumption and the evidence for it is 
not very solid. 

Small and Van Dender (2007) and Hymel et al. (2010) both report attempts to estimate models where fuel 
price pF and efficiency E are entered as separate variables. They find that the measurement of a separate 
coefficient for E is very small but too imprecise to use with confidence for policy analysis. They interpret 
their findings as ambiguous, but acknowledge that they are unable to prove that the rebound effect, 
defined as the elasticity with respect to E, is not zero. 

Greene (2012, Tables 4-5), using a long time series (1967-2007) of aggregate US data, is similarly unable 
to estimate the two elasticities separately with much precision, obtaining a small, statistically 
insignificant, and wrong-signed coefficient for fuel consumption per mile (the inverse of fuel efficiency). 
Nevertheless, in contrast to the two papers just described, he is able to statistically reject the hypothesis 
that the coefficients are equal. 

Gillingham (2011, table 3.1) similarly tests whether the two coefficients can be separately estimated, 
using his very large disaggregate data set. When model-specific fixed effects are not included, he is able 
to separately measure the two elasticities, finding them equal to -0.19 for fuel price and -0.05 for the 
inverse of fuel efficiency, both statistically significant. This again suggests they are not equal, and that the 
elasticity with respect to inverse fuel efficiency may actually be considerably smaller in magnitude than 
the that with respect to fuel price. In some other specifications, the elasticity with respect to fuel 
efficiency is small and statistically insignificant, as in the studies just discussed.13 

13 In other work, Gillingham also measures a rebound effect using a much more elaborate model which includes 
both vehicle purchase and utilization. He obtains a very small value, equal to 0.06 (i.e. 6 percent) multiplied by the 
fraction of people who choose a different vehicle when faced with a hypothetical new set of vehicles offered 
following a feebate policy (Gillingham 2011, Section 4.4.3). 
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While these studies are too few and statistically imprecise to resolve the question definitively, together 
they strongly suggest that the effect of fuel efficiency is smaller than that of fuel price, and possibly very 
small indeed. Therefore, by adopting the conventional assumption that their effects are equal and 
opposite, this study reports rebound effects that may well be larger in magnitude than those that actually 
occur when policies are implemented. 

3. Data and specification for this report 

The data set used here is a cross-sectional time series, with each variable measured for 50 US states, plus 
District of Columbia, annually for years 1966-2009. Variables are constructed from public sources, 
mainly the US Federal Highway Administration, US Census Bureau, and US Energy Information 
Administration. Data sources and a fuller description, including some weaknesses of the data, are given in 
Small and Van Dender (2007a,b) and Hymel, Small, and Van Dender (2010).14 In addition, we have 
collected variables on media attention to gasoline prices and on volatility of gasoline prices, as described 
in Section 3.4. 

In the following we list the primary variables used in the statistical estimation. All the dependent 
variables, and many others as well, are measured as natural logarithms. Variables starting with lower case 
letters are logarithms of the variable described. All monetary variables are real (i.e. inflation-adjusted). 

Dependent Variables 

M: Vehicle miles traveled (VMT) divided by adult population, by state and year (logarithm: vma, for 
“vehicle-miles per adult”). 

V: Vehicle stock divided by adult population (logarithm: vehstock). 

1/E: Fuel intensity, F/M, where F is highway use of gasoline15 (logarithm: fint). 

C:		 Total hours of congestion delay in the state divided by adult population (logarithm: cong). See 
Section 3.1 for further details 

14 Greene (2012, p. 18) provides an excellent discussion of the VMT data and their weaknesses. He concludes that 
the errors that may occur in the FHWA data on VMT and fuel efficiency are unlikely to cause large errors in year-
to-year changes, which are what are used in both this and Greene’s study. 

15 This term is used by FHWA to mean use by vehicles traveling on public roadways of all types. It excludes use by 
not licensed for roadways, such as construction equipment and farm vehicles. 
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Independent Variables other than CAFE 

PM:		 Fuel cost per mile, PF/E. Its logarithm is denoted pm ≡ ln(PF)–ln(E) ≡ pf+fint. For convenience in 
interpreting interaction variables based on pm, we have normalized it by subtracting its mean over 
the sample. 

PV:		 Index of real new vehicle prices (1987=100) (logarithm: pv). 16 

PF: Price of gasoline, deflated by consumer price index (1987=1.00) (cents per gallon). Variable pf is 
its logarithm normalized by subtracting the sample mean. 

Other:  See Small and Van Dender (2007b), Appendix A; and Small, Hymel, and Van Dender (2010), 
Appendices A and B. The first three equations include time trends to proxy for unmeasured trends 
such as residential dispersion, other driving costs, lifestyle changes, and technology. As described 
below, in equation (8), the set of variables denoted XM includes the variable (pm)2 and interactions 
between normalized pm and other normalized variables: log real per capita income (inc), and 
fraction urbanized (Urban – used only in the three-equation model) and normalized cong (used only 
in the four-equation model). 

Each of these variables is updated to 2009 using the same or similar source as before. However, in several 
cases, the responsible agency has revised the numbers for earlier years. We have taken advantage of these 
revisions in the updated data series. In order to facilitate comparisons with earlier years, we also use two 
other data series in this report, making three in all: 

• “Original” data: those used for the earlier published reports, along with 2005-2009 values that 
employ as closely as possible to the same methodology as used earlier. (Only values through 
2001 or 2004 are used for estimation; the purpose of the 2005-2009 values in this data series is 
only for projection.) 

• “Revised” data: those incorporating the data revisions just mentioned, including two described in 
Sections 3.1 and 3.2 below, viz.: (a) smoothing of 2000-2010 population, and (b) substitution of 
improved congestion data. The term “revised” implies that only values through 2001 or 2004 are 
used for estimation. 

• “Updated” data: like “Revised,” but including data through 2009. 

16 We include new-car prices in the second equation as indicators of the capital cost of owning a car. We exclude 
used-car prices because they are likely to be endogenous; also reliable data by state are unavailable. 
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Appendix A shows summary statistics for the data used in our main specification. The next three sections 
explain special features of certain important variables. 

3.1 Congestion variables (four-equation model) 

This description is adapted from Hymel, Small, and Van Dender (2010). The measure of travel delay uses 
data from the annual report on traffic congestion constructed by the Texas Transportation Institute (TTI) 
— see e.g. Schrank, Lomax, and Turner (2010). TTI has estimated congestion annually for 85 large 
urbanized areas, starting in 1982, using data from the Highway Performance Monitoring System database 
of the US Federal Highway Administration. 

The TTI measure of congestion used here is annual travel delay, which is simply the aggregate amount of 
time lost due to congested driving conditions. TTI has sometimes been criticized for using this measure as 
an index of the nation’s congestion problem because it includes congestion that would remain in an 
optimized system. Irrespective of the validity of this criticism, for our purposes the TTI measure is 
appropriate because it describes the experience of the typical driver. The measure is constructed largely 
from assumed speed-flow relationships, but supplemented with speed observations on specific roads. As 
with other data in this study, it is probably more reliable in the more recent years. 

One criticism of the TTI measures, however, has been addressed in TTI’s 2010 edition of its report. The 
earlier measure, used in the cited papers by Small and Van Dender and by Hymel, Small, and Van 
Dender, estimated speed from observed traffic volumes using volume-delay relationships. This inevitably 
introduced some error into the speeds, hence into the estimated total hours of delay. Recently, however, 
TTI has collaborated with Inrix®, Inc., to make use of speed data collected via a nationwide network of 
mobile devices in vehicles. These measures are available for a few most recent years, but TTI has back-
casted them to 1982 in order to permit comparisons with its earlier measure. They are also available for 
an additional 26 urban areas. All these changes increase the accuracy of the data on congestion, and so are 
adopted here except in the “original” data series. 

For the collaborative work described earlier and for this report, congestion delays in all covered urbanized 
areas are aggregated to the level of a state, then divided by the state's adult population to create a per-
adult delay measure. This procedure implicitly assumes that congestion outside these 85 urban areas is 
negligible, a reasonable assumption because congestion in the US is far more costly to drivers in large 
than in small urban areas. Furthermore, since data are measured at the state level, it is appropriate that the 
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Several variables specification, including all but one of the endogenous variables, make use of data on 
adult or total state population as a divisor. Such data are published by the U.S. Census Bureau as midyear 
population estimates; they use demographic information at the state level to update the most recent census 
count, taken in years ending with zero. However, these estimates do not always match the subsequent 
census count, and the Census Bureau does not update them to create a consistent series. As a result, the 
published series contains many instances of implausible jumps in the years of the census count. In both of 
the published papers discussed above, we applied a correction assuming that the actual census counts 
taken every ten years are accurate, and that the error in estimating population between them grows 
linearly over that ten-year time interval. This approach is better than using the published estimates 
because it makes use of Census year data that were not available at the time the published estimates were 
constructed (namely, data from the subsequent census count).  See Small and Van Dender (2007b) for 
details. 

For this report, the same procedure was applied to the 2000-2009 data because the needed Census counts 
for 2010 were available in time. This adjustment appears in the “revised” and “updated” data series, but 
not in the “original” data series. 

3.3 Variable to measure CAFE regulation (RE) 

As in the earlier collaborative work, we define here a variable measuring the tightness of CAFE 

congestion in the larger urbanized areas is, for most states, diluted by the lack of congestion elsewhere in 
our equations predicting statewide travel response. A further advantages of the use of total delay, rather 
than some measure of average congestion, is that it is relatively unaffected by possible differences in how 
boundaries are drawn for urban areas in different states. 

3.2 State population data 

regulation, starting in 1978, based on the difference between the mandated efficiency of new passenger 
vehicles and the efficiency that would be chosen in the absence of regulation. The variable becomes zero 
when CAFE is not binding or when it is not in effect. In our system, this variable helps explain the 
efficiency of new passenger vehicles, while the lagged dependent variable in the fuel-intensity equation 
captures the inertia due to slow turnover of the vehicle fleet. Because the CAFE standard is a national 
one, this variable does not vary by state. 
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the logarithm of the ratio between the mandated and desired fuel efficiency, with that ratio truncated 
below at one. Thus a value of zero for cafe means the constraint is not binding, since desired fuel 
efficiency is as high as or higher than the mandated level. 

The resulting variable suggests that the CAFE standard was strongly binding for the first decade of the 
CAFE standards; its tightness rose dramatically until 1984 and then gradually diminished until it was 
stopped being binding at all, either in 1995 (according to the 4-equation model) or 2005 (according to the 
3-equation model).18 This pattern is obviously quite different from a trend starting at 1978 and from the 
CAFE standard itself, both of which have been used as a variable in VMT equations by other researchers. 

Implicit in the definition of the regulatory variable is a view of the CAFE regulations as exerting a force 
on every state toward greater fuel efficiency of its fleet, regardless of the desired fuel efficiency in that 
particular state. Our reason for adopting this view is that the CAFE standard applies to the nationwide 
fleet average for each manufacturer; the manufacturer therefore has an incentive to use pricing or other 
means to improve fuel efficiency everywhere, not just where it is low. 

3.4 Variables on media coverage and volatility of gasoline prices 

Variables measuring media coverage of gasoline price changes are based upon gas-price related articles 
appearing in the New York Times newspaper. We queried the Proquest historical database for years 1960 

The calculation proceeds in four steps, described more fully in Small and Van Dender (2007a), Appendix 
B. First, we estimated a reduced-form equation explaining log fuel intensity from 1966-1977, prior to 
CAFE regulations.17 Next, this equation is interpreted as a partial adjustment model, so that the 
coefficient of lagged fuel intensity enables us to form a predicted desired fuel intensity for each state in 
each year, including years after 1977. Third, for a given year, we averaged desired fuel intensity (in 
levels, weighted by vehicle-miles traveled) across states to get a national desired average fuel intensity. 
Finally, we compared the reciprocal of this desired nationwide fuel intensity to the minimum efficiency 
mandated under CAFE in a given year (averaged between cars and light trucks using VMT weights, and 
corrected for the difference between factory tests and real-world driving). The variable cafe is defined as 

to 2009, and tallied the annual number of article titles containing the words gasoline (or gas) and price (or 
cost). This count was the basis for the variable used in the econometric analysis: it is formed from the 
annual number of gas-price-related articles divided by the annual total number of articles, both in the New 
York Times. This ratio ranged from roughly 1 in 4000 during the 1960s to a high of 1 in 500 in 1974. An 

17 This step differs slightly between the three- and four-equation models because they contain slightly different sets 
of exogenous variables. Thus, the actual values of the variable cafe differ slightly between the two models. 

18 See Small and Van Dender (2007a), Fig. 1, for a graphical depiction. 
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analogous count of front-page articles yielded a similar pattern of coverage. Its logarithm, after 
normalization by subtracting its mean, is shown in 3.1. In our specifications, we use either the logarithm 
of the ratio just defined (called Media in the statistical models) or a dummy variable (called 
Media_dummy) defined as one in years where the ratio was greater than the 1996-2009 median value and 
zero otherwise.19 

Figure 3.1. Media coverage of gas prices 

A superior measure of media coverage would include broadcast news, other newspapers, radio, and the 
Internet. But such measures are not readily available for the entire the time series from 1960-2009. So the 
validity of the two variables as a measure of overall coverage of gasoline prices relies in part on the New 
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York Times’ influence on other media outlets. Evidence of so-called “inter-media agenda setting” suggests 
that other media outlets follow the New York Times when choosing their news topics. One study by Golon 
(2006) found that the topics covered by the New York Times in the morning were correlated with evening 
broadcast news coverage topics, with correlation coefficients between 0.14 and 0.26. In addition, it is 
reasonable to assume that national topics such gas-price changes would be similar across news outlets 

19This dummy variable was equal to one in years 1973-1981, 1983, 1990-1992, 1994-1997, 2000, 2004-2006, and 
2008. 
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even in the absence of direct influence of the New York Times. 


To measure uncertainty in fuel prices, we constructed a variable whose value in year t is the logarithm of 

the variance of fuel prices over the years t-4 through t. (We chose this five-year interval as the most likely 

time over which new vehicle purchasers would be aware of volatility.) This measure varies across States. 


For both the media and uncertainty variables, we interact the variable in question with either the fuel price 
or the per-mile cost of driving. 

4.  Results of the Empirical Analysis 

A major limitation of the previous literature is its inability to determine whether or not the rebound effect 
has changed over time. Theoretical arguments, especially by Greene (1992), suggest that it should. 
Basically, the argument is that the responsiveness to the fuel cost of driving will be larger if that fuel cost 
is a larger proportion of the total cost of driving. If initial fuel cost is high, that increases the proportion; 
but if the perceived value of time spent in the vehicle is high, either because of congestion (closely related 
to urbanization) or because of a high value of time (closely related to income), that decreases the 
proportion. Thus we expect the rebound effect to increase with increasing initial fuel cost, and decrease 
with increasing income and urbanization. On the few occasions when such factors are even discussed, 
most analysts have presumed that income is the dominant one and therefore have hypothesized a decline 
in the rebound effect over time, due to rising real incomes. Previously used data sets, however, have 
covered too short a time span to test any of these arguments satisfactorily.20 

With the longer time span of the data sets compiled for the earlier collaborative papers, and the even 
longer data set used here (44 years), there is a much better opportunity to see such changes. We explore 
them in three distinct ways. First (Section 4.1), we see whether the basic model, estimated over different 
time periods but each with a constant rebound effect, yields different results. We find a substantial 

20 A recent exception is two studies by Wadud, Graham and Noland (2007a, 2007b) using time-series cross sections 
of individual households from the US Consumer Expenditure Survey. Cross-sectionally, they find a U-shaped 
pattern of the absolute value of the price elasticity of fuel consumption, taking values of 0.35 for the lowest income 
quintile, falling to 0.20 for the middle, and rising again to 0.29 for the highest (2007b, Table 2). But when they hold 
other variables constant while allowing income to vary both cross-sectionally and over time (1997-2002), they 
obtain a nearly steady, though small, decline of the absolute value of elasticity with income, from 0.51 in the lowest 
two income quintiles to 0.40 in the highest. 
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diminution in the rebound effect in the period since 1995; it’s harder to say whether it has risen again 
since 2000. 

Second (Section 4.2), we explore income, fuel costs, urbanization, and congestion as the causes of these 
changes. Each of these factors is entered in the model in such a way that the rebound effect can vary with 
it rather than varying over time in an unexplained manner, and we do indeed find substantial variation in 
exactly the manner predicted by theory: the rebound effect (measured as a positive number) declines with 
increasing income (as well as with either urbanization or congestion), and it increases with increasing fuel 
cost. By far the most important of these sources of variation is income, which has a profound effect on 
projections for the rebound effect in future years. In Section 4.3, we consider explicitly how the newer 
data now available (2002-2009) affect the results from the earlier published studies. 

Third (Section 4.4), we consider asymmetry in the response to increases and decreases in fuel prices, 
finding a much larger response to increases. We also consider the possible role of media coverage and 
price volatility in explaining this asymmetry. 

4.1. Variation by Time Period 

This section presents the results of estimating a relatively simple version of the three-equation system 
described earlier. In this version, the variable pm (the logarithm of fuel cost per mile) is simply included 
in the equation explaining vma (the logarithm of vehicle-miles traveled per adult). Its coefficient, the 
“structural elasticity,” is the elasticity of VMT with respect to fuel cost per mile, holding vehicle fleet 
constant. Accounting for how the vehicle fleet also varies with fuel cost, and how lagged adjustment 
creates differences between short-run and long-run responses, we get the short- and long-run rebound 
effects from equations (4), (5), and (7). 

In order to see whether the rebound effect changes over time, we carry out this estimation on two 

subsamples: 1966-1995 and 1996-2009. Table 4.1 shows the estimated structural elasticity ε M ,PM . As 

described earlier, these are nearly identical (except for the minus sign) to the short-run rebound effects, 
and their values come immediately from the estimated results. The table shows that the short-run rebound 
effect falls by 46 percent and 72 percent, without and with consideration of congestion respectively, 
between these two time periods. 
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Table 4.1. Short-run structural elasticity of VMT with respect 

to fuel cost per mile, estimated on subsamples 

Coefficient of pm 
(standard error in 
parentheses) 1966-1995 1996-2009 
Three-equation model -0.0458 -0.0246 

(0.0037) -0.0071 

This result of a falling rebound effect is consistent with results noted earlier by Hughes et al. (2008) and 
Greene (2012). 

4.2. Variation of rebound effect with income, fuel cost, and other variables 

4.2.1 Motivation 

Before proceeding with the formal estimation, we motivate the approach taken here by considering what 
goes into the costs of automobile travel from the traveler’s point of view. Figure 1 shows three categories 
of the short-run costs of driving and how they are likely to progress over coming decades, based on 
compilations of Small and Verhoef (2007) for an urban commuting trip by automobile.21 The values 
placed by travelers on travel time and unreliability 22are taken from statistical literature examining how 
people are willing to trade off those factors against money. We have then projected fuel costs per mile 
into the future, using the Energy Information Administration’s projections for fuel prices and fuel 
efficiency in their 2011 reference scenario (US EIA 2011). We have projected the values of travel time 
and unreliability into the future by assuming that the amounts of time and unreliability are unchanged (a 

Four-equation model -0.0469 -0.0131 
(0.0058) (0.0075) 

conservative assumption given trends toward increased congestion) while the values of time and 

21 The initial values are for 2005, taken from Small and Verhoef (2007, Table 3.3) and restated at 2007 prices. 

22 In this context, unreliability refers to day-to-day variability in the travel time faced for a given type of trip. It is 
typically measured by the standard deviation of travel time across days, although sometimes other measures of 
dispersion (such as the difference between the 80th and 50th percentiles) are used instead. Its presence means that 
people cannot accurately predict when they will arrive at their destination. There is a substantial literature, reviewed 
by Small and Verhoef (2007), showing that travelers are averse to unreliability independently of their aversion to 
travel time. 
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unreliability increase with rising per capita real income according to an elasticity of 0.8, a 
recommendation of Mackie et al. (2003) based on many studies of how value of time depends on income 
(Small and Verhoef 2007, Section 2.6.5). 

Figure 4.1. 

Thus, it appears that despite the general prognosis for rising fuel prices, the actual fuel costs are likely to 
decline, due mainly to increases in fuel efficiency of automobiles; and the prominence of fuel costs in 
drivers’ decisions is likely to decline even more, due to increases in the value of time (and, to a lesser 
extent, to amount of time spent in heavy congestion). Our econometric model can capture these 
possibilities by simply specifying it in a way that allows the rebound effect to vary with income, fuel cost 
per mile, and other variables that may impinge on travel time: namely, urbanization and congestion. 
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4.2.2 Implementation 

To see how this can be done, recall from Section 1.1 that the rebound effect is a combination of 
elasticities of either three or four distinct equations (known as “structural equations”). Because of the 
relative sizes of these elasticities, the rebound effect is approximated by just one of them: namely εM,PM, 
giving the effect of fuel cost per mile in the structural equation for vehicle-miles traveled per adult. In the 
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notation used here, which uses lower-case names for variables that are expressed in natural logarithms, 
that elasticity is given by equation (3), i.e. εM,PM = ∂(vma)/∂(pm). 

In the previous subsection, fuel cost per mile was described as a single variable (pm in logarithmic terms) 
included in the equation for vehicle-miles traveled per adult (vma in logarithmic terms). The elasticity 
was just its coefficient, which we may call βpm for convenience.23 But it is easy to specify the equation for 
vma so that pm appears not only as a single variable, but also interacted with other variables including 
itself. We define four such variables: pm⋅inc, pm⋅pm≡pm2 , pm⋅Urban, and pm⋅cong, where inc is the 
logarithm of per capita real income, Urban is the fraction of state population that is urbanized, and cong is 
congestion as measured by the logarithm of total congestion delay per adult. We denote the coefficients of 
these four “interacted variables” by β1, β2, β3, and β4. In practice, β4 is set to zero in the three-equation 
system (since cong is not measured there), and β3 is set to zero in the four-equation system (since its 
estimates were small and statistically insignificant). 

Then the derivative in (3) consists of four terms: 

cong Urban pminc 
pm 
vma 

pmPMM ⋅+⋅+⋅+⋅+= 
∂ 

∂ 
= 4321, 2 

)( 
)( βββββε . (8) 

The factor 2 in this equation is a consequence of properties of the derivative of the quadratic function 
(pm)2. Inserting (8) into equations (4) and (7) for the short- and long-run rebound effects, we see that that 
those rebound effects also depend on inc, pm, Urban, and cong. 

In order to facilitate interpretation of coefficients, we “normalize” the values of inc, pm, Urban, and cong 
by subtracting from each variable its mean value over our entire data set. This has no effect on the 
coefficients except to change the constant terms in the equations; but it means that the coefficient βpm of 
the variable pm still gives the estimated elasticity εM,PM at the point where each of the interacting variables 
is equal to its mean value in our data set – as can be seen by setting the three normalized variables in (8) 
to zero. This is especially convenient because the short-run and long-run rebound effects are 
approximately -εM,PM and -εM,PM /(1-αm), respectively, where αm is coefficient of lagged vma in the vma 
equation. Thus, one can see the approximate value of the estimated short- and long-run rebound effects, 
under average conditions over the sample period, just by looking at -βpm and αm . 

m23 This coefficient is named β1 in Small and Van Dender (2007), eqn. (4) and Hymel et al. (2010), eqn. (9a). 
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4.2.3 Estimation results: interaction variables 

The models are estimated using the maximum-likelihood simultaneous-equations estimator in Eviews 5 
(Quantitative Micro Software 2004). Technical details are provided in Small and Van Dender (2007a) and 
Hymel, Small, and Van Dender (2010).24 The full results of estimating the three- and four-equation 
models on updated data from 1966 through 2009 are presented in Appendix A; some of the most 
important coefficients are summarized here in Table 4.2.25 

24 For this report, however, we have replaced the multiple imputations for the missing data by a single imputation; 
that is, we predict the values of the missing data only once, rather than multiple times using random draws from the 
equation estimating them. For this reason, our estimates of standard errors probably understate the true standard 
errors. 

25 For reasons that will be explained in the next section, these models are named “Model 3.3” and “Model 4.3” 
respectively. For simplicity, coefficient estimates and standard errors are shown to three decimal places in these 
tables. In some later tables, they are shown to four decimal places. 
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Table 4.2. Selected results of main model with updated data, 1966-2009 
Three-equation model Four-equation model 

(Model 3 3) (Model 4 3) 
Equation and Coefficient Coefficient Standard Coefficient Standard 

Symbol Estimate Error Estimate Error 
Variable 

Equation for 
vma: 

pm βpm -0.047 0.003 -0.046 0.003 

pm*inc β1 0.053 0.011 0.056 0.011 

pm2 β2 -0.012 0.006 -0.022 0.006 

pm*Urban β3 0.012 0.009 

pm*cong β4 -0.003 0.002 

inc 0.078 0.012 0.083 0.012 

lagged vma αm 0.835 0.010 0.825 0.010 

Equation for 
fint: 

pf+vma -0.005 0.004 -0.007 0.004 

cafe -0.035 0.011 -0.061 0.010 

lagged fint αf 0.904 0.010 0.889 0.010 

Notes to Table 4.2: 

vma = logarithm of vehicle-miles traveled per adult 

pm = logarithm of fuel cost per mile (normalized) 

inc = logarithm of income per capita 

Urban = fraction of population living in urban areas 

cong = logarithm of annual total congestion delay per adult 

fint = logarithm of fuel intensity, i.e. log (1/E) where E = fuel efficiency 
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pf = logarithm of fuel price 

cafe = variable reflecting how far the CAFE standard is above the desired fuel 
efficiency based on other variables (Small and Van Dender 2007a, 
Section 3.3.3) 

pf+vma is log (price of fuel * vehicle-miles traveled), representing the natural 
logarithm of the incremental annual fuel cost of a unit change in fuel 
intensity; thus it may be interpreted as the logarithm of the “price” the 
user must pay in annual operating costs, per unit of fuel intensity, for 
choosing a vehicle with higher fuel intensity. 
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Most coefficients shown in Table 4.2 easily pass the conventional test of statistical significance, having 
estimates more than twice the standard deviation of those estimates. Exceptions are β4, which indicates 
how the rebound effect varies with congestion, and the coefficient of annual fuel cost (pf+vma in 
logarithms) in the equation explaining fuel efficiency. The coefficients αm of lagged vma show that the 
long-run effect of any variable on VMT is about 1/(1-αm) or roughly six times as large as the 
corresponding short-run effect. Average fleet fuel efficiency responds to changes with an even longer lag, 
causing the long-run effects of these variables to be 1/(1-αf) or roughly 9-10 times as large as the 
corresponding short-run effects. 

The coefficient of inc confirms the conventional expectation that vehicle-miles traveled rises with rising 
income: the income-elasticity is approximately 0.1 in the short run and 0.5 in the long run. CAFE 
standards are shown to be important determinants of average fleet fuel efficiency. Another way to 
interpret this is that each year, fleet turnover and/or changes in driving patterns are able to close (1-αf), or 
around ten percent, of the gap between the fuel intensity desired this year (on the basis of variable in the 
model) and that achieved by the previous year’s fleet. 

Taking the three-equation model (Model 3.3) for illustration, the short-run rebound effect for average 
conditions in this sample (1966-2009) is approximately -βpm=0.047, i.e. 4.7%, while the long-run rebound 
is over six times this value, or about 30%. Furthermore, the coefficients β1–β3 for the three interacted 
variables involving pm show that the magnitude of the rebound effect, given approximately by the 
negative of equation (8), declines with increasing income and urbanization and increases with increasing 
fuel cost of driving. 

To get a better idea of the magnitude of this dependence, we show in Table 4.3 the estimated rebound 
effects, computed more precisely using equations (4), (5), and (7), at two different sets of values for the 
explanatory variables inc, pm, and Urban. One set consists of the average values over the sample and the 
other consists of the average values over the last ten years of the sample. Under average conditions over 
the entire sample period, the measured rebound effect is 4.7% short run and 29.5% long run. However, 
these values are found to fall by nearly half when we consider conditions in 2000-2009: over those years 
the rebound effect on average is just 2.8% short run and 17.8% long run. An examination of the detailed 
components of the calculation (not shown in the table) reveals that it is mainly higher incomes that cause 
the rebound effect to be lower in the most recent decade than in the entire sample period, although the 
lower fuel cost per mile also plays a significant role. 
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Table 4.3. Estimated Rebound Effects: Model 3.3 

Average values (real 2009 $) 1966-2009 2000-2009 

Per capita income ($/year) $28,452 $36,805 

Fuel price ($/gal) 2.06 2.18 

Fuel cost per mile (cents/mi) 11.75 9.77 

Calculated rebound effect: Short run Long run Short run Long run 

Three-equation model (w/ congestion) 4.7% 29.5% 2.8% 17.8% 

Four-equation model (w/o congestion) 4.6% 28.4% 2.5% 15.0% 

The decline in the rebound effect portrayed in Table 4.3 is consistent with the overall findings of Section 
4.1. But now we have an explanation for why the rebound effect is lower today than in the last decades of 
the previous century. Furthermore, the measured dependence on income, fuel cost, and other variables 
permits a calculation of both short-run and long-run rebound effects at any level of those variables. In 
Section 5 we take advantage of this to forecast rebound effects through 2035, based on outside projections 
of the relevant variables, especially incomes and fuel costs. 

To our disappointment, the additional years of data do not change the fact that, as discussed in Small and 
Van Dender (2007), we cannot definitively isolate the separate effect of fuel efficiency from that of fuel 
price. In fact, as described there, when we look at fuel efficiency as a separate variable, it exerts no 
statistically significant influence on VMT. This could be taken as evidence that the rebound effect is in 
fact zero, but we adopt the more conservative approach of taking it to be the VMT elasticity with respect 
to fuel price. This is especially conservative (in the sense of perhaps leading us to overstate the rebound 
effect) in light of Greene’s (2012) finding of similar magnitudes as we find, but in his case confirming 
statistically that the effect of fuel efficiency is in fact smaller than that of fuel price. 

4.2.4 Combined interaction variables and structural breaks 

The fact that the rebound effect varies with income, fuel cost, and other variables explains some of the 
variation in time observed earlier. But does it explain all of it? To find out, we added to Models 3.3 and 
4.3 additional structural breaks at times likely to produce changes in behavior due to other factors. We 
considered breaks starting at years 1982, 1995, 2003, or 2005. 
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Generally, we are unable to find consistent and statistically significant structural breaks at years starting 
in 1982, 1995, or 2005. However, we do find evidence of an increase in the rebound effect, even 
controlling for the effects of interacting variables, starting in 2003. This is seen by simply adding a 
dummy variable for years 2003-2009 to Models 3.3 and 4.3 which is done in the models labeled 3.18 and 
4.13. These estimation results are shown in Table 4.4, along with the calculation of rebound effect for the 
most recent five-year period (2005-2009), which falls entirely within the time after the structural break. 

Table 4.4. Models with interacted coefficients and 

structural break starting in 2003 

Model 3.3 Model 3.18 Model 4.3 Model 4.13 
Coefficients (standard 
errors in parentheses) 

pm -0.0466 -0.0464 -0.0461 -0.0460 
(0.0029) (0.0029) (0.0030) (0.0030) 

pm*Dummy_2003_09 -0.0251 -0.0237 
(0.0076) (0.0071) 

pm*inc 0.0528 0.0699 0.0561 0.0721 
(0.0108) (0.0121) (0.0111) (0.0121) 

pm 2 -0.0124 -0.0113 -0.0224 -0.0186 
(0.0059) (0.0060) (0.0060) (0.0061) 

pm*Urban 0.0119 0.0078 
(0.0094) (0.0096) 

pm*cong -0.0031 -0.0032 
(0.0022) (0.0022) 

vma lagged 0.8346 0.8279 0.8249 0.8189 
(0.0102) (0.0105) (0.0105) (0.0107) 

Calculated rebound 
effects: 
1966-2009 

Short run 4.7% 5.0% 4.6% 5.0% 
Long run 

2005-2009 

29.5% 30.9% 28.4% 29.9% 

Short run 3.1% 5.1% 3.1% 5.0% 
Long run 19.4% 31.1% 18.6% 29.8% 

34
	



 

  

   
 

   
  

     
       

  
    

    
        

     
   

 

 

    
   

 
  

  
    

     
   

    
 

 

                                                           
    

 
    

   

  
    

          
  

   
        

        
      

   
     

         
 

      
          

        
       

  

       
                 

           
            


 

The estimates show that the elasticity increases sharply in magnitude starting in 2003. In the models that 
take this increase into account, the short-run rebound effect computed at average values of variables over 
the entire time period is slightly larger, 5.0% instead of 4.6-4.7%. The long-run effect at this sample 
average also is slightly higher, though not by much because the estimated lag parameter (coefficient of 
vma lagged) is now smaller. Most important, the effect of income (coefficient of pm*inc) is measured to 
be notably larger, and that of fuel cost (coefficient of pm2) becomes slightly smaller in magnitude. These 
latter changes cause the rebound effect to decline more rapidly over time. This essentially cancels the 
effect of the dummy variable in calculating the rebound effect over the last five years of the sample, so 
the rebound effect is virtually the same as in the entire sample. However, , the models containing a break 
at 2003 will still lead to a sharp decline in the projected rebound effect for years well into the future, as 
the effect of income is stronger in these models. This is true even if the conditions causing this structural 
break are assumed to continue to hold; if instead they are reversed, the future rebound effect becomes 
smaller still.26 

Probably the best lesson to take from the measured structural break in 2003 is that the evolution of the 
rebound effect is more irregular than is portrayed in the simpler models such 3.3 and 4.3, but the overall 
magnitudes those models measure are not affected much by this irregularity. One can speculate that the 
irregularity occurs because gasoline price started increasing rather sharply in 2003, and this was 
accompanied by a great deal of publicity. Both events may have caused consumers to become more aware 
of the significance of fuel prices, and perhaps also to revise their expectations about what future fuel costs 
would be. These responses may in turn have caused them to begin to adjust their living patterns in ways 
that involve less driving—a process that can continue gradually as they adapt family structure, household 
car sharing, and residential and workplace locations. We explore these potential explanations in Sections 
4.4 and 4.5. 

26 Projections with Model 4.13, shown in Appendix , show the dynamic rebound effect declining from 
approximately 20% in 2010 to 15% in 2020 and 10% in 2030, mainly due to trends in income, all on the assumption 
that whatever factors caused the upward shift in 2003 remain in place indefinitely. If instead those factors disappear, 
the projected dynamic rebound effect is about 10% in 2010, declining to 5% in 2020 to 1% in 2030. 
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4.3 Effects of newer data 

The results in Section 4.2 portray somewhat larger rebound effects than the studies Small and Van Dender 
(2007) and Hymel, Small, and Van Dender (2010), which used these same two systems of models (the 
three-equation system without congestion, and the four-equation system with congestion). As described at 
the beginning of Section 3, there are two main differences between those studies and the present study: 
the data have now been revised, especially data on congestion, and the data have been extended to 2009. 
This subsection shows that it is mainly the latter change, the extension to 2009, which accounts for the 
differences. 

In Table 4.5, we present the primary coefficients of interest and the implied rebound effects in 2000-2009 
for three closely related estimates, all using the model without congestion. The first (Model 3.1) is the 
original estimate from the published paper, which uses data through 2001. The second (Model 3.2) is the 
identical estimate, using identical years, but with the data revised as described. The third (Model 3.3) is 
the same as the second except now the sample for estimation runs through 2009. 
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Table 4.5. Selected results of model estimated on different versions of data: 

three-equation model 

Original as 
published 

(Model 3.1) 

Estimated with 
revised data 

(Model 3.2) 

Estimated with 
revised & updated 
data (Model 3.3) 

Estimation period 1966-2001 1966-2001 1966-2009 

Model estimates: Coeff. Std. Err. Coeff. Std. Err. Coeff. Std. Err. 

pm 

pm*inc 

pm2 

pm*Urban 

vma lagged 

-0.045 0.005 

0.058 0.014 

-0.010 0.007 

0.026 0.011 

0.791 0.013 

-0.046 0.005 

0.057 0.015 

-0.007 0.007 

0.028 0.011 

0.800 0.013 

-0.047 0.003 

0.053 0.011 

-0.012 0.006 

0.012 0.009 

0.835 0.010 

Calculated rebound effects at 
values for: 

1966-2009: short run 4.2% 4.2% 4.7% 

1969-2009: long run 20.5% 21.5% 29.5% 

2000-2009: short run 2.2% 2.4% 2.8% 

2000-2009: long run 10.7% 12.3% 17.8% 

Although the coefficients of pm look almost identical across the three models, the coefficient in each case 
has the meaning of the (approximate) short-run elasticity at the sample average.27 In the first two models, 
the sample average covers a restricted set of years, so when the rebound effect is calculated for the longer 
period 1969-2009 it is somewhat lower than that coefficient (due mainly to the effect of increasing 
income). Thus, as shown, Model 3.3 produces a higher short-run rebound effect than the other two. The 
difference is even greater for the long-run rebound effect because the estimate of the coefficient for the 
lagged dependent variable (“vma lagged”) is substantially greater; this means the multiplier 1/(1-αm), 
which converts from short-run to long-run elasticity, is also greater: 6.1 instead of 4.8 or 5.0. 

27 This is due to the way the variables pm, inc, and Urban are normalized: namely, they are created from the 
unnormalized versions by subtracting the sample mean. 
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Table 4.6 carries out the same exercise for the four-equation model. In contrast to the three-equation 
model, in this case, adding additional years to the estimation sample reduces the short-run rebound effect 
somewhat, for either time period shown. But as before, the multiplier to convert short-run to long-run 
elasticities is larger when more recent years are included. In calculating long-run elasticities, the second 
effect dominates the first and they are larger when the full data set is used for estimation. 

Table 4.6. Selected results of model estimated on different versions of data: 

four-equation model 

Original as published 

(Model 4.1) 

Estimated with 
revised data 

(Model 4.2) 

Estimated with 
revised & updated 
data (Model 4.3) 

Estimation period 1966-2004 1966-2004 1966-2009 

Model estimates: Coeff. Std. Err. Coeff. Std. Err. Coeff. Std. Err. 

pm 

pm*inc 

pm2 

pm*cong 

vma lagged 

-0.047 0.004 

0.064 0.016 

-0.025 0.007 

-0.012 0.003 

0.795 0.013 

-0.051 0.005 

0.067 0.015 

-0.017 0.007 

-0.012 0.003 

0.789 0.013 

-0.046 0.003 

0.056 0.011 

-0.022 0.006 

-0.003 0.002 

0.825 0.010 

Calculated rebound effects at 
values for: 

1966-2009: short run 

1969-2009: long run 

2000-2009: short run 

2000-2009: long run 

-5.0% 

-25.2% 

-2.8% 

-14.1% 

-5.0% 

-25.1% 

-3.2% 

-16.4% 

-4.6% 

-28.4% 

-2.5% 

-15.0% 
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Another feature that appears in this set of models is that the data revision alone makes some difference for 
estimates for the period 2000-2009, as seen by comparing Models 4.1 and 4.2. Specifically, the influence 
of fuel cost on the rebound effect, as given by the coefficient of pm2, is smaller; this results in a larger 
rebound effect in Model 4.2 than in Mode 4.1. The changes due to extending the sample (Model 4.3) 
mostly compensate for this. 

The finding that adding data for years up to 2009 modestly increases the estimated average rebound 
effect, at least in the three-equation model, is consistent with the finding of Section 4.2 that the rebound 
effect seems to have taken a sharp jump to a larger value starting in 2003. This observation leads to two 
further lines of investigation. In Section 4.4, we explore the possibility that rising fuel prices elicit an 
inherently larger response than falling prices. In Section 4.5, we explore specific mechanisms by which 
that might occur, namely through media attention and/or changes in how consumer form expectations 
about future prices. 

4.4 Asymmetry in response to price changes 

Several researchers have found evidence that for various types of energy purchases, demand is more 
responsive in the short run to price rises than to price decreases. In this section, we investigate whether 
such asymmetry applies to vehicle-miles traveled as a function of gasoline price. 

4.4.1 Models based on rises versus falls of fuel price 

Our preferred approach is to decompose fuel price into components, following the procedure used to 
decompose demand for gasoline use in Dargay and Gately (1997).28 Based on experimentation, we have 
simplified the three-way decomposition used by these authors into a two-way decomposition, 
measured for each state in our sample.29 In this subsection, we consider a decomposition of pf, the 
logarithm of fuel price, as follows: 

28 Nearly identical types of decomposition are also used for other types of energy consumption by Gately and 
Huntington (2002) and Dargay (2007). 

29 We do this by not distinguishing between increases that occurred before and after the maximum price observed in 
the data. In addition, we do not place special importance on the year 1973 as do Dargay and Gately (1997), in part 
because we already have a dummy variable for 1977 in our specification to capture special influences on travel 
behavior during that year. 
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pf = pf1966 + pf_rise + pf_cut 

where pf_rise is the cumulative effects of all annual increases in fuel price since the start of the sample 
(here 1966); and pf_cut is the cumulative effects of all annual falls in fuel price. In other words, the value 
for state i in year t is defined as: 

pf _ rise i ,t = ∑ 
t 

max [( pfi ,t − pfi ,t−1 ),0] 
1967 

pf _ cut i ,t = ∑ 
t 

min[( pfi ,t − pfi ,t −1 ),0] 
1967 

Because we include state fixed effects in our specification (i.e., there is a constant term for every state), 
all coefficient estimates depend on state-specific annual changes in a relevant variable; so in this 
specification, the coefficients of pf and variables constructed from it are replaced by two separate 
coefficients, one depending on upward annual changes and the other on downward annual changes. 

The two decomposed variables, when added together, fully describe annual changes in variable pf. 
Therefore any two of the three variables pf, pf_rise, and pf_cut can be used in the specification, with 
results that are fully equivalent except for the way a t-statistic is used to test a null hypothesis. The most 
convenient choice proves to be the two variables, pf and pf_cut. In that case, the effect of price rises is 
given by the coefficient of pf, while the effect of price falls is given by the sum of the two coefficients. 

These variables are used to replace pf in both the equation explaining the logarithm of vehicle-miles 
traveled (vma) and that explaining the logarithm of fuel intensity (fint). In both cases, fuel price is also 
combined with other variables, as in the specifications shown earlier (as well as in the published 
articles). Specifically, the main variable giving the rebound effect was previously the logarithm of fuel 
cost per mile: pm≡pf+fint, to which is now added an additional variable, either pfcut or (pf_cut+fint). The 
variable giving the effect of fuel price was previously given as the logarithm of annual fuel cost savings 
per unit change in fuel intensity, (pf+vma), to which is now added the additional variable (pf_cut+vma). 

The results for these two alternative specifications, labeled 3.20b and 3.21b, respectively, are 
summarized in Table 4.7, with the base model 3.3 (no asymmetry) shown for comparison. A more 
complete listing of coefficients is given in the appendix. 
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Table 4.7. Selected coefficient estimates: asymmetric specifications 

(a) Three-equation models 

Model 3.3 Model 3.20 b Model 3.21 b 
Equation and variable: Coeff. Std. Coeff. Std. Coeff. Std. Error 

Error Error 

(b) Four-equation models 

vma  equation: 
pm= pf+ fint -0.0466 0.0029 -0.0520 0.0046 -0.0639 0.0049 

pf_cut 0.0124 0.0093 
pf_cut + fint 0.0340 0.0078 

pm* inc 0.0528 0.0108 0.0569 0.0110 0.0577 0.0108 
pm2 -0.0124 0.0059 -0.0159 0.0061 -0.0207 0.0061 
pm* Urban 0.0119 0.0094 0.0124 0.0094 0.0131 0.0093 
vma lagged 0.8346 0.0102 0.8256 0.0110 0.8334 0.0105 

fint equation: 
pf + vma -0.0050 0.0041 -0.0185 0.0057 -0.0097 0.0060 

pf_cut + vma 0.0316 0.0124 0.0143 0.0123 

Equation and variable: Coeff. Std. 
Error 

Coeff. Std. 
Error 

Coeff. Std. 
Error 

vma  equation: 
pm= pf+ fint -0.0461 0.0030 -0.0498 0.0046 -0.0629 0.0049 

pf_cut 0.0100 0.0093 
pf_cut + fint 0.0340 0.0079 

pm* inc 0.0561 0.0111 0.0548 0.0111 0.0573 0.0110 
pm2 -0.0224 0.0060 -0.0225 0.0061 -0.0275 0.0061 
pm* cong -0.0031 0.0022 -0.0013 0.0021 -0.0016 0.0021 
vma lagged 0.8249 0.0105 0.8221 0.0107 0.8305 0.0107 

fint equation: 

Model 4.20b Model 4.21b Model 4.3 

pf + vma -0.0074 0.0041 -0.0125 0.0055 -0.0041 0.0058 
pf_cut + vma 0.0085 0.0112 -0.0080 0.0112 

These results suggest that the rebound VMT elasticity measured previously becomes modestly stronger 
(i.e. larger in absolute value) when measured only for price rises. For example, comparing base model 
3.3 to asymmetric model 3.21b, that elasticity rises in magnitude, from -0.0466 to -0.0639, when 
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changing from the former to the latter. Note that in these models the rebound effect itself does not 
depend on whether prices are rising or falling; rather, there is a direct effect of price on VMT which is 
asymmetric. In all cases, price cuts have a smaller effect on driving than price rises, a difference that is 
strongly statistically significant (t-statistic 4.3 or 4.4) in two of the four specifications (3.21b, 4.21b). 
Greene (2012) measures similar differences between the effects of rising and falling prices, although in 
his case he cannot rule out statistically that they are identical. 

The implications of the two asymmetric specifications for rebound effects are different. In Models 3.21b 
and 4.21b, because variable fint (representing the logarithm of inverse of fuel efficiency) is included with 
both pf and pf_cut, the rebound effect is assumed equal to the price elasticity for price cuts. For 
example, in Model 3.21b that elasticity is approximately -0.0299 (the sum of coefficients of the two 
variables containing fint): i.e. a short-run rebound effect of approximately 3.0%. This is less than half the 
rebound effect with respect to fuel price rises in the same model, which is 6.4% (short-run structural 
elasticity of -0.064). As with other responses, the short-run response would be multiplied by 
approximately six in the long run. 

In the alternate specification of Models 3.20b and 4.20b, by contrast, the rebound effect is assumed the 
same as the price elasticity for price rises. In that case there is no definitive difference between price 
rises and cuts, because the coefficient of pf_cut is small and statistically insignificant. 

In these models, a change in fuel efficiency, unlike one in fuel price, is the same regardless of whether 
fuel efficiency is increased or decreased. In one pair of models (those numbered 20b) this effect is the 
same as that of a fuel price rise; in the other (numbered 21b) it is the same as that of a fuel price cut. 
The latter seems more likely theoretically because changes in fuel efficiency are noticed less 
dramatically than changes in fuel price, and because most of the changes in fuel efficiency we are 
interested in are improvements, i.e. they lower the fuel cost per mile as does a price cut. Furthermore, 
the asymmetry in behavior is both more notable and more precisely measured in the second 
specification, as already noted. For these reasons, we prefer the two models numbered 21b. 

4.4.2. Models based on rises versus falls of fuel cost 

We also estimated models that base the asymmetry on the variable measuring fuel cost per mile (pm), 
instead of on fuel price (pf). These models assume that people respond differently depending on 
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whether their fuel cost per mile is rising or falling, regardless of whether this is due to a change in fuel 
price or in fuel efficiency. 

The variables are formed analogously to the previous subsection. The fuel cost per mile, pm (the price of 
mileage), is decomposed into pm_rise and pm_cut. This raises a new problem because pm_rise and 
pm_cut are, like pm, endogenous; but not in a simple way because their values in a given year depend 
on values of pm in previous years. In the case of pm, endogeneity is accounted for as part of the three-
or four-equation model.30 A full endogenous treatment would be impossible, so we have used an 
approximation instead: the variables are replaced by predicted values, pm_rise_hat and pm_cut_hat, 
each of which is the value predicted by a regression of the corresponding variable (pm_rise or pm_cut) 
on all the exogenous variables in the system – that is, on the same set of variables as those used as 
instruments in the 3SLS estimation routine. This is basically what instrumental variables does in the case 
of a simpler endogenous variable, so the result of this approximation should be reasonably accurate 
although the standard errors of these variables may be inaccurately measured. 

Table 4.8 shows selected results of a specification, named Model 3.23, analogous to that of Model 
3.21b. The latter is shown for comparison. Each model contains three interaction variables, whose 
coefficients are shown just below the second dashed line. 

30 Formally, this is accomplished by entering the variable pm as the sum of two variables, pf + fint, where fint is the 
logarithm of fuel intensity (see Section 3, “Dependent variables”, definition of 1/E). Since fint is the dependent 
variable of the third equation of our model system, the simultaneous estimation performed by the three-stage least 
squares procedure treats it as endogenous where it enters the first equation as part of pm. 
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Table 4.8. Selected coefficient estimates: asymmetry in response to fuel cost 
per mile 

(a) Three-equation models 

P 
Model 3.21b Model 3.23 Model 3.29 

Equation and variable: Coeff. Std. Coeff. Std. Coeff. Std. Error 
Error Error 

vma  equation: 
pm= pf+ fint -0.0639 0.0049 -0.0623 0.0055 

pm_rise_hat -0.1134 0.0153 
pm_rise_hat(-1) 0.0490 0.0216 
pm_rise_hat(-2) 0.0210 0.0129 
pf_cut + fint 0.0340 0.0078 
pm_cut_hat 0.0284 0.0093 -0.0037 0.0105 
pm_cut_hat(-1) -0.0486 0.0141 
pm_cut_hat(-2) 0.0171 0.0150 
pm_cut_hat(-3) 0.0239 0.0108 

pm* inc 0.0577 0.0107 0.0535 0.0112 0.0281 0.0120 
pm2 -0.0207 0.0061 -0.0180 0.0062 -0.0276 0.0068 
pm* Urban 0.0131 0.0093 0.0187 0.0099 0.0273 0.0103 
vma lagged 0.8334 0.0104 0.8084 0.0122 0.8802 0.0119 

fint equation: 
pf + vma -0.0097 0.0060 

pfrise -0.0133 0.0062 -0.0108 0.0064 
pf_cut + vma 0.0143 0.0123 
pf_cut 0.0042 0.0096 -0.0154 0.0097 
vma 0.0107 0.0166 -0.0533 0.0179 
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(b) Four-equation models 

Model 4.21b Model 4.23 Model 4.29 
Equation and variable: Coeff. Std. Coeff. Std. Coeff. Std. 

Error Error Error 
vma  equation: 

pm= pf+ fint -0.0629 0.0049 -0.0615 0.0054 -0.0629 0.0049 
pm_rise_hat -0.1068 0.0159 

0.0325 0.0091 

0.0110 0.0534 0.0115 
0.0061 -0.0245 0.0063 

-0.0016 0.0021 -0.0042 0.0022 
0.8305 0.0107 0.8229 0.0112 

-0.0041 0.0058 
-0.0122 

-0.0080 0.0112 
0.0024 
0.0210 

pm_rise_hat(-1) 0.0426 0.0229 
pm_rise_hat(-2) 0.0343 0.0137 
pf_cut + fint 0.0340 0.0079 
pm_cut_hat -0.0051 0.0108 
pm_cut_hat(-1) -0.0540 0.0149 
pm_cut_hat(-2) 0.0161 0.0163 
pm_cut_hat(-3) 0.0233 0.0117 

pm*inc 0.0573 0.0394 0.0129 
2pm -0.0275 -0.0005 0.0002 

pm*cong -0.0046 0.0029 
vma lagged 0.8656 0.0125 

fint equation: 
pf + vma 

pfrise 0.0063 -0.0144 0.0063 
pf_cut + vma 
pf_cut 0.0086 0.0267 0.0118 
vma 0.0152 -0.0081 0.0153 

The variable pm_cut_hat, just like the previous variable pf_cut, is an increasing function of cost per 
mile.31 Given its construction, we expect a negative sign on pm (which is the direct short-run rebound 
elasticity if fuel costs are rising) and also on the sum of coefficients of pm and pm_cut_hat (which gives 
the direct short-run rebound elasticity if fuel costs are falling). The coefficient on pm_cut_hat itself tells 
us the degree of asymmetry: it is positive if the magnitude of the elasticity is smaller for price cuts than 
for price rises. Equation (3.23) shows exactly this, very similarly to (3.21b). The short-run rebound effect 
is given by elasticity -0.0623 when prices are rising, and -0.0339 (=-0.0623+0.0284) when prices are 
falling. The rebound effect is influenced by pm, income, and Urban much as before. The fact that the 
coefficient on pm_cut_hat is statistically significant (more than twice its standard error) indicates that 
we can confidently reject the hypothesis that the magnitude of response to cost rises and cuts are the 
same. 

31 The actual values of pm-cut are negative by construction, but become less so as pm increases. 
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Model 3.29 deals with an alternative view of how asymmetry might work. Perhaps the difference in 
response between cost rises or cuts is not so much in the magnitude, but in the speed with which the 
response occurs. All the models considered in this report already have an “inertia” built into them, in the 
form of a lagged dependent variable which governs the speed of response to all variable changes. But in 
Model 3.29, we allow also for the possibility that the speed of the response differs between rises and 
cuts in cost per mile. 

Model 3.29 shows a very plausible and revealing pattern. Adjustment to price rises takes place quickly; 
in fact it overshoots and then retreats to a small value after two years. But the adjustment to price cuts 
occurs more slowly: it is essentially zero in the year of the price change (0.0037); takes a modest value 
after one year (0.0523, from the sum of the first two coefficients below the first dashed line); remains 
approximately the same for a second year (sum of three coefficients); and then retreats to a value of 
0.0112 (sum of all four coefficients). These response patterns are shown in Figure 4.2. 
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Figure 4.2. Short-run elasticity of VMT with respect to a sustained change in fuel cost 
per mile (Model 3.29) 

In these models, unlike those in the previous subsection, the response to a change in fuel efficiency 
depends on what’s happening to overall fuel costs. If fuel price is rising more rapidly than fuel efficiency, 
then the variable remains constant; therefore, these models predict that people would still respond to a 
small change in fuel efficiency according to the combination of coefficients of variable pm. In other 
words, they respond to any change in fuel efficiency, including an improvement, as they would to a rise 
in fuel price. Thus, the effect of a CAFE tightening could differ depending on whether overall fuel prices 
are generally rising or not, and if they are on how fast. The behavioral rationale is as follows: if fuel costs 
are rising due to increasing fuel prices and this has heightened people’s awareness, then an 
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improvement in fuel efficiency would have a large effect on their driving decisions because it would help 
offset that fuel price rise at a time when they are highly sensitive to it. This is a debatable assumption, as 
it implies a degree of rationality in calculating fuel costs that people may not have in reality. Indeed, as 
noted elsewhere, our results cannot definitively show that the rebound effect differs from zero if the 
responses to fuel price and fuel efficiency are estimated separately. Thus it is possible that all the 
rebound results are overstated, and actually are measuring the response to changes in price rather than 
in fuel efficiency. For this reason, we prefer the models of Section 4.4.1. 
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Four-equation results. The same kind of model development was done for four-equation models, with 
similar results as shown in Table 4.8(b) and Figure 4.3. 

Figure 4.3. Short-run elasticity of VMT with respect to a sustained change in fuel cost 
per mile (Model 4.29) 
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The first is variations in media attention to fuel prices and costs. Motor vehicle fuel is a moderately 
important part of many people’s budgets, and the price of crude oil which tends to underlie fuel price has 
even more pervasive effects on consumers. As a result, there is a tendency for turmoil in gasoline or oil 
markets to gain much attention in public media. Could it be that this attention is the underlying cause of 
some of the variations found in this report? 

The second is the uncertainty in future fuel costs. There is evidence that at most times, consumers’ best 
guess at future prices, i.e. their expectation, is the current price.32 However, we hypothesize that if prices 
are viewed as highly uncertain, a recent change in price is more likely to be viewed as temporary. 
Therefore, the responsiveness to price changes may be muted during times when recent history suggests 
that prices are volatile. 

Results for three promising models are presented in Table 4.9. For comparison, we also show the most 
comparable base model incorporating asymmetry but not media or uncertainty: namely, Models 3.21b and 
4.21b. Variables Media, Media_dummy, and log (fuel price variance) are as explained in Section 3, all 
normalized by subtracting their mean values on the entire sample. (As with other interacting variables, 
this normalization is done for convenience: as a result the coefficients of pm remains equal to the 
estimated short-run structural elasticity of VMT with respect to fuel cost when interacting variables take 
their mean values in the sample.) 

4.5 Effects of media attention and expectations 

Two important findings of previous sections are that the responsiveness of vehicle travel to costs sharply 
increased starting around 2003, and that this responsiveness is much larger when fuel prices or costs are 
rising than when they are falling. These findings naturally invite the question: why? In this section, we 
consider two factors that may help explain the variations in responsiveness. 

32 Supporting evidence comes from two separate surveys, reported by Anderson et al. (2011) and Allcott (2011), 
both of which asked people directly about their price expectations. Technically, the stated result can arise from 
consumers assuming a “random walk” in fuel prices: starting at the current level, they are equally likely to go up or 
down at each new time period. Anderson et al. (2011) find that this assumption accurately explains their answers 
except in late 2008, when they expected (correctly, as it turned out) that the recent fall in prices would prove to be 
temporary. 
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Table 4.9. Selected coefficient estimates: asymmetry with media coverage or 
fuel-price uncertainty 

(a) Three-equation models 

Model 3.21b Model 3.35 Model 3.37 Model 3.42 Model 3.45 
Equation and variable: Coeff. Std. 

Error 
Coeff. Std. 

Error 
Coeff. Std. 

Error 
Coeff. Std. 

Error 
Coeff. Std. 

Error 
vma  equation: 

(b) Four-equation models 

-0.0641 0.0057 ** -0.0699 0.0069 
0.0332 0.0083 0.0529 0.0091 

-0.0216 0.0079 -0.0265 0.0078 
-0.0319 0.0101 -0.0316 0.0101 

0.0028 0.0007 
0.0109 0.0711 0.0126 0.0779 0.0124 
0.0075 -0.0064 0.0075 -0.0126 0.0070 
0.0094 0.0100 0.0097 0.0091 0.0095 

0.8325 0.0106 0.8276 0.0109 0.8321 0.0108 

-0.0124 0.0059 -0.0104 0.0058 
0.0220 0.0120 0.0129 0.0118 

Equation and variable: Coeff. Std. Coeff. Std. 
Error Error 

-0.0629 0.0049 -0.0638 0.0050 	
pf_cut + fint 0.0340 0.0079 
pm*dummy _0309 
pf * (Media_dummy ) 
pf_rise*Media 
pm* log(fuel price variance)

Model 4.21b Model 4.35 Model 4.37 

pm= pf+ fint -0.0639 0.0049 -0.0587 0.0052 -0.0666 0.0053 
pf_cut + fint 0.0340 0.0078 0.0286 0.0081 0.0210 0.0083 
pm*dummy _0309 -0.0347 0.0084 
pf * (Media_dummy ) -0.0301 0.0101 
pf_rise*Media -0.2680 0.0544 
pm* log(fuel price variance) 0.0081 0.0024 

pm*inc 0.0577 0.0107 0.0583 0.0807 0.0136 
pm2 -0.0207 0.0061 -0.0053 -0.0302 0.0081 
pm*Urban 0.0131 0.0093 0.0118 0.0118 0.0106 
vma lagged 0.8334 0.0104 	 0.8247 0.0117 
fint equation: 

pf + vma -0.0097 0.0060 -0.0079 0.0058 -0.0033 0.0058 
pf_cut + vma 0.0143 0.0123 0.0031 0.0115 -0.0225 0.0114 

Model 4.42 Model 4.45 

Coeff. Std. Coeff. Std. Coeff. Std. 
Error Error Error 

vma  equation: 
pm= pf+ fint -0.0729 0.0054 -0.0706 0.0054 -0.0719 0.0053 

0.0352 0.0080 0.0420 0.0081 0.0506 0.0083 0.0626 0.0085 
-0.0359 0.0071 -0.0308 0.0072 -0.0321 0.0072 

0.0061 0.0058 0.0071 0.0058 -0.0080 0.0063 
-0.3117 0.0490 

-0.0100 0.0019 -0.0044 0.0019 
pm*inc 0.0573 0.0110 0.0575 0.0110 0.0825 0.0122 0.0944 0.0124 0.0905 0.0124 

2pm -0.0275 0.0061 -0.0296 0.0065 -0.0263 0.0066 0.0037 0.0085 -0.0114 0.0074 
pm*Urban -0.0016 0.0021 -0.0025 0.0021 -0.0028 0.0021 -0.0044 0.0021 -0.0057 0.0021 
vma lagged 0.8305 0.0107 0.8314 0.0106 0.8314 0.0106 0.8275 0.0109 0.8423 0.0112 
fint equation: 

pf + vma -0.0041 0.0058 -0.0060 0.0057 -0.0059 0.0057 -0.0049 0.0057 -0.0035 0.0057 
pf_cut + vma -0.0080 0.0112 -0.0031 0.0110 -0.0022 0.0110 -0.0018 0.0110 -0.0129 0.0111 
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The media variable is specified to influence the response to fuel price but not to fuel efficiency, because 
the variable involves news about fuel price. Therefore, including this variable does not affect the rebound 
effect except insofar as it changes coefficients of pm and its interactions. The uncertainty variable, by 
contrast, represents a consumer’s own experience with variation in fuel costs, and therefore is specified so 
as to influence both responses (i.e., it is interacted with pm rather than pf). 

Consider first the four-equation models. The last of these models (4.45) suggests that both media 
coverage and fuel-price volatility, taken together, have significant effects in increasing the magnitude of 
the elasticity of VMT with respect to fuel price, just as we hypothesized. The effect of Media is strongest 
when it is entered as a continuous rather than a dummy variable and when it is interacted with price rises 
(pf_rise). The effect of these additional variables on coefficients involving pm is minimal except for one: 
the coefficient of pm2 becomes smaller when fuel price volatility is included. This could mean that the 
previously observed tendency of the price elasticity (and rebound effect) to increase with fuel price is 
explained in part by correlation between high prices and media coverage. But the results are not 
consistent enough to draw a firm conclusion on this point. 

In the three-equation models, the media variables alone seem powerful (Models 3.35 and 3.37), but when 
fuel price variability is included (Model 3.45), its coefficient has an unexpected sign. We do not have a 
good explanation for this. Generally, the sensitivity shown in these models to the precise form in which 
variables are entered into the equation is an undesirable property, and probably indicates that we have 
reached the limits of our ability to discern these fine-grained effects using this data set. 

Comparing Model 3.35 or 4.35 with the higher-numbered models, which all contain the variable “dummy 
0309”, we see there continues to be a structural break toward a larger rebound effect in years 2003-2009, 
even with these other variables are accounted for. The amount of this break (an increase in the short-run 
rebound effect of roughly 2.0 to 3.5 percentage points) is about the same size as found previously, in 
Table 4.4 (Models 3.18 and 4.13). Therefore, it seems these new variables have not captured whatever 
factors changed the responsiveness to price and fuel efficiency starting in 2003. Thus, further research is 
needed if one wishes to understand the reason for this change, and in particular the likelihood that it will 
persist into the future. 

Taking into account explanatory power, consistency across three- and four-equation models, and 
consistency with theory, our preferred models remain those that omit media and volatility variables: 
namely, Models 3.21b and 4.21b. While the exploration of media and volatility elicit considerable 
evidence that one or both of these factors helps explain. 
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5. Implications of the Empirical Analysis: Projections to 2035 

By distinguishing the causes of the observed decline in the rebound effect, we are in a position to consider 
how the rebound effect is likely to change in the future. By inserting projected values for real per capita 
income, real fuel costs of driving, urbanization, and congestion into our model, we obtain a projection for 
the rebound effect. Of course, like any projection, the farther into the future we project, the uncertain are 
the values of these variables. In addition, in both cases projections show one or both variables moving 
outside the range in which they were observed in our sample; as a result, statistical uncertainty in the 
estimated model can magnify the uncertainty in the projected values. 

The models estimated here imply the rebound effect is a linear function of the logarithms of per capita 
income and fuel cost per mile. This is probably a good approximation within limited ranges of those 
variables, but for extreme values the linear function becomes less satisfactory. In particular, since rising 
income lowers the rebound effect, linearity implies that the rebound effect could become negative at high 
enough incomes. This is unrealistic and so to avoid it, we truncate the rebound effect for any given state 
and year at zero. As a result, the aggregate rebound approaches zero only gradually as incomes rise, 
because an increasing number of states hit this limit. In the base projections here, the number of states 
with zero rebound effects rises from one in 2008 to either five or seven in 2035, depending on whether the 
three- or four-equation model is used. 

The first two of the variables needed for projections — per capita income and fuel cost per mile — are 
projected in the 2011 Annual Energy Outlook published by the U.S. Energy Information Administration 
(US EIA 2011). WWe refer to these input projections as AEO2011. The AEO’s projections are national, 
whereas the rebound effects calculated here vary by state. Thus for each state, we use the average of 2008 
and 2009 as a starting value, and then change the two variables (per capita income and fuel cost per mile) 
by the same proportion that the national projection changes from those same two starting years. 

It is worth noting that these projected values do not take into account any change that might occur from 
the regulation itself. Thus, for example, the rebound effect in 2025 is based on fuel efficiency projections 
from AEO that do not incorporate the impact of tightened efficiency regulations in years 2017-2024. 
Because the effect of fuel costs is to raise the rebound effect, this means the projections here slightly 
overestimate the rebound effect compared to one that tracks the cumulative effects of the regulations on 
average fuel economy in each year. 

For urbanization, we extrapolate from the changes observed in national averages within the data set from 
1999 to 2009. Specifically, the proportion of non-urban population and the number of hours of delay are 
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each assumed to change at the same annual rate as observed over that decade. That annual rate is -0.4%, 
resulting in average urbanization (fraction of population in urban areas) rising from 74.3% in 2010 to 
76.7% in 2035. 

For congestion, we use a projection by the U.S. Federal Highway Administration that under current 
funding for infrastructure, congestion will increase at an average annual rate of 1.26 percent (US FHWA 
2011) between 2006 and 2026.33 Applying this same rate to the entire projection period implies that 
annual hours of delay per person, averaged over states, rises over from 8.6 to 11.9. (Congestion affects the 
projections only for the four-equation model.) 

The projection methodology computes the short-run and long-run rebound effects, based on the formulas 
already given using values of the “interaction variables” (per capita income, fleet-average fuel efficiency, 
urbanization, and congestion) as just described for every state and every year from 2010-2035. The same 
methodology is used to “back-cast” the values of rebound effect that our model implies occurred during 
years 2000-2009, using the actual values of interacting variables. 

For a given year, the short-run and long-run rebound effects refer to projected changes in VMT that 
would occur from a permanent change in the cost per mile beginning in that year, relative to its baseline 
projected value, if all the relevant interaction variables (income, fuel price, urbanization, and congestion) 
were to remain constant in time following this change. The short-run rebound describes the change in 
VMT during the year in question, whereas the long-run rebound describes the change in VMT in the 
distant future caused by this same permanent change. The long-run rebound is larger in magnitude than 
the short-run rebound because people adjust slowly to a change, as demonstrated by the coefficients on 
the lagged dependent variables in the equations. (Especially, the coefficient of approximately 0.8 on 
lagged vehicle-miles per adult indicates that about 80% of the choice about travel in a given year is 
determined by “inertia,” i.e. by travel the previous year, whereas only 20% is given by the new “target” 
travel resulting from new conditions.) These projections provide the best comparison with other values 
for the “rebound effect” estimated in the literature, which are based on the same hypothetical experiment. 

For purposes of regulatory analysis, however, a more relevant measure is how much the path of VMT is 
shifted by a permanent change in cost per mile in a given year. This measure takes the interacting 
variables to be changing over time, as in fact they are projected to be, rather than being held constant. It 
tracks how the VMT changes in the years following a regulatory change from two sources 
simultaneously: (a) the transition from short to long run, as already described; and (b) the changes in 

33 US FHWA (2008), Exhibit 7-9, column headed “Percent Change in Delay on Roads Modeled in HERS 
Congestion Delay per VMT, Funding Mechanism: Fixed Rate User Charges.” 
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variables that influence the rebound effect. This is what was defined earlier as the dynamic rebound effect. 
(See Section 1 and Appendix C for details of its calculation.) 

5.1 Results: Projections using models without media or uncertainty 

Tables 5.1 through 5.3 summarize the results of projecting Models 3.3 and 3.21b, our preferred symmetric 
and asymmetric models and for the corresponding four-equation models. Year by year details of these 
projections are given in the appendix. Table 5.1 compares the two models, both using the AEO 2011 
“Reference Case,” while Tables 5.2 and 5.3 give results for each model if input variables are instead taken 
from the AEO 2011 “High Oil Price” and Low Oil Price” cases. Figures 5.1 through 5.3 present some of 
the same information—specifically, for the dynamic rebound effect—graphically. Figure 5.1 also shows, 
for comparison, the results of Models 3.23 and 4.23 with asymmetry based on fuel cost; this graph 
illustrates one of the problems with using such a model to project rebound effects, which is that the effect 
can fluctuate wildly from year to year due to the fact that projected cost per mile is relatively flat but with 
small variations up or down in various years. 
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Table 5.1 

Projection Results: Rebound Effect (expressed as positive percentage), comparing symmetric and 
asymmetric models 

(a) Three-equation models: Model 3.3 (symmetric) and 3.21b (asymmetric) 

(b) Four-equation models: Model 4.3 (symmetric) and 4.21b (asymmetric) 

Historical 
Regulated 
average 

2000-2009 2010 2017 2025 2030 2035 2017-2025 
Model 3.3 (symmetric) 

Short Run Rebound 2.8% 2.8% 2.4% 1.6% 1.2% 0.8% 2.0% 
Dynamic Rebound NA 11.4% 8.8% 5.3% 3.8% 3.2% 6.9% 
Long Run Rebound 17.8% 17.6% 15.4% 10.2% 7.2% 4.8% 12.9% 

Model 3.21b (with asymmetry 
based on fuel price) 

Short Run Rebound 0.7% 1.0% 0.8% 0.2% 0.0% 0.0% 0.4% 
Dynamic Rebound NA 4.2% 2.3% 0.2% 0.0% 0.0% 1.0% 
Long Run Rebound 4.2% 5.8% 4.5% 1.0% 0.2% 0.0% 2.7% 

----------------------Projected--------------------------------­

Historical 
Regulated 
average 

2000-2009 2010 2017 2025 2030 2035 2017-2025 
Model 4.3 (symmetric) 

Short Run Rebound 2.5% 3.0% 2.9% 2.0% 1.5% 1.0% 2.4% 
Dynamic Rebound NA 13.2% 10.7% 6.6% 4.7% 3.9% 8.6% 
Long Run Rebound 15.0% 18.2% 17.2% 11.6% 8.3% 5.6% 14.5% 

Model 4.21b (with asymmetry 
based on fuel price) 

Short Run Rebound 0.5% 1.1% 1.0% 0.3% 0.1% 0.0% 0.6% 
Dynamic Rebound NA 5.4% 3.3% 0.3% 0.0% 0.0% 1.5% 
Long Run Rebound 2.4% 6.4% 5.9% 1.4% 0.2% 0.0% 3.5% 

----------------------Projected--------------------------------­
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Table 5.2 

Projection Results: Rebound Effect (expressed as positive percentage) with symmetric models, 
comparing different oil price cases 

(a) Three-equation symmetric model (Model 3.3) 

Historical 
Regulated 
average 

2000-2009 2010 2017 2025 2030 2035 2017-2025 
Reference Case 

Short Run Rebound 2.8% 2.8% 2.9% 2.8% 2.8% 2.8% 2.0% 
Dynamic Rebound NA 11.4% 11.1% 10.8% 10.5% 10.1% 6.9% 
Long Run Rebound 17.8% 17.6% 18.1% 17.7% 17.9% 17.4% 12.9% 

High Oil Price Case 
Short Run Rebound 2.8% 2.8% 3.3% 3.5% 3.6% 3.5% 2.9% 
Dynamic Rebound NA 14.4% 14.5% 14.4% 14.1% 13.7% 10.6% 
Long Run Rebound 17.8% 17.6% 20.8% 22.1% 22.6% 22.2% 18.3% 

Low Oil Price Case 
Short Run Rebound 2.8% 2.8% 2.4% 2.2% 2.1% 1.9% 0.9% 
Dynamic Rebound NA 7.8% 7.1% 6.5% 6.0% 5.5% 2.3% 
Long Run Rebound 17.8% 17.6% 14.8% 13.8% 12.9% 11.8% 5.8% 

----------------------Projected--------------------------------­
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(b) Four-equation symmetric model (Model 4.3) 

Selected Projection Results: Rebound Effect (expressed as positive percentage) 
Four-equation model estimated on 1966-2009 revised & updated data (Model 4.3) 

Regulated 
Historical ----------------------Projected--------------------------------­ average 

2000-2009 2010 2017 2025 2030 2035 2017-2025 
Reference Case 

Short Run Rebound 2.5% 3.0% 2.9% 2.0% 1.5% 1.0% 2.4% 
Dynamic Rebound NA 13.2% 10.7% 6.6% 4.7% 3.9% 8.6% 
Long Run Rebound 15.0% 18.2% 17.2% 11.6% 8.3% 5.6% 14.5% 

High Oil Price Case 
Short Run Rebound 2.5% 3.0% 4.4% 3.5% 2.9% 2.5% 4.0% 
Dynamic Rebound NA 18.6% 17.4% 13.0% 11.0% 9.9% 15.1% 
Long Run Rebound 15.0% 18.1% 26.5% 21.1% 17.5% 14.5% 24.0% 

Low Oil Price Case 
Short Run Rebound 2.5% 3.0% 1.0% 0.1% 0.0% 0.0% 0.5% 
Dynamic Rebound NA 6.9% 2.4% 0.1% 0.0% 0.0% 0.8% 
Long Run Rebound 15.0% 18.1% 5.8% 0.4% 0.1% 0.0% 2.8% 
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Table 5.3 

Projection Results: Rebound Effect (expressed as positive percentage) with asymmetric models, 
comparing different oil price cases 

(a) Three-equation asymmetric model (Model 3.21b) 

(b) Four-equation asymmetric model (Model 4.21b) 

Historical 
2000-2009 2010 2017 2025 2030 2035 

Reference Case 
Short Run Rebound 0.7% 1.0% 0.8% 0.2% 0.0% 0.0% 
Dynamic Rebound NA 4.2% 2.3% 0.2% 0.0% 0.0% 
Long Run Rebound 4.2% 5.8% 4.5% 1.0% 0.2% 0.0% 

High Oil Price Case 
Short Run Rebound 0.7% 0.9% 2.1% 1.2% 0.7% 0.3% 
Dynamic Rebound NA 8.5% 7.5% 3.4% 1.7% 1.3% 
Long Run Rebound 4.2% 5.7% 12.7% 7.2% 3.9% 1.9% 

Low Oil Price Case 
Short Run Rebound 0.7% 1.0% 0.0% 0.0% 0.0% 0.0% 
Dynamic Rebound NA 2.0% 0.0% 0.0% 0.0% 0.0% 
Long Run Rebound 4.2% 5.7% 0.1% 0.0% 0.0% 0.0% 

----------------------Projected--------------------------------­

Historical 
2000-2009 2010 2017 2025 2030 2035 

Reference Case 
Short Run Rebound 0.5% 1.1% 1.0% 0.3% 0.1% 0.0% 
Dynamic Rebound NA 5.4% 3.3% 0.3% 0.0% 0.0% 
Long Run Rebound 2.4% 6.4% 5.9% 1.4% 0.2% 0.0% 

High Oil Price Case 
Short Run Rebound 0.5% 1.1% 2.8% 1.9% 1.3% 0.8% 
Dynamic Rebound NA 11.8% 11.3% 6.5% 4.3% 3.1% 
Long Run Rebound 2.4% 6.3% 17.4% 11.6% 7.7% 4.5% 

----------------------Projected--------------------------------­

Low Oil Price Case 
Short Run Rebound 0.5% 1.1% 0.0% 0.0% 0.0% 0.0% 
Dynamic Rebound NA 2.5% 0.0% 0.0% 0.0% 0.0% 
Long Run Rebound 2.4% 6.3% 0.0% 0.0% 0.0% 0.0% 

Regulated 
average 

2017-2025 

0.4% 
1.0% 
2.7% 

1.6% 
5.3% 

10.0% 

0.0% 
0.0% 
0.0% 

Regulated 
average 

2017-2025 

0.6% 
1.5% 
3.5% 

2.4% 
8.8% 

14.7% 

0.0% 
0.0% 
0.0% 
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Figure 5.1 

Selected projection results: Symmetric and two asymmetric models 

(a) Three-equation models 

(b) Four-equation models 

Dynamic rebound effects: Comparison of three-
equation models (Reference oil price case) 
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Figure 5.2 

Selected Projection Results: Symmetric Models 

(a) Three-equation model 

(b) Four-equation models 

Dynamic rebound effects: Three-equation base model (3.3) 
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Figure 5.3
 

Selected projection results: Preferred asymmetric models
 

(a) Three-equation model
 

(b) Four-equation models 

Dynamic rebound effects: Three-equation model with
 asymmetry based on price (3.21b) 
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Dynamic rebound effects: Four-equation model with
 asymmetry based on price (4.21b) 
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The projections from asymmetric models show more fluctuations than those from symmetric models, 
because the sharp break between years of rising and falling fuel costs causes jumps in the short-run and 
long-run rebound effects. This occurs each year when the change in fuel price switches sign, as happened 
in 2009 (becoming negative) and 2010 (becoming positive again). In the “low oil price” projections, it 
happens again in 2011 as the price spike in 2010 is projected to be reversed, and then again in 2017 when 
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the 2011-2016 downward trend changes to a steady though very gradual increase. These fluctuations are 
mainly seen in the short-run and long-run rebound effects, as illustrated in Figure 5.4. 

Figure 5.4 


Projection results for preferred models with asymmetry
 

(a) Three-equation model
 

(b) Four-equation model 

Projections of Rebound Effect 
Model 3.21b: Three-equation model estimated on 1966-2009 data 
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Projections of Rebound Effect 
Model 4.21b: Four-equation model estimated on 1966-2009 data 
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The dynamic rebound effect does not have such large jumps, because it effectively averages the responses 
over the lifetime of a vehicle purchased during the year in question. Thus, if over the next 15 years the 
impact on VMT is sometimes large and sometimes small, this is diluted first by the “inertia” in consumer 
response, which is tracked in the dynamic rebound calculation, and also by the summation over years in 
mileage driven. For this reason, it can be larger than the long-run rebound effect in years when fuel costs 
have just fallen, because the long-run rebound effect assumes that all variables, including the indicator for 
falling prices, will remain unchanged over the life of the vehicle. 
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The projection results thus far are summarized in Table 5.4, focusing on the regulated average value of 
the rebound effect (i.e., average over years 2017-2025). The first two panels present dynamic rebound 
effects, the third presents long-run rebound effects. 

Table 5.4 

Selected summary measures 

Three-equation 
model (3.3) 

Four-equation 
model (4.3) Average 

High Oil Price Case 10.6% 15.1% 12.8% 
Reference Case 6.9% 8.6% 7.8% 
Low Oil Price Case 2.3% 0.8% 1.5% 

Three-equation 
model (3.21b) 

Four-equation 
model (4.21b) Average 

High Oil Price Case 5.3% 8.8% 7.0% 
Reference Case 1.0% 1.5% 1.3% 
Low Oil Price Case 0.0% 0.0% 0.0% 

Three-equation 
model (3.21b) 

Four-equation 
model (4.21b) Average 

High Oil Price Case 10.0% 14.7% 12.4% 
Reference Case 2.7% 3.5% 3.1% 
Low Oil Price Case 0.0% 0.0% 0.0% 

(c) Long run  rebound effect: asymmetric models 

Note: Unlike the dynamic rebound effect, which accounts for changes in fuel 
prices after a car is purchased, the long-run rebound effect forecasts the result if 
fuel prices remained the same throughout the life of the vehicle. This is why it can 
sometimes be smaller than the dynamic rebound effect. 

(a) Dynamic rebound effect: symmetric models 

Note: Rebound effect is defined as minus the elasticity of VMT with respect to fuel cost 
per mile, expressed as positive percentage). Dynamic rebound effect refers to total miles 
driven by a vehicle over its life. "Regulated average" over 2017-2015 is weighted by 
projected sales of all light duty vehicles. 

(b) Dynamic rebound effect: asymmetric models 

(Average over years 2017-2025) 

(Average over years 2017-2025) 

(Average over years 2017-2025) 

Recently, a Reference Case projection has become available using the 2012 version of the Annual Energy 
Outlook (AEO2012). In order to see whether this substantially affects the projections of the rebound 
effects, a comparison is presented in Figure 5.5. Using our base models (Models 3.3 and 4.3), the 
projected dynamic rebound effects are about two percentage points larger using AEO2012, because of 
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its higher energy prices. In the case of the asymmetric models, however, this differential disappears by 
the end of the projection period because the rebound effect falls essentially to zero due to the strong 
effect of variable pm_cut in reducing the rebound effect. 

Figure 5.5 

Comparisons of projections using AEO2011 and AEO2012 

(a) Three-equation models 

Dynamic rebound effects: Three-equation base 
model (3.3) 
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(b) Four-equation models 

Dynamic rebound effects: Three-equation model 
with

 asymmetry based on price (3.21b) 
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5.2 Results: Projections using models with media variable 

Table 5.5 and Figure 5.6 show the results of projecting Model 3.35. Because the media variable is 
specified so that it affects the response of VMT to price but not to fuel efficiency, its only impact on the 
projections is the way it changes other coefficients. As it happens, the only notable effect it has is to 
lessen the impact of future changes in fuel cost per mile, whose effect on projections is not very large 
anyhow except in the “high oil price” case. Thus, the projections for the AEO reference case are little 
different from those with the corresponding model without media variable (Model 3.21b): they are 
slightly lower during the early part of the regulatory period, leading to a “regulated average” dynamic 
rebound effect of 0.7%. 

Dynamic rebound effects: Four-equation model with
 asymmetry based on price (4.21b) 
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Table 5.5
 

Projection results for model with media coverage variable:
 

Three-equation model
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Historical 
2000-2009 2010 2017 2025 2030 2035 

----------------------Projected--------------------------------­
Regulated 
average 

2017-2025 
Model 3.21b 

Short Run Rebound 0.7% 1.0% 0.8% 0.2% 0.0% 0.0% 0.4% 
Dynamic Rebound 
Long Run Rebound 

NA 
4.2% 

4.2% 
5.8% 

2.3% 
4.5% 

0.2% 
1.0% 

0.0% 
0.2% 

0.0% 
0.0% 

1.0% 
2.7% 

Figure 5.6 

Projection results for model with media coverage variable: 

Three-equation model 

Model 3.35 
Short Run Rebound 0.7% 1.1% 0.6% 0.2% 0.0% 0.0% 0.4% 
Dynamic Rebound NA 3.3% 1.4% 0.2% 0.0% 0.0% 0.7% 
Long Run Rebound 4.2% 6.4% 3.7% 0.9% 0.2% 0.0% 2.2% 
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(2000-09 are estimates;  2010-35 are projections) 

Short run 
Dynamic 
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In the four-equation model, the media variable has virtually no effect on results, so the projections would 
be essentially the same as in Model 4.21b. 

We do not project the rebound effect using the models containing price volatility, because we do not have 
an obvious way to forecast volatility. Nor is any significant volatility included in the AEO forecasts. 
Nevertheless, one can expect the future to contain some periods of stability and some of volatility, 
causing the rebound effect to fluctuate in some unknown manner around the trends we have projected. 

6. Conclusions 

The research reported here confirms the findings of previous studies that the long-run rebound effect, 
measured over a period of several decades extending back to 1966, is 28–30%  (Table 4.3). We also find a 
short-run (one-year) rebound effect of 4.6–4.7%, which is harder to compare to previous studies because 
previous work contains so much variation depending on the treatment of dynamics and of CAFE 
regulations. 

This research also provides strong evidence that the rebound effect became substantially lower in more 
recent years, and that probably this was due to a combination of higher real incomes, lower real fuel costs, 
and higher urbanization. Because time spent in travel rises with urbanization and its attendant congestion, 
and the value of that time rises with incomes, all three of these differences tend to make fuel costs a 
smaller portion of the total cost of traveling. Thus it is not surprising that people would become less 
sensitive, on a percentage basis, to changes in those fuel costs. Our base model implies that the long-run 
rebound effect was 15-18% on average over the years 2000-2009 (Table 4.3). Projections suggest that the 
effect of income is very strong, reducing the long-run rebound effect from about 11-14% in 2010 to 3-5% 
in 2035, according to the base model (Figure 5.1) 

There is strong evidence of asymmetry in responsiveness to price increases and decreases. This makes 
interpretation of the rebound effect somewhat more difficult, because it accentuates the unresolved 
question as to whether travelers respond to a change in fuel efficiency in the same way as to a change in 
fuel price. Different assumptions lead to quite different implications for detailed projections. Still, the 
overall tendency of the results is to show that the rebound effect is likely to be moderate, and to decline 
with income. Furthermore, accounting for asymmetry greatly reduces the rebound effect when it is 
identified, as seems plausible, with the observed response to fuel price declines. For example, using the 
AEO 2011 reference case, the projected dynamic rebound effect averaged over the years 2017-2025 and 
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averaged between the three-equation and four-equation models is 7.8% using a symmetric model, but 
only 1.3 percent using the preferred asymmetric model (Table 5.4). 

There is weaker evidence that media coverage, and perhaps recent fuel-price volatility, also affect 
travelers’ responsiveness to changes in fuel cost. This evidence tends to confirm expectations that such 
variables are important, but it is not conclusive at this point. Furthermore, it does not undermine the most 
important finding of this and earlier work, which is that the rebound effect will decline over time as 
incomes rise. 
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Appendix A. Calculation of Dynamic Rebound Effect 

The dynamic rebound takes into account that interacting variables, especially income and fuel price, are 
changing over the course of the life of a vehicle—even its life beyond the projection period which ends 
in 2035. It is calculated by projecting the dynamic adjustment process that is implied by the estimated 
equations but allowing the “target” amount of travel to change each year according to actual or 
projected conditions (income, fuel price, and urbanization and/or congestion) for that year—using 
actual data from my data sources for 2000-2009 and data from the AEO projections for 2010-2035. (The 
projection data are adjusted to match the estimation data for years 2008-2009, so that projections are 
consistent with the estimated equations.) 

This “target” is based on an adjustment to the typical mileage for a vehicle of a given age, as derived 
from the National Personal Travel Survey (NPTS) and reported by the Transportation Energy Data Book, 
ed. 29, Table 8.9. The adjustment occurs from two sources: changes in the interaction variables that 
determine the long-run rebound effect, and the assumed unit change in fuel cost per mile resulting from 
a policy. The adjustment is derived from the equations for the structural elasticity of mileage with 
respect to fuel cost per mile (εM. PM in the source papers), which is influenced directly by the interaction 
variables according to their estimated coefficients, and from the equation that converts εM. PM into a 
long-run rebound effect.34 The actual mileage of a vehicle purchased in year t in a subsequent year t+τ, 
where τ is the age of the vehicle, is projected as the weighted average of the previous year’s mileage, 
adjusted for the natural evolution due to the age-mileage profile, and the target mileage, which is based 
on the age-mileage profile and the long-term rebound elasticity; the weights in taking this average are 
αm and (1-αm), respectively, where αm is the coefficient of the lagged dependent variable in the 
estimated equation for vehicle-miles per adult. (This notation conforms with the two papers just cited in 
the footnote.) 

The actual procedure used to compute the dynamic rebound effect has three steps: 

• First, the short-run rebound effect is recomputed for each year assuming that all variables except fuel 
efficiency change as in the projection being considered.35 This projects the desired short-run response 

34 Those equations are equation (7) in Small and Van Dender (2007) and equations (14a) and (15) in Hymel, Small,
	
and Van Dender (2010).
	
35 Our projections are through year 2035. Vehicles sold in the later years of the projection will last beyond 2035, and 

for those years we use 2035 values of interacting variables to compute the short-run rebound effect applying to these 

vehicles as they age.
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that would occur for the owner of a vehicle whose fuel efficiency remains fixed as it ages, but who faces 
other changes (income, fuel price, urbanization, congestion) that affect the owner’s response. 36 The 

  S S S
resulting change over the vehicle’s lifetime is denoted by Δb t ,τ = b t+τ − b t , where t is the year of 

purchase and τ is the vehicle’s age. 

• Simultaneously, these changes in short-run rebound as the vehicle ages are converted to the 
corresponding change in structural elasticity using equation (11a) of Hymel et al. (2010), and that in turn 
is converted to a change in long-run target response using equation (14a) of the same paper: 

Db̂L = bL + (b̂ S − bS )⋅t+τ t t+τ t 
DL 

where bLt is the long-run rebound for year t as already calculated, and D and DL are quantities defined 
in Hymel et al.’s equation which account for effects of the equations for vehicle fleet size and vehicle 
fuel efficiency when computing the short- and long-run rebound effects, respectively. As an 
approximation, we assume the conversion factors D and DL are constant, although they actually change 
very slightly over time. The ratio D/DL is actually very close to the simple multiplier, 1/(1-αm), which 
converts a short-run to a long-run response.37 

0
• Finally, the baseline age-mileage profile mentioned earlier, denoted by M τ for ages τ=0,1, …, 15, is 

used as the starting point for changes in mileage over each year of the vehicle’s age.38 The computation 
assumes a unit increase in fuel cost per mile. (The size and sign of the change in fuel cost per mile is 
immaterial because the equations are linear so they lead to the same answer once one divides by that 

36 Because of the form of the estimating equations, which are linear in logarithms even accounting for interaction 
variables, this calculation depends only very slightly on which year’s fuel efficiency is chosen to hold constant: 
namely, it depends on it through the truncation that occurs for those few state-year combinations that would 
otherwise lead to a positive projected elasticity of VMT with respect to fuel cost (those values are truncated at zero). 
Thus for the projections starting in 2010, the computation is simplified by assuming fuel efficiency is held constant 
at its projected value for 2020; for the historical computations for 2000-2009, it is held constant at its actual value 
for 2005. 

37 The equations for D and DL in Hymel et al. (2010) are for the four-equation version of the model; they are also 
valid for the 3-equation version, simply by setting the coefficient αcm, which is absent in the latter, equal to zero. 

38 The age-mileage profile is derived from the National Personal Travel Survey (NPTS) and reported in the 
Transportation Energy Data Book, ed. 29, Table 8.9. 
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change.) The projected mileage after response to the change in fuel cost per mile, for a new car 
purchased in year t, is the weighted average described earlier: 

0
	
m M τ m  L 0
M τ = α M τ −1 0 + (1− α )(1− b t+τ )M τ
M τ −1 


This is computed iteratively; for year 0 (the year the vehicle is purchased), the simple short-run response 
as already projected is used: 

M 0 = (1 − bS t )M 0 
t 

In these equations, b is a “rebound effect” defined as the negative of the relevant elasticity, so is 
normally positive (or zero, if truncated); this is why it appears with a minus sign in the equation. 
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Appendix B. Coefficient estimates 

Table B1.  Coefficient estimates: Symmetric and asymmetric models 

(a) Three-equation models 

Model 3.3 Model 3.18 Model 3.20b Model 3.21b Model 3.23 * 
Equation Variable Coeff. Std. Error Coeff. Std. Error Coeff. Std. Error Coeff. Std. Error Coeff. Std. Error 

vma intercept 1.6261 0.1022 1.6771 0.1035 2.2568 0.4424 3.1468 0.3541 3.3926 0.5490 
vma income 0.0781 0.0117 0.0782 0.0117 0.0814 0.0117 0.0770 0.0118 0.0792 0.0120 
vma adults per road mile -0.0149 0.0038 -0.0147 0.0038 -0.0147 0.0037 -0.0151 0.0037 -0.0200 0.0041 
vma popratio 0.0726 0.0322 0.0836 0.0325 0.0804 0.0329 0.0630 0.0323 0.0732 0.0334 
vma Urban -0.0205 0.0391 -0.0372 0.0395 -0.0211 0.0388 -0.0061 0.0395 0.0021 0.0407 
vma Railpop -0.0067 0.0043 -0.0053 0.0043 -0.0080 0.0043 -0.0082 0.0042 -0.0061 0.0045 
vma D7479 -0.0439 0.0034 -0.0436 0.0034 -0.0432 0.0034 -0.0445 0.0035 -0.0425 0.0034 
vma Trend -0.0004 0.0002 -0.0003 0.0002 0.0002 0.0004 0.0013 0.0004 0.0013 0.0006 
vma vma(-1) 0.8346 0.0102 0.8279 0.0105 0.8256 0.0105 0.8334 0.0104 0.8084 0.0122 
vma vehstock 0.0209 0.0067 0.0238 0.0068 0.0202 0.0067 0.0161 0.0067 0.0203 0.0070 
vma pf+fint -0.0466 0.0029 -0.0464 0.0029 -0.0520 0.0046 pf+fint -0.0639 0.0049 pf+fint -0.0623 0.0055 
vma pm^2 -0.0124 0.0059 -0.0113 0.0060 -0.0159 0.0061 -0.0207 0.0061 -0.0180 0.0062 
vma pm*inc 0.0528 0.0108 0.0699 0.0121 0.0569 0.0108 0.0577 0.0107 0.0535 0.0112 
vma pm*Urban 0.0119 0.0094 0.0078 0.0096 0.0124 0.0093 0.0131 0.0093 0.0187 0.0099 
vma pm*(dummy 2003-09) -0.0251 0.0076 
vma pfcut 0.0124 0.0093 pfcut + fint 0.0340 0.0078 pmcut_hat 0.0284 0.0093 
vma 
vma 
vma 
vma 
vma 
vma AR(1) -0.1018 0.0204 -0.1038 0.0205 -0.1021 0.0204 -0.0978 0.0215 
veh intercept -0.2253 0.1452 -0.2188 0.1451 -0.2174 0.1450 -0.2188 0.1449 -0.2232 0.1451 
veh pnewcar 0.0400 0.0317 0.0376 0.0317 0.0432 0.0317 0.0460 0.0317 0.0444 0.0317 
veh interest -0.0008 0.0042 -0.0011 0.0042 -0.0006 0.0042 -0.0004 0.0042 -0.0003 0.0042 
veh income 0.0032 0.0146 0.0033 0.0146 0.0037 0.0146 0.0038 0.0146 0.0036 0.0146 
veh Adults per road mile -0.0136 0.0060 -0.0135 0.0060 -0.0137 0.0060 -0.0137 0.0060 -0.0138 0.0060 
veh licenses/adult 0.0345 0.0184 0.0344 0.0183 0.0345 0.0183 0.0349 0.0183 0.0339 0.0184 
veh trend 0.0002 0.0007 0.0002 0.0007 0.0003 0.0007 0.0004 0.0007 0.0004 0.0007 
veh vehstock(-1) 0.9318 0.0104 0.9323 0.0104 0.9319 0.0104 0.9316 0.0104 0.9316 0.0104 
veh vma 0.0291 0.0147 0.0285 0.0147 0.0281 0.0147 0.0281 0.0146 0.0286 0.0147 
veh pm 0.0013 0.0058 0.0009 0.0058 0.0015 0.0058 0.0019 0.0058 0.0017 0.0058 
veh AR(1) -0.1461 0.0230 0.0376 0.0317 -0.1464 0.0230 -0.1469 0.0230 -0.1461 0.0230 
fint intercept -0.2447 0.0631 -0.2577 0.0631 2.4538 1.0475 0.9282 1.0517 1.1934 1.2081 
fint pf + vma -0.0050 0.0041 -0.0052 0.0041 -0.0185 0.0057 pf + vma -0.0097 0.0060 pfrise -0.0133 0.0062 
fint income -0.0016 0.0144 -0.0009 0.0144 -0.0048 0.0145 0.0000 0.0146 -0.0041 0.0151 
fint fint(-1) 0.9040 0.0100 0.9036 0.0100 0.9140 0.0109 0.8977 0.0115 0.9106 0.0128 
fint Population Ratio -0.0168 0.0603 0.0154 0.0602 -0.0160 0.0592 -0.0005 0.0586 -0.0073 0.0594 
fint Trend66-73 0.0005 0.0011 0.0006 0.0011 0.0005 0.0011 -0.0005 0.0011 0.0001 0.0012 
fint Trend74-79 -0.0068 0.0010 -0.0060 0.0010 -0.0058 0.0011 -0.0061 0.0011 -0.0057 0.0011 
fint Trend80+ -0.0007 0.0003 -0.0007 0.0003 0.0008 0.0007 -0.0002 0.0007 0.0001 0.0007 
fint D7479 -0.0070 0.0048 -0.0082 0.0048 -0.0041 0.0048 -0.0032 0.0048 -0.0046 0.0048 
fint Urban -0.0905 0.0467 -0.0869 0.0467 -0.0778 0.0470 -0.0890 0.0471 -0.0828 0.0463 
fint cafe -0.0345 0.0108 -0.0402 0.0108 -0.0202 0.0186 -0.0256 0.0183 -0.0312 0.0185 
fint pfcut 0.0316 0.0124 pfcut + vma 0.0143 0.0123 pfcut 0.0042 0.0096 
fint vma 0.0107 0.0166 
fint AR(1) -0.1773 0.0201 -0.1756 0.0201 -0.1822 0.0201 -0.1804 0.0202 -0.1807 0.0202 
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 (b) Four-equation models 

Model 4.3 Model 4.13 Model 4.20b Model 4.21b Model 4.23 * 
Equation Variable Coeff. Std. Err. Coeff. Std. Err. Coefficient Std. Error Coefficient Std. Error Coefficien Std. Error 

vma intercept 1.6801 0.1066 1.7249 0.1078 2.1693 0.4400 3.1388 0.3529 3.4021 0.4991 
vma inc 0.0835 0.0117 0.0839 0.0117 0.0847 0.0117 0.0807 0.0119 0.0781 0.0120 
vma congestion 0.0014 0.0027 0.0014 0.0027 0.0032 0.0026 0.0016 0.0026 -0.0001 0.0028 
vma cong*inc -0.0156 0.0032 -0.0146 0.0032 -0.0134 0.0031 -0.0131 0.0031 -0.0166 0.0033 
vma cong*pm -0.0031 0.0022 -0.0032 0.0022 -0.0013 0.0021 -0.0016 0.0021 -0.0042 0.0022 
vma D7479 -0.0430 0.0034 -0.0429 0.0034 -0.0430 0.0034 -0.0441 0.0035 -0.0441 0.0035 
vma Trend -0.0003 0.0002 -0.0002 0.0002 0.0000 0.0005 0.0013 0.0005 0.0014 0.0005 
vma vma(-1) 0.8249 0.0105 0.8189 0.0107 0.8221 0.0107 0.8305 0.0107 0.8229 0.0112 
vma vehstock 0.0276 0.0065 0.0308 0.0066 0.0282 0.0066 0.0242 0.0066 0.0274 0.0067 
vma pm -0.0461 0.0030 -0.0460 0.0030 -0.0498 0.0046 -0.0629 0.0049 -0.0615 0.0054 
vma pm^2 -0.0224 0.0060 -0.0186 0.0061 -0.0225 0.0061 -0.0275 0.0061 -0.0245 0.0063 
vma pm*inc 0.0561 0.0111 0.0721 0.0121 0.0548 0.0111 0.0573 0.0110 0.0534 0.0115 
vma popratio 0.1201 0.0384 0.1289 0.0386 0.1006 0.0419 0.1010 0.0410 0.1437 0.0394 
vma urban -0.0842 0.0413 -0.0980 0.0416 -0.0694 0.0409 -0.0589 0.0415 -0.0763 0.0419 
vma road miles/land area 0.0180 0.0065 0.0173 0.0066 0.0181 0.0065 0.0155 0.0066 0.0181 0.0067 
vma pm*(dummy for 2003-09) -0.0237 0.0071 
vma pfcut 0.0100 0.0093 pfcut+fint 0.0340 0.0079 pmcut_hat 0.0325 0.0091 
vma 
vma 
vma 
vma 
vma 
vma AR(1) -0.0900 0.0207 -0.0856 0.0208 -0.0901 0.0207 -0.0888 0.0206 -0.0932 0.0212 
vehstock intercept -0.3535 0.1422 -0.3516 0.1422 -0.3569 0.1421 -0.3554 0.1421 -0.3653 0.1422 
vehstock pnewcar 0.0418 0.0317 0.0392 0.0317 0.0430 0.0317 0.0445 0.0317 0.0412 0.0318 
vehstock interest -0.0033 0.0040 -0.0036 0.0040 -0.0032 0.0040 -0.0030 0.0040 -0.0030 0.0040 
vehstock income 0.0044 0.0146 0.0043 0.0146 0.0043 0.0146 0.0044 0.0146 0.0041 0.0146 
vehstock urban -0.0420 0.0465 -0.0424 0.0465 -0.0418 0.0465 -0.0416 0.0465 -0.0424 0.0466 
vehstock licenses/adult 0.0441 0.0178 0.0440 0.0178 0.0442 0.0178 0.0445 0.0178 0.0438 0.0178 
vehstock trend 0.0000 0.0007 -0.0001 0.0007 0.0000 0.0007 0.0000 0.0007 -0.0001 0.0007 
vehstock vehstock(-1) 0.9354 0.0102 0.9357 0.0102 0.9353 0.0102 0.9351 0.0102 0.9348 0.0102 
vehstock vma 0.0384 0.0143 0.0384 0.0143 0.0387 0.0143 0.0384 0.0143 0.0396 0.0143 
vehstock pm 0.0028 0.0057 0.0025 0.0057 0.0030 0.0057 0.0032 0.0057 0.0028 0.0058 
vehstock rho -0.1468 0.0230 -0.1471 0.0230 -0.1468 0.0230 -0.1471 0.0230 -0.1458 0.0230 
fint intercept -0.3202 0.0618 -0.3191 0.0619 0.4210 0.9482 -1.0263 0.9488 0.7587 1.0646 
fint pf + vma -0.0074 0.0041 -0.0075 0.0041 -0.0125 0.0055 -0.0041 0.0058 prfise -0.0122 0.0063 
fint inc -0.0002 0.0143 -0.0002 0.0143 0.0021 0.0144 0.0064 0.0144 0.0005 0.0149 
fint fint(-1) 0.8894 0.0102 0.8900 0.0102 0.8950 0.0106 0.8805 0.0111 0.9108 0.0117 
fint Trend66-73 0.0013 0.0009 0.0013 0.0010 0.0011 0.0010 0.0001 0.0010 0.0010 0.0010 
fint Trend74-79 -0.0038 0.0008 -0.0037 0.0008 -0.0028 0.0009 -0.0034 0.0009 -0.0048 0.0010 
fint Trend80+ -0.0010 0.0003 -0.0010 0.0003 -0.0005 0.0006 -0.0014 0.0006 0.0004 0.0006 
fint 7479 dummy -0.0118 0.0047 -0.0119 0.0047 -0.0088 0.0047 -0.0078 0.0047 -0.0033 0.0046 
fint Urban -0.0847 0.0468 -0.0839 0.0468 -0.0801 0.0470 -0.0919 0.0471 -0.0724 0.0462 
fint cafe -0.0607 0.0103 -0.0601 0.0103 -0.0678 0.0158 -0.0714 0.0155 0.0064 0.0158 
fint popratio 0.1096 0.0556 0.1130 0.0557 0.1293 0.0562 0.1302 0.0556 0.1744 0.0542 
fint pfcut+vma 0.0085 0.0112 pfcut+vma -0.0080 0.0112 pfcut 0.0024 0.0086 
fint vma 0.0210 0.0152 
fint rho -0.1694 0.0201 -0.1691 0.0201 -0.1702 0.0201 -0.1691 0.0202 -0.1753 0.0198 
cong intercept -3.8401 0.9940 -3.8457 0.9940 -4.1046 0.9274 -4.0860 0.9273 -4.6094 0.9904 
cong urban-lane-miles/adult -0.6926 0.1316 -0.6931 0.1316 -0.6057 0.1102 -0.6058 0.1102 -0.7682 0.1296 
cong (vehicle miles/adult)+log(ur 0.2258 0.0885 0.2263 0.0885 0.2825 0.0860 0.2799 0.0860 0.2914 0.0900 
cong population / state land area 0.6121 0.0520 0.6119 0.0520 0.5900 0.0490 0.5908 0.0490 0.6424 0.0521 
cong percent trucks 0.4597 0.2062 0.4594 0.2062 0.4622 0.1983 0.4634 0.1983 0.4061 0.2093 
cong urban -4.3113 0.3550 -4.3124 0.3550 -4.0385 0.3434 -4.0331 0.3434 -4.6372 0.3616 
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Table B2.  Coefficient estimates: models with media and uncertainty variables 

(a) Three-equation models 

Equation Variable Coeff. Std. Error Coeff. Std. Error Coeff. Std. Error Coeff. Std. Erro 

vma intercept 3.1468 0.3541 2.9103 0.3668 3.1487 0.3810 3.9416 0.40 
vma inc 0.0770 0.0118 0.0830 0.0121 0.0828 0.0123 0.0746 0.01 
vma Adults / road mile -0.0151 0.0037 -0.0142 0.0038 -0.0145 0.0039 -0.0140 0.00 
vma popratio 0.0630 0.0323 0.0725 0.0328 0.0786 0.0334 0.1462 0.03 
vma Urban -0.0061 0.0395 -0.0114 0.0400 -0.0231 0.0407 -0.0132 0.04 
vma Railpop -0.0082 0.0042 -0.0084 0.0043 -0.0076 0.0044 -0.0065 0.00 
vma D7479 -0.0445 0.0035 -0.0440 0.0035 -0.0436 0.0035 -0.0429 0.00 
vma Trend 0.0013 0.0004 0.0011 0.0005 0.0014 0.0005 0.0024 0.00 
vma vma(-1) 0.8334 0.0104 0.8325 0.0106 0.8276 0.0109 0.8321 0.01 
vma vehstock 0.0161 0.0067 0.0162 0.0068 0.0181 0.0070 0.0185 0.00 
vma pf+fint -0.0639 0.0049 pf  +fint -0.0587 0.0052 pf  +fint -0.0641 0.0057 pf  +fint 3.9959 0.00 
vma pm^2 -0.0207 0.0061 -0.0053 0.0075 -0.0064 0.0075 -0.0126 0.00 
vma pm*inc 0.0577 0.0107 0.0583 0.0109 0.0711 0.0126 0.0779 0.01 
vma pm*Urban 0.0131 0.0093 0.0118 0.0094 0.0100 0.0097 0.0091 0.00 
vma pfcut + fint 0.0340 0.0078 pfcut + fint 0.0286 0.0081 pfcut + fint 0.0332 0.0083 pfcut + fint 0.0529 0.00 
vma Media variable pf * Media_dummy -0.0301 0.0101 pf * Media_dummy -0.0319 0.0101 pf*Media_dummy -0.0316 0.01 
vma pm*(dummy 2003-09)a -0.0216 0.0079 -0.0265 0.00 
vma Fuel price variance pm*log(pf_var) 0.0028 0.00 
vma AR(1) -0.1021 0.0204 -0.0969 0.0206 -0.0894 0.0209 -0.0960 0.02 

veh intercept -0.2188 0.1449 -0.2117 0.1449 -0.1996 0.1445 -0.2249 0.14 
veh pnewcar 0.0460 0.0317 0.0449 0.0317 0.0434 0.0317 0.0423 0.03 
veh interest -0.0004 0.0042 -0.0002 0.0042 -0.0004 0.0042 -0.0004 0.00 
veh income 0.0038 0.0146 0.0039 0.0146 0.0043 0.0146 0.0033 0.01 
veh adults / road mile -0.0137 0.0060 -0.0139 0.0060 -0.0139 0.0060 -0.0136 0.00 
veh licenses/adult 0.0349 0.0183 0.0348 0.0183 0.0346 0.0183 0.0355 0.01 
veh trend 0.0004 0.0007 0.0004 0.0007 0.0003 0.0007 0.0003 0.00 
veh vehstock(-1) 0.9316 0.0104 0.9316 0.0104 0.9319 0.0104 0.9314 0.01 
veh vma 0.0281 0.0146 0.0274 0.0146 0.0262 0.0146 0.0289 0.01 
veh pm 0.0019 0.0058 0.0016 0.0058 0.0012 0.0058 0.0014 0.00 
veh AR(1) -0.1469 0.0230 -0.1469 0.0230 -0.1475 0.0230 -0.1466 0.02 

fint intercept 0.9282 1.0517 1.6171 1.0241 0.8319 1.0025 0.0017 0.98 
fint pf + vma -0.0097 0.0060 pf + vma -0.0124 0.0059 pf + vma -0.0104 0.0058 pf + vma -0.0079 0.00 
fint inc 0.0000 0.0146 -0.0031 0.0145 -0.0003 0.0145 0.0050 0.01 
fint fint(-1) 0.8977 0.0115 0.9070 0.0115 0.9009 0.0115 0.8930 0.01 
fint popratio -0.0005 0.0586 -0.0391 0.0590 0.0020 0.0585 0.0070 0.05 
fint Trend66-73 -0.0005 0.0011 0.0000 0.0011 -0.0002 0.0011 -0.0017 0.00 
fint Trend74-79 -0.0061 0.0011 -0.0075 0.0011 -0.0063 0.0011 -0.0045 0.00 
fint Trend80+ -0.0002 0.0007 0.0005 0.0007 -0.0001 0.0007 -0.0009 0.00 
fint D7479 -0.0032 0.0048 -0.0015 0.0048 -0.0031 0.0048 -0.0049 0.00 
fint Urban -0.0890 0.0471 -0.0872 0.0470 -0.0876 0.0468 -0.0920 0.04 
fint cafe -0.0256 0.0183 -0.0023 0.0172 -0.0210 0.0169 -0.0592 0.01 
fint pfcut 0.0143 0.0123 pfCut + vma 0.0220 0.0120 pfCut + vma 0.0129 0.0118 PFCut + VMA 0.0031 0.01 
fint AR(1) -0.1804 0.0202 -0.1851 0.0202 -0.1810 0.0202 -0.1786 0.02 

adummy is normalized 

Model 3.35 Model 3.37 Model 3.42 Model 3.21b 
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(b) Four-equation models 

Equation Variable Coeff. Std. Error 
Model 4.21b Model 

Coeff. Std. Error 
4.35 Model 

Coeff. Std. Error 
4.37 

Coeff. 
Model 4.42 

Std. Erro 
vma 
vma 
vma 
vma 
vma 
vma 
vma 
vma 
vma 
vma 
vma 
vma 
vma 
vma 
vma 
vma 
vma 
vma 
vma 
vma 

vehstock 
vehstock 
vehstock 
vehstock 
vehstock 
vehstock 
vehstock 
vehstock 
vehstock 
vehstock 
vehstock 

fint 
fint 
fint 
fint 
fint 
fint 
fint 
fint 
fint 
fint 
fint 
fint 
fint 

cong 
cong 
cong 
cong 
cong 
cong 

intercept 
inc 
cong 
cong*income 
cong*pm 
7479 dummy 
trend 
vma(-1) 
vehstock 
pm 
pm^2 
pm*inc 
popratio 
urban 
road miles/state land area 
pfcut + fint 
Media variable 
pm*(dummy 2003-09)a 

Fuel price variance 
AR(1) 

intercept 
pnewcar 
interest 
income 
urban 
licenses/adult 
trend 
vehstock(-1) 
vma 
pm 
rho 

intercept 
pf + vma 
inc 
fint(-1) 
Trend66-73 
Trend74-79 
Trend80+ 
7479 dummy 
urban 
cafep 
popratio 
pfcut+vma 
rho 

intercept 
urban-lane-miles/adult 
(vehicle miles/adult)+log(ur 
population / state land area 
percent trucks 
urban 

3.1388 0.3529 
0.0807 0.0119 
0.0016 0.0026 

-0.0131 0.0031 
-0.0016 0.0021 
-0.0441 0.0035 
0.0013 0.0005 
0.8305 0.0107 
0.0242 0.0066 

-0.0629 0.0049 
-0.0275 0.0061 
0.0573 0.0110 
0.1010 0.0410 

-0.0589 0.0415 
0.0155 0.0066 
0.0340 0.0079 

-0.0888 0.0206 

-0.3554 0.1421 
0.0445 0.0317 

-0.0030 0.0040 
0.0044 0.0146 

-0.0416 0.0465 
0.0445 0.0178 
0.0000 0.0007 
0.9351 0.0102 
0.0384 0.0143 
0.0032 0.0057 

-0.1471 0.0230 

-1.0263 0.9488 
-0.0041 0.0058 
0.0064 0.0144 
0.8805 0.0111 
0.0001 0.0010 

-0.0034 0.0009 
-0.0014 0.0006 
-0.0078 0.0047 
-0.0919 0.0471 
-0.0714 0.0155 
0.1302 0.0556 

-0.0080 0.0112 
-0.1691 0.0202 

-4.0860 0.9273 
-0.6058 0.1102 
0.2799 0.0860 
0.5908 0.0490 
0.4634 0.1983 

-4.0331 0.3434 

PM 

pfcut+fint 
pf * Media_dummy 

pf + vma 

pfcut+vma 

3.1737 0.3555 
0.0791 0.0119 
0.0011 0.0027 

-0.0144 0.0032 
-0.0025 0.0021 
-0.0445 0.0035 
0.0014 0.0005 
0.8314 0.0106 
0.0236 0.0065 

-0.0638 0.0050 
-0.0296 0.0065 
0.0575 0.0110 
0.1093 0.0397 

-0.0639 0.0415 
0.0148 0.0065 
0.0352 0.0080 
0.0061 0.0058 

-0.0913 0.0206 

-0.3577 0.1421 
0.0443 0.0317 

-0.0030 0.0040 
0.0043 0.0146 

-0.0417 0.0465 
0.0446 0.0178 
0.0000 0.0007 
0.9350 0.0102 
0.0387 0.0143 
0.0031 0.0057 

-0.1469 0.0230 

-0.6026 0.9380 
-0.0060 0.0057 
0.0064 0.0144 
0.8833 0.0110 
0.0002 0.0010 

-0.0037 0.0009 
-0.0010 0.0006 
-0.0069 0.0047 
-0.0896 0.0470 
-0.0585 0.0148 
0.1330 0.0553 

-0.0031 0.0110 
-0.1706 0.0202 

-3.9180 0.9530 
-0.6394 0.1176 
0.2546 0.0872 
0.6062 0.0502 
0.4554 0.2016 

-4.2241 0.3484 

PM 

pfcut+fint 
pf * Media_dummy 

pf + vma 

pfcut+vma 

3.5432 0.3653 
0.0794 0.0119 
0.0006 0.0027 

-0.0128 0.0032 
-0.0028 0.0021 
-0.0444 0.0035 
0.0019 0.0005 
0.8221 0.0109 
0.0277 0.0066 

-0.0729 0.0054 
-0.0263 0.0066 
0.0825 0.0122 
0.1248 0.0399 

-0.0828 0.0419 
0.0133 0.0066 
0.0420 0.0081 
0.0071 0.0058 

-0.0359 0.0071 

-0.0840 0.0207 

-0.3557 0.1420 
0.0412 0.0317 

-0.0035 0.0040 
0.0042 0.0146 

-0.0421 0.0465 
0.0445 0.0178 

-0.0001 0.0007 
0.9354 0.0102 
0.0387 0.0143 
0.0028 0.0057 

-0.1474 0.0230 

-0.5382 0.9373 
-0.0059 0.0057 
0.0066 0.0144 
0.8823 0.0110 
0.0000 0.0010 

-0.0035 0.0009 
-0.0010 0.0006 
-0.0068 0.0047 
-0.0894 0.0470 
-0.0583 0.0148 
0.1360 0.0553 

-0.0022 0.0110 
-0.1704 0.0202 

-3.8896 0.9664 
-0.6352 0.1217 
0.2533 0.0872 
0.6088 0.0504 
0.4506 0.2020 

-4.2191 0.3485 

3.8758 
0.0652 

-0.0004 
-0.0117 
-0.0044 
-0.0467 
0.0024 
0.8275 
0.0268 

PM -0.0706 
0.0037 
0.0944 
0.0669 

-0.0967 
0.0111 

pfcut+fint 0.0506 
pf*Media_dummy -0.0080 

-0.0308 
pm*log(pf_var) -0.0100 

-0.0849 

-0.3592 
0.0403 

-0.0038 
0.0041 

-0.0425 
0.0444 

-0.0001 
0.9354 
0.0391 
0.0028 

-0.1467 

-0.5531 
pf + vma -0.0049 

0.0046 
0.8749 
0.0009 

-0.0036 
-0.0010 
-0.0071 
-0.0898 
-0.0554 
0.1700 

pfcut+vma -0.0018 
-0.1697 

-3.8874 
-0.6311 
0.2552 
0.6103 
0.4493 

-4.2251 

0.371 
0.012 
0.002 
0.003 
0.002 
0.003 
0.000 
0.010 
0.006 
0.005 
0.008 
0.012 
0.041 
0.042 
0.006 
0.008 
0.006 
0.007 
0.001 
0.020 

0.142 
0.031 
0.004 
0.014 
0.046 
0.017 
0.000 
0.010 
0.014 
0.005 
0.023 

0.935 
0.005 
0.014 
0.011 
0.001 
0.000 
0.000 
0.004 
0.047 
0.014 
0.055 
0.011 
0.020 

0.965 
0.120 
0.087 
0.050 
0.201 
0.348 

adummy is normalized 
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Appendix C. Detailed yearly projections 

Model 3.3: 

---Calculated using values of variables from historical data--­
2000 2001 2002 2003 2004 2005 2006 2007 

Reference Case 
Short Run Rebound 2.3% 2.1% 2.1% 2.4% 2.6% 2.9% 3.0% 3.0% 
Dynamic Rebound 11.1% 11.3% 11.5% 11.8% 12.0% 12.0% 12.0% 11.8% 
Long Run Rebound 14.7% 13.1% 13.0% 14.9% 16.4% 18.4% 18.8% 19.0% 

High Oil Price Case 
Short Run Rebound 2.3% 2.1% 2.1% 2.4% 2.6% 2.9% 3.0% 3.0% 
Dynamic Rebound 11.5% 11.8% 12.3% 12.8% 13.2% 13.5% 13.7% 13.9% 
Long Run Rebound 14.7% 13.1% 13.0% 14.9% 16.4% 18.4% 18.8% 19.0% 

Low Oil Price Case 
Short Run Rebound 2.3% 2.1% 2.1% 2.4% 2.6% 2.9% 3.0% 3.0% 
Dynamic Rebound 10.6% 10.6% 10.7% 10.7% 10.6% 10.4% 10.0% 9.5% 
Long Run Rebound 14.7% 13.1% 13.0% 14.9% 16.4% 18.4% 18.8% 19.0% 

Model 3.21b: 

------------------------------------------------------------------------------------------------------Calculated using values of variables from AEO-----------------------­
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 

3.3% 2.5% 2.8% 2.9% 2.8% 2.8% 2.8% 2.7% 2.5% 2.4% 2.4% 2.3% 2.2% 2.0% 2.0% 1.8% 1.8% 
11.7% 11.4% 11.4% 11.1% 10.8% 10.5% 10.1% 9.6% 9.2% 8.8% 8.3% 7.9% 7.4% 6.9% 6.5% 6.1% 5.7% 
20.7% 15.9% 17.6% 18.1% 17.7% 17.9% 17.4% 16.7% 15.9% 15.4% 14.9% 14.4% 13.7% 12.9% 12.3% 11.5% 11.0% 

3.3% 2.5% 2.8% 3.3% 3.5% 3.6% 3.5% 3.4% 3.3% 3.3% 3.2% 3.2% 3.1% 2.9% 2.8% 2.7% 2.6% 
14.0% 14.1% 14.4% 14.5% 14.4% 14.1% 13.7% 13.3% 12.9% 12.5% 12.0% 11.6% 11.1% 10.6% 10.1% 9.6% 9.3% 
20.7% 15.9% 17.6% 20.8% 22.1% 22.6% 22.2% 21.7% 21.0% 20.8% 20.4% 19.9% 19.3% 18.6% 17.6% 17.0% 16.3% 

3.3% 2.5% 2.8% 2.4% 2.2% 2.1% 1.9% 1.7% 1.5% 1.4% 1.3% 1.2% 1.2% 0.9% 0.8% 0.7% 0.6% 
8.9% 8.2% 7.8% 7.1% 6.5% 6.0% 5.5% 4.9% 4.5% 4.0% 3.5% 3.0% 2.6% 2.1% 1.8% 1.4% 1.2% 

20.7% 15.9% 17.6% 14.8% 13.8% 12.9% 11.8% 10.6% 9.6% 8.7% 8.1% 7.4% 7.4% 5.5% 4.7% 4.0% 3.7% 

---Calculated using values of variables from historical data--­ ----------------Calculated using values of variables from AEO-----------­ ----------------Calculated 
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 

Reference Case 
Short Run Rebound 0.4% 0.1% 0.1% 0.2% 0.5% 1.0% 1.2% 1.3% 1.7% 0.6% 1.0% 1.1% 1.0% 1.1% 1.0% 0.9% 0.8% 0.8% 0.7% 0.6% 0.5% 0.4% 0.4% 0.3% 0.2% 
Dynamic Rebound 3.1% 3.4% 3.7% 4.1% 4.4% 4.6% 4.6% 4.6% 4.4% 4.2% 4.2% 4.2% 4.0% 3.8% 3.5% 3.0% 2.7% 2.3% 1.9% 1.6% 1.2% 0.9% 0.7% 0.5% 0.3% 
Long Run Rebound 2.2% 0.8% 0.6% 1.4% 3.2% 6.2% 7.3% 8.0% 10.5% 3.3% 5.8% 6.5% 6.1% 6.6% 6.2% 5.6% 4.9% 4.5% 4.0% 3.7% 3.2% 2.6% 2.2% 1.7% 1.4% 

High Oil Price Case 
Short Run Rebound 0.4% 0.1% 0.1% 0.2% 0.5% 1.0% 1.2% 1.3% 1.7% 0.6% 0.9% 1.7% 2.1% 2.3% 2.2% 2.2% 2.1% 2.1% 2.0% 1.9% 1.8% 1.7% 1.5% 1.4% 1.3% 
Dynamic Rebound 3.7% 4.3% 4.9% 5.6% 6.3% 6.9% 7.4% 7.8% 8.1% 8.4% 8.5% 9.3% 9.4% 9.2% 8.8% 8.4% 8.0% 7.5% 7.0% 6.4% 5.9% 5.3% 4.7% 4.2% 3.8% 
Long Run Rebound 2.2% 0.8% 0.6% 1.4% 3.2% 6.2% 7.3% 8.0% 10.5% 3.3% 5.7% 10.6% 12.9% 14.0% 13.7% 13.4% 12.6% 12.7% 12.2% 11.8% 11.1% 10.4% 9.2% 8.6% 7.8% 

Low Oil Price Case 
Short Run Rebound 0.4% 0.1% 0.1% 0.2% 0.5% 1.0% 1.2% 1.3% 1.7% 0.6% 1.0% 0.4% 0.3% 0.2% 0.1% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 
Dynamic Rebound 2.5% 2.6% 2.8% 2.9% 2.9% 2.8% 2.5% 2.1% 1.6% 1.0% 2.0% 1.2% 0.8% 0.5% 0.3% 0.1% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 
Long Run Rebound 2.2% 0.8% 0.6% 1.4% 3.2% 6.2% 7.3% 8.0% 10.5% 3.3% 5.7% 2.5% 1.6% 1.1% 0.6% 0.3% 0.2% 0.1% 0.1% 0.0% 0.1% 0.0% 0.0% 0.0% 0.0% 

Model 3.35 (Reference case): 

---Calculated using values of variables from historical data--­ ----------------Calculated using values of variables from AE 
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 202 

Short Run Rebound 1.1% 1.0% 1.0% 1.1% 1.2% 1.3% 1.2% 1.2% 1.2% 1.0% 1.1% 1.1% 1.0% 1.0% 0.9% 0.8% 0.7% 0.6% 0.6% 0.5% 0.4% 0.4% 0.3% 0.3% 0.2% 
Dynamic Rebound 4.5% 4.5% 4.4% 4.4% 4.3% 4.2% 4.0% 3.8% 3.6% 3.4% 3.3% 3.0% 2.8% 2.5% 2.2% 1.9% 1.6% 1.4% 1.2% 1.0% 0.8% 0.6% 0.5% 0.3% 0.2% 
Long Run Rebound 6.6% 6.1% 6.3% 6.9% 7.0% 7.6% 7.3% 7.0% 7.5% 5.9% 6.4% 6.5% 6.3% 6.0% 5.4% 4.7% 4.1% 3.7% 3.3% 3.0% 2.6% 2.2% 1.8% 1.5% 1.2% 
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Model 4.3: 

2000 2001 2002 2003 2004 2005 2006 2007 
---Calculated using values of variables from historical data--­

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 
-------------------------------------------------------------------------------------Calculated using values of variables from AEO--------------------------­

Reference Case 
Short Run Rebound 2.0% 1.6% 1.4% 1.9% 2.5% 3.1% 3.3% 3.4% 3.9% 2.5% 3.0% 3.2% 3.1% 3.2% 3.2% 3.1% 2.9% 2.9% 2.8% 2.7% 2.6% 2.4% 2.3% 2.2% 2.1% 
Dynamic Rebound 11.7% 12.0% 12.2% 12.5% 12.7% 12.9% 12.8% 13.1% 13.5% 13.2% 13.2% 13.1% 12.9% 12.5% 12.2% 11.7% 11.2% 10.7% 10.2% 9.7% 9.1% 8.6% 8.1% 7.6% 7.1% 
Long Run Rebound 

High Oil Price Case 

12.1% 9.2% 8.0% 11.4% 14.7% 18.6% 20.0% 20.8% 23.5% 14.9% 18.2% 19.0% 18.7% 19.3% 19.0% 18.4% 17.6% 17.2% 16.6% 16.2% 15.4% 14.4% 13.9% 13.0% 12.5% 

Short Run Rebound 2.0% 1.6% 1.4% 1.9% 2.5% 3.1% 3.3% 3.4% 3.9% 2.5% 3.0% 3.9% 4.3% 4.5% 4.5% 4.5% 4.3% 4.4% 4.3% 4.2% 4.1% 4.0% 3.8% 3.7% 3.6% 
Dynamic Rebound 12.8% 13.5% 14.1% 14.9% 15.6% 16.3% 16.7% 17.7% 17.7% 18.1% 18.6% 19.1% 19.2% 19.0% 18.6% 18.3% 17.8% 17.4% 16.8% 16.3% 15.7% 15.1% 14.5% 14.0% 13.5% 
Long Run Rebound 

Low Oil Price Case 

12.1% 9.2% 8.0% 11.4% 14.7% 18.6% 20.0% 20.8% 23.5% 14.9% 18.1% 23.8% 26.2% 27.5% 27.3% 27.1% 26.3% 26.5% 26.1% 25.7% 25.1% 24.3% 23.1% 22.5% 21.7% 

Short Run Rebound 2.0% 1.6% 1.4% 1.9% 2.5% 3.1% 3.3% 3.4% 3.9% 2.5% 3.0% 2.2% 2.0% 1.8% 1.6% 1.4% 1.2% 1.0% 0.9% 0.8% 0.9% 0.4% 0.3% 0.2% 0.2% 
Dynamic Rebound 10.4% 10.3% 10.1% 9.8% 9.5% 9.1% 8.2% 7.9% 8.6% 7.6% 6.9% 6.0% 5.3% 4.7% 4.1% 3.4% 2.9% 2.4% 1.8% 1.3% 0.8% 0.4% 0.3% 0.2% 0.1% 
Long Run Rebound 12.1% 9.2% 8.0% 11.4% 14.7% 18.6% 20.0% 20.8% 23.5% 14.9% 18.1% 13.3% 11.7% 10.6% 9.4% 7.9% 6.8% 5.8% 5.1% 4.2% 4.7% 2.0% 1.4% 1.0% 0.9% 

Model 4.21b: 

---Calculated using values of variables from historical data--­ ------------Calculated using values of variables from AEO--------------­ ---------------Calculated u 
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 

Reference Case 
Short Run Rebound 0.2% 0.0% 0.0% 0.1% 0.4% 1.1% 1.4% 1.6% 2.1% 0.5% 1.1% 1.3% 1.2% 1.3% 1.3% 1.2% 1.1% 1.0% 0.9% 0.9% 0.7% 0.6% 0.5% 0.4% 0.4% 
Dynamic Rebound 4.1% 4.7% 5.1% 5.2% 5.2% 5.3% 5.1% 5.5% 5.6% 5.4% 5.4% 5.5% 5.3% 5.1% 4.8% 4.3% 3.8% 3.3% 2.8% 2.3% 1.8% 1.4% 1.0% 0.7% 0.5% 
Long Run Rebound 0.9% 0.1% 0.0% 0.4% 2.2% 6.5% 8.4% 9.5% 13.0% 3.0% 6.4% 7.4% 7.1% 7.9% 7.7% 7.1% 6.3% 5.9% 5.4% 4.9% 4.2% 3.3% 2.9% 2.2% 1.9% 

High Oil Price Case 
Short Run Rebound 0.2% 0.0% 0.0% 0.1% 0.4% 1.1% 1.4% 1.6% 2.1% 0.5% 1.1% 2.2% 2.7% 2.9% 2.9% 2.9% 2.8% 2.8% 2.8% 2.7% 2.6% 2.5% 2.3% 2.2% 2.0% 
Dynamic Rebound 5.5% 6.5% 7.4% 8.1% 8.7% 9.4% 9.9% 11.1% 10.7% 11.3% 11.8% 12.9% 13.1% 12.9% 12.5% 12.2% 11.7% 11.3% 10.6% 10.0% 9.4% 8.8% 8.1% 7.5% 7.0% 
Long Run Rebound 0.9% 0.1% 0.0% 0.4% 2.2% 6.5% 8.4% 9.5% 13.0% 3.0% 6.3% 13.3% 16.4% 18.1% 18.0% 17.8% 17.0% 17.4% 16.9% 16.5% 15.9% 15.1% 13.8% 13.1% 12.2% 

Low Oil Price Case 
Short Run Rebound 0.2% 0.0% 0.0% 0.1% 0.4% 1.1% 1.4% 1.6% 2.1% 0.5% 1.1% 0.3% 0.2% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 
Dynamic Rebound 2.9% 3.1% 3.1% 2.8% 2.3% 2.0% 1.3% 1.2% 1.6% 0.8% 2.5% 0.9% 0.4% 0.2% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 
Long Run Rebound 0.9% 0.1% 0.0% 0.4% 2.2% 6.5% 8.4% 9.5% 13.0% 3.0% 6.3% 1.6% 0.7% 0.4% 0.2% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 
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Appendix D. Projections from model with structural break in 2003 

Projections of Rebound Effect: 
Four-equation model estimated on 1966-2009 data with structural break 

in 2003: projections assume break remains through 2035 
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Projections of Rebound Effect: 
Four-equation model estimated on 1966-2009 data with structural break 

in 2003: projections assume break is "turned off" starting 2010 
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General Comments 
The reviewers expressed overall support for the methodology described in the report, as well as support 
for the implementation of the methodology to derive empirical estimates of the rebound effect for 
passenger vehicles. Gillingham: “This is a thoughtful and careful effort aiming to address a difficult 
question…tackles a difficult question using what is likely the best data publicly available…provides 
estimates that appear to be reasonable…provides a valiant (and reasonable) attempt at forecasting the 
VMT [vehicle miles traveled] rebound effect forward…It would be difficult to do much better given the 
task at hand.” Greene: “The S&H [Small and Hymel] analysis is very well done, uses appropriate models, 
data and econometric methods…makes several important contributions to knowledge of the rebound 
effect…results are consistent with both the central tendency of other estimates in the literature and 
with the best studies in the peer-reviewed literature… projected rebound effects are useful and 
plausible…results are useful to EPA as they now stand.” Sallee: The Small/Hymel report “…uses an 
appropriate methodology and defensible assumptions…Where I do disagree…I believe that the 
preference of one method or specification over the other involves an element of subjective judgment 
about how to weigh the costs and benefits of different approaches…I did not identify any issues that I 
believe are objectively incorrect” 

Comment: Gillingham commented that in the task given to the authors, the definition of VMT rebound 
effect was vague and required that certain assumptions be made about how the adoption of fuel 
efficient technologies will influence other vehicle characteristics.  Gillingham noted how an increase in 
vehicle price or a trade-off leading to less desirable vehicle characteristics could lead to fewer vehicles in 
the fleet and a reduction in VMT.  Gillingham also concludes that the authors’ assumption that vehicle 
price and other attributes remained fixed while vehicle efficiency improved would result in a slight 
overestimate of the rebound effect. 

EPA Response: The Small and Hymel methodology accounts for the VMT rebound effect from two 
pathways. The first is the increase in the average fuel economy of the vehicle fleet, and that in turn 
reduces the cost per mile of travel. The second is that the size of the vehicle fleet may increase because 
vehicles are now more useful, in the sense that they can be driven more cheaply. This change in vehicle 
fleet size may further affect the amount of overall driving. Empirically, they find that the first path is by 
far the dominant one, so that one could ignore the second pathway as an approximation. The full effect 
on vehicle sales and fleet size will also be influenced by any change in vehicle prices due to regulation. 
This effect on fleet size would likely work in the opposite direction to that arising from a change in fuel 
cost: if regulations result in manufacturers raising vehicle prices along with reduced fuel costs, those 
higher prices would tend to mitigate any tendency for the size of the fleet to increase. 

EPA agrees that there are potentially other aspects of our rule that may affect VMT besides the rule’s 
impact on fuel costs, which is the focus of the Small and Hymel report. For example, effects on vehicle 
sales, due to changes in price, fuel economy, or other vehicle attributes could affect total VMT.  In EPA’s 
analysis of the effects of greenhouse gas (GHG) standards on light-duty vehicle sales, it sees 
counterbalancing forces: sales may increase due to improved fuel economy, but may decrease due to 
increased costs.  The agency has not concluded whether the net effect on vehicle sales will be positive 



 

 

    
     

    

      
    

   

   
    

     
   

      
 

   
  

 
    

   
  

  
   

  
     

       
   

  

    
   

     
   

   

   
 

    
  

   
    

   
  

or negative.  In turn, vehicle sales impacts could affect rates of vehicle scrappage.  Given the 
complications in just assessing the directional impact of EPA standards on vehicle sales, focusing on the 
direct effects of reduced fuel costs on VMT seems like a reasonable approach. 

Comment: Greene noted that both 3-equation and 4-equation versions of the model do not consider 
usage-induced capital depreciation, which will increase as efficiency technologies are adopted that 
increase the price of the vehicle. 

EPA Response: We are not sure of the causal linkage between higher vehicle prices and usage-induced 
depreciation of vehicles. Furthermore, there is little evidence that drivers, in general, take capital cost 
into account in decisions relating to amount of driving.  Most choice models, for example those used in 
practical urban transportation planning, assume that the cost variable affecting consumers’ decisions 
excludes capital cost entirely. In any case, we don’t believe that this effect would have much 
quantitative impact on VMT rebound estimates. 

Comment: Greene and Gillingham commented that aggregate state input data may mask some of the 
heterogeneity in the rebound effect, such as VMT rebound elasticities that vary by vehicle age. 

EPA Response: We agree with the Greene and Gillingham that the use of aggregate VMT data does not 
allow for the identification of some aspects of heterogeneity in the rebound effect.  Alternative 
approaches, focusing for example on travel survey data, may help address some of these heterogeneity 
questions. But there are trade-offs between using more aggregate data (i.e., state level data) and travel 
survey data.  For example, Greene noted that, unlike travel survey data, studies based upon aggregate 
data do not face the risk that observations of individual responses may fail to add up to a national-level 
change. As another example, it can be difficult to control for important factors other than fuel prices and 
fuel efficiency that may make one household drive more than the other (e.g., job location, after school 
activities, etc.).  EPA believes that the aggregate approach is appropriate for the purpose of estimating 
the overall nationwide increase in driving that would result from a given reduction in fuel operating 
costs. 

Comment: Gillingham and Sallee raised the issue of the potential problem of measurement error with 
the use of aggregate data in the report. Sallee commented that the VMT variable is not directly 
measured, but is imputed based on fuel sales and estimates of fuel efficiency that may be inconsistent 
across states and over time. Sallee suggested that using VMT readings from odometer readings from 
smog checks may be one way to avoid the issues associated with using state level aggregate data. 

EPA Response: As Small and Hymel state, there are potential problems with the VMT data collected by 
the US Federal Highway Administration. These data are reported by states, which lack a uniform 
methodology for estimating them. For example, some states rely on periodic vehicle counts, while 
others multiply fuel consumption (measured from tax records) by an independent estimate of fleet fuel 
efficiency. However, Small and Hymel do not think that these potential problems bias their results. They 
posited that sources of measurement error are mostly unrelated to their independent variables.  Even if 
there are sources of measurement error, the use of fixed effects eliminates the spurious effect of any 
cross-state relationship that is consistent over time.  One might worry that errors in measuring fuel 



 

 

    
      

    
 

  
   

 
   

    
      

   
   

    
     

   

  
  

  

   
      

     

  
  

   
    

     

    
  

    
    
   

    
   

     
  

      
 

 

consumption by state could appear in both VMT data (in those states where the VMT estimate is based 
on fuel consumption) and in fuel efficiency. This would bias OLS estimates, but not 2SLS and 3SLS, which 
are specifically designed to eliminate asymptotic bias resulting from correlated errors in the dependent 
variables. 

We agree with Sallee that smog check odometer travel data would be another source of information 
about travel behavior that could be useful in attempting to estimate VMT rebound effects. We also note 
that Gillingham has undertaken work estimating the VMT rebound effect with California smog check 
data. The Gillingham study is quite useful in providing another “data point” to assess VMT rebound 
effects. However, there are trade-offs between using more aggregate data (i.e., state level data) and 
disaggregate data (e.g., travel survey data, or smog check odometer readings).  For example, as 
mentioned above, Greene noted one advantage of using aggregate data for estimating the rebound 
effect is that it covers the totality of vehicle travel. Unlike travel survey data, studies based upon 
aggregate data do not face the risk that observations of individual responses fail to integrate to national-
level change. Also, only a limited amount of smog check data is available for specific states or cities, 
which limits the usefulness of this approach to obtaining national estimates of VMT rebound. 

Comment: Gillingham noted that while the report assumed no measurement error, if classical 
measurement error in the regressors existed, the result would be a downward bias of the coefficients 
(i.e. attenuation bias). 

EPA Response: Attenuation bias is a common problem in econometric studies. The reviewer is correct 
that measurement error in the regressors might lead to a downward bias in the coefficients estimated. 
This is one of several sources of uncertainty in the results. 

Soundness of econometric procedures 
Comment: Gillingham commented that linear time trends are used instead of a standard panel data 
approach with fixed time effects, and that if fixed time effects had been used, the model would control 
for other changes more flexibly. Sallee commented similarly that there was apparently no attempt to 
control for correlation across states in the error terms, and suggested clustering standard errors by year. 

EPA Response: These comments raise the questions on how the time trend should be better 
represented in the model and what the impact is on the standard errors if the time trend is treated 
differently in the model. Due to limitations of the software used to estimate the model in the report, the 
authors were not able to compute clustered standard errors along with the other two time-related 
effects it takes into account, namely autoregressive errors and a lagged dependent variable. However, 
subsequent to this report, the authors conducted two experiments to see if clustering the standard 
errors makes a difference. First, they estimated a slightly different model, identical except omitting the 
time trends. They also estimated this model with a different estimator, Generalized Method of 
Moments (GMM), which was also used for a comparison in the Small and Van Dender paper. The 
comparison was just to see whether this different method gave different results, which for the most 
part it did not. 



 

 

   
   

       
     

    
  

  

      
    

  
  

      
    

  

     
    

    

     
     

   
    

  
      

  
     

   
 

    
    

    
  

     
    

                                                           
    

  
 

 

       
              

Using this slightly modified model, standard errors were computed both with and without clustering. 
The clustering was done at both at the state level, as the authors initially thought correlations across 
time would be the main problem with standard errors, and also at the level of a year, as suggested by 
the commenter. The results showed virtually no change in standard errors. This is somewhat surprising, 
but with two time-related correlations already handled in the model (autoregressive errors and lagged 
dependent variables), it is difficult to develop trustworthy intuition about what to expect from a time-
related clustering calculation. 

The authors do not think the failure to cluster during the calculation of standard errors makes any 
significant difference, and in particular they cannot find any evidence that the reported standard errors 
are understated as a result. A more thorough description of these experiments is described in their 
working paper.39 

Comment: Gillingham suggested that when relying on time series variation over many years, testing for 
autocorrelation and unit roots is a common approach, and noted that while the authors did consider 1st 
order autocorrelation,  that second-order order autocorrelation was not considered. 

EPA Response: In the judgment of the authors, the time series variation in the data was too limited to 
make it likely that both first-order and second-order correlation could be accurately measured. 
Measuring first-order autocorrelation already is a major advance over much of the literature. 

Comment: Sallee noted that panel identification may introduce the problem of omitted variable bias if 
there are other factors that are correlated with gasoline price and VMT per adult, such as personal vs. 
work driving, the quality of automobiles, commuting norms, fraction of two-earner families, expansion 
of urban sprawl and that other factors that may also be correlated with VMT. Along this same line of 
argument, Sallee noted that the price of gasoline is the most important variable in the analysis, and 
adding time period fixed effects would remove the vast majority of variation in gasoline prices due to 
fluctuations in global oil price. The remaining state-specific variations in price would be the result of 
short term imbalances in supply and demand, and therefore may have limited impact on behavior. Thus, 
Sallee suggested adding time dummies to distinguish between periods where there may be structural 
breaks. 

EPA Response: Using dummy variables for years better controls for changes over time for factors that 
Sallee raises (e.g., quality of cars, commuting norms, etc), whereas a linear time trend will not be as 
effective. But reducing omitted variable bias with fixed effects comes at a cost. As Sallee mentions, the 
problem is that every time you add in a fixed effect, you are removing some kind of variation from the 
data. Having both time and state dummies would mean that you are using only variation in prices within 
a given state in a single year. And if most of the variation is coming from national trends, or fluctuations 

39 Hymel, Kent, and Kenneth A. Small, “The Rebound Effect for Automobile Travel: Asymmetric Response 
to Price Changes and Novel Features of the 2000s,” Working paper 14-15-03, UC Irvine (May 2014). 
http://www.economics.uci.edu/files/economics/docs/workingpapers/2014-15/14-15-03.pdf 

http://www.economics.uci.edu/files/economics/docs/workingpapers/2014-15/14-15-03.pdf


 

 

      
  

  
   

    
   

    
   

 
    

   

  
     

  
     

   
     

     
   

   
   

   
      
      

       
     

   

  
  

     
     

   
    

    
   

  
      

in the global oil price, then time fixed effects will remove that variation, leaving you with very little to 
identify the coefficients. 

At an earlier stage of the research the authors attempted to estimate a model with individual dummies 
for each year. The result was very imprecise coefficient estimates, and sometimes failure of the iterative 
nonlinear estimation routine to converge. It is for this reason that this approach was not included in the 
results. An additional reason to forego year dummies is the possible anomalous causes of year-to-year 
changes in state-level fuel prices, as noted by this same commenter. As for more complex time trends, 
the authors did try a number of time-trend variables with structural breaks. No significant breaks were 
found in time trends in the VMT equation, but there were identifiable breaks in the equation for fuel 
intensity, resulting in the use of three time trend variables in the latter equation. This is not mentioned 
in the text of the paper but can be seen in the detailed appendix results. 

Consideration of uncertainties 
Comment: All of the reviewers suggested that more treatment of uncertainty would be useful. Sallee 
suggested that a fuller way of representing forecast and coefficient uncertainty would be to model the 
uncertainty in the forecasted variables and provide a collection of different model results based on 
random draws of these variables.  If this was done, he suggested, it would make clearer which 
parameters are pivotal, so users know where to focus their attention. 

EPA Response: Incorporating uncertainty is a difficult challenge that has not been given much attention 
in the literature on the VMT rebound effect. There are many different types of uncertainties: (1) 
uncertainties due to data shortcomings, (2) issues with the experimental design available in the 
historical record, (3) uncertainties due to model formulation, (4) uncertainties inherent in econometric 
estimation, and (5) uncertainties about the future state of the world.  Small and Hymel attempt to 
address many of these issues by constructing alternative projections based on different assumptions. 
While a formal uncertainty analysis might be useful to undertake in the context of the VMT rebound 
issue, such an effort would be a significant and complex task in its own right. Given the complexities 
associated with undertaking this type of analysis, a formal uncertainty analysis is beyond the scope of 
this current effort. 

Finding of asymmetric response 
Comment: All reviewers believe Small and Hymel use a well-established approach to account for 
asymmetric responses to increases/decreases in per mile fuel costs based on variation in fuel prices. 
Greene and Sallee believe that there is sufficiently strong evidence of an asymmetric response in the 
paper and the literature to use a model that allows for this difference, and agree with Small and Hymel’s 
decision to use 3.21b and 4.21b as their preferred model specifications.  Gillingham, however, believes 
that the saliency of gasoline prices may be different than the saliency of fuel price per mile, so he would 
be more comfortable using results that assume a symmetric response. 

EPA Response: Small and Hymel find a significant asymmetric VMT response to fuel cost increases and 
decreases based upon fuel price changes.  While we agree with Gillingham that the saliency of gasoline 



 

 

    
    

   
     

   
  

   
     

   
  

  
   

  
 

    
  

 
    

    
     

   

  
    

   
      
   

    

  
  

   
    

  

   
    

  
   

prices may be different than the saliency of fuel costs, Greene and Sallee suggest that an asymmetric 
VMT response to fuel costs based on fuel price increases and decreases (i.e., models 3.21b and 4.21b) 
seems reasonable in Small and Hymel’s work.  Small and Hymel suggest in their report that their 
estimates of the impact on VMT from fuel costs may actually measure the response to changes in fuel 
price rather than fuel efficiency because they are unable to find a statistically significant influence on 
VMT from fuel efficiency alone.  For this reason, as well as endogeneity concerns discussed in their 
report, they prefer the model that captures asymmetry based on fuel price increases vs. decreases 
(3.21b, 4.21b) rather than fuel costs (3.23 and 3.24). In models 3.21b and 4.21b, an increase in fuel 
economy (which would by itself reduce fuel costs) behaves like a decrease in fuel price, with a smaller 
response than when the fuel price increases.  It should be noted that they also found a statistically 
significant difference in the impact on VMT from fuel cost increases and decreases, too (models 3.23 
and 3.24). 

Appropriateness of dynamic rebound to account for variables that
change over vehicle lifetime 
Comment: All three reviewers agree that the dynamic rebound effect (i.e., which accounts for how 
income, congestion, and other variables that influence vehicle travel vary over time) is a useful way to 
summarize the rebound effect through time. They also agree that the dynamic rebound effect should be 
used to quantify the rebound effect over the period of a vehicle’s lifetime. 

EPA Response: We agree with the reviewers that the dynamic rebound effect is a useful summary 
statistic for quantifying vehicle rebound effects over time and should be used to estimate the rebound 
effect over the period of a vehicle’s lifetime. 

Appropriateness of methodology for projecting VMT 
Comment: The reviewers are generally in agreement that there is strong evidence that the rebound 
effect has changed over time and that changes are correlated with changes in income and fuel prices. 
They also agree that there is a theoretical justification for including these effects, since income affects 
the value of travelers’ time and fuel prices affect the fuel cost share of the long-run cost per mile of 
travel. Thus, they agree that it is appropriate to include these effects in the forecasting model. 

Sallee suggested that one alternative to forecasting the rebound effect would be to take the best 
available estimate of the rebound effect from recent years, say 2000 to 2007, and project these 
estimates forward as a constant rebound effect over all future years without changing income and fuel 
prices. Similarly, Sallee suggested that one way to judge the importance of the decline in the rebound 
effect with income is to provide a comparison projection using a constant rebound effect. 

The reviewers provided some additional considerations and recommendations regarding the 
extrapolation approach. For example, Sallee raised questions about the way that fuel price volatility is 
represented in the projections. Sallee and Greene suggested using a nonlinear extrapolation approach 
that is asymptotic above zero. Greene commented that a linear extrapolation of the income and price 



 

 

  
   

     
     

    

     
  

    
    

  
 

  
   

   
     

   
      

       

 

effects could be improved upon by using a better functional form. Greene suggested an alternative 
approach where the rebound approaches zero as income goes to infinity and fuel prices go to zero. 

EPA Response: We agree with the reviewers that there is strong evidence that the rebound effect has 
changed over time and that changes may be caused by changes in income and fuel prices.  Thus, it is 
appropriate to include these effects in the forecasting model. We believe that it is possible to judge the 
importance of income without formal projections. One only needs to compare the rebound effect 
estimated year by year with the estimated rebound effect for the entire time frame of the analysis to 
see the impact of income on the rebound effect. 

According to Small and Hymel, they attempted in earlier phases of this research to estimate a model 
with a built-in nonlinear response that tends toward an asymptote of zero rebound (when incomes are 
very high), but were unsuccessful. The procedure currently used truncates the rebound effect at zero 
state by state, and has the effect of making the aggregate rebound nonlinear with a zero asymptote. 
This seems like a reasonable way to project the rebound effect into the future when, as happened here, 
using a nonlinear form ended up being intractable to implement. While the truncation procedure is 
undoubtedly inaccurate at a fine level of detail (e.g., a given state in a given year), the errors are likely to 
average out and so it can produce a satisfactory aggregate analysis. If an asymptotic value above zero is 
used as suggested by Gillingham and Sallee, other issues would need to be addressed. For example, 
what value should be chosen and what is the basis for the new chosen value? The choice of a positive 
asymptotic value may be considered arbitrary and difficult to defend. 
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