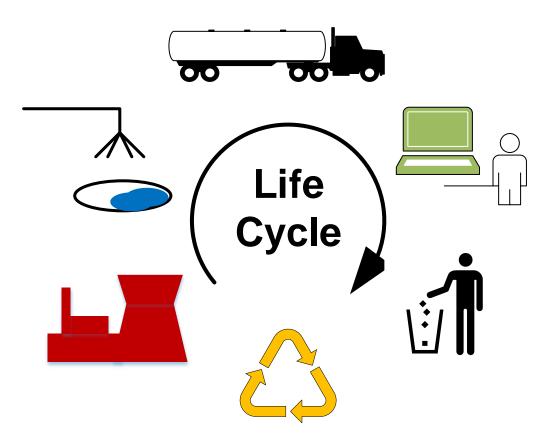


Applying Machine Learning to Estimate Releases from New Uses of Existing Chemicals

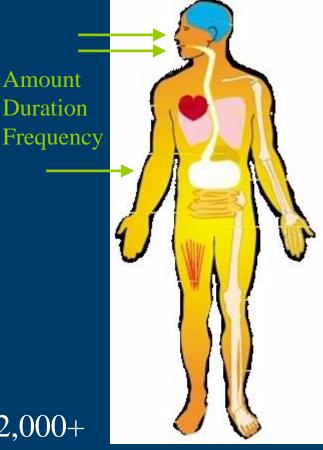
Raymond L. Smith, Jose D. Hernandez-Betancur, David E. Meyer, Gerardo J. Ruiz-Mercado, William M. Barrett, Michael A. Gonzalez, John P. Abraham

Office of Research and Development Center for Environmental Solutions and Emergency Response Chemical Safety for Sustainability AIChE Annual Meeting November 11, 2019

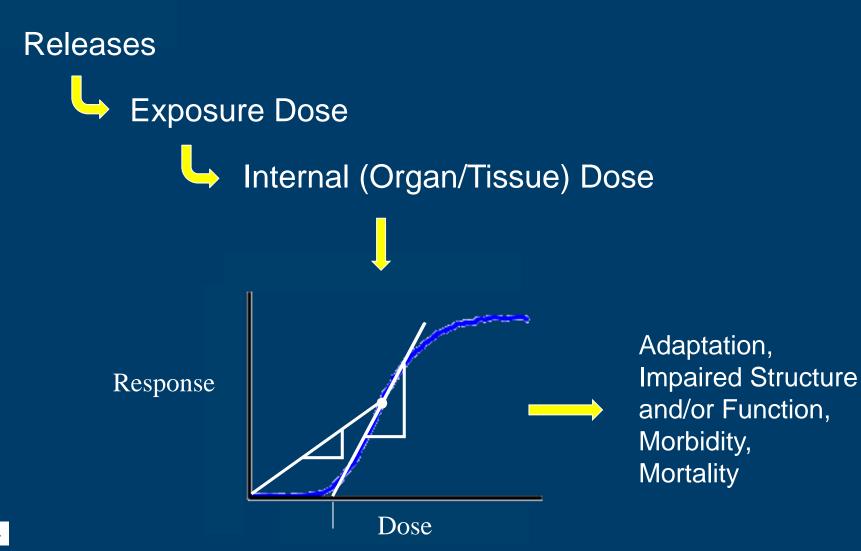


The views expressed in this presentation are those of the authors and do not necessarily reflect the views or policies of the U.S. Environmental Protection Agency.

Life Cycle of a Chemical


Motivation: Toxicity

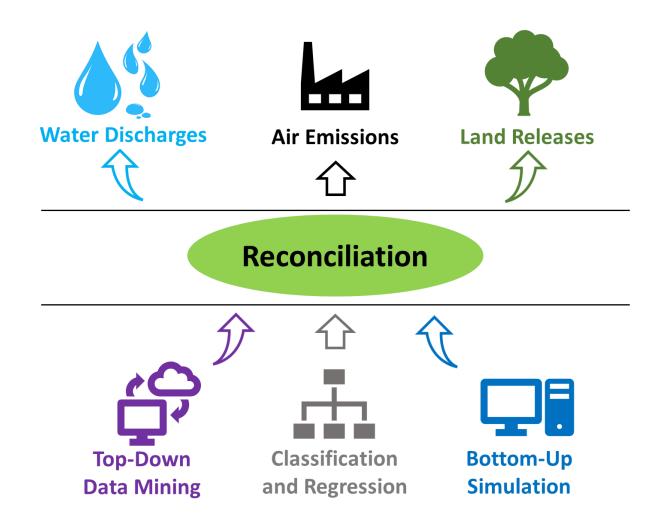
Air Emissions


Liquid Discharges

Solid Waste

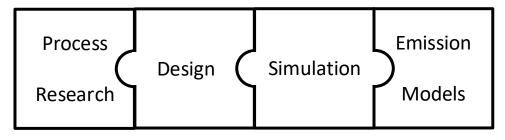
Known chemicals: ~100 million TSCA inventory: ~85,000 Active chemicals (as of 6/19): 32,000+

Toxicity


4

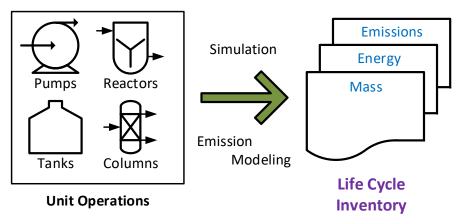
Toxic Adverse Effects

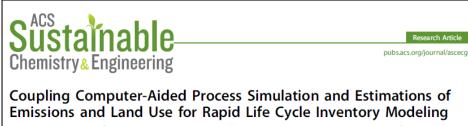
Estimating Chemical Releases



Rapid Estimation of Manufacturing Emissions

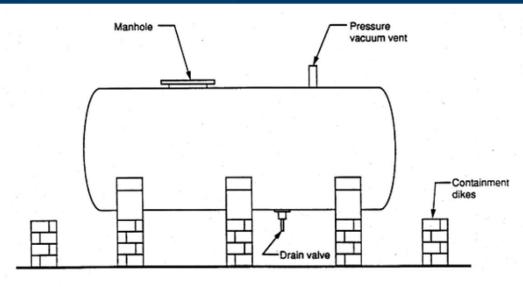
1. Existing inventory databases


2. Top-down inventory data mining


3. Bottom-up inventory development

Bottom-Up Simulation

Advantages: potential for improved Life Cycle Inventory; process specific; inputs naturally in results; storage, vent, and fugitive emissions included



Raymond L. Smith,*[©] Gerardo J. Ruiz-Mercado, David E. Meyer, Michael A. Gonzalez,[©] John P. Abraham, William M. Barrett, and Paul M. Randall

National Risk Management Research Laboratory, United States Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, Ohio 45268, United States

Challenges: knowledge of engineering design; need for chemical synthesis details; uncontrolled emissions

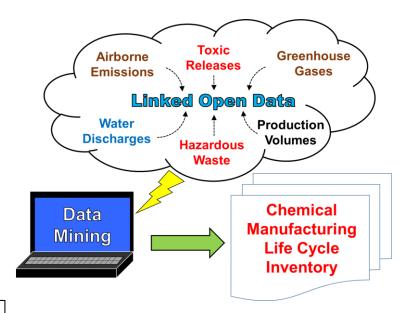
Bottom-Up Simulation

Working Losses

$$L_{W} = \frac{\dot{V}}{22.4} \left(\frac{273.15}{T}\right) \left(\frac{P_{i}^{sat}}{760}\right) (MW) K_{N} K_{P}$$

Breathing Losses $L_{B} = 16.3V_{V}(\frac{273.15}{T})(\frac{P_{i}^{sat}}{760})(MW)(\frac{T_{R}}{T})$

Process Vents


$$S_i = \frac{P_i^b}{x_i \gamma_i P_i^{sat}} = \frac{k_i A}{k_i A + F}$$

$$E_i = \frac{Fx_i \gamma_i P_i^{sat}}{RT} S_i(MW_i)$$

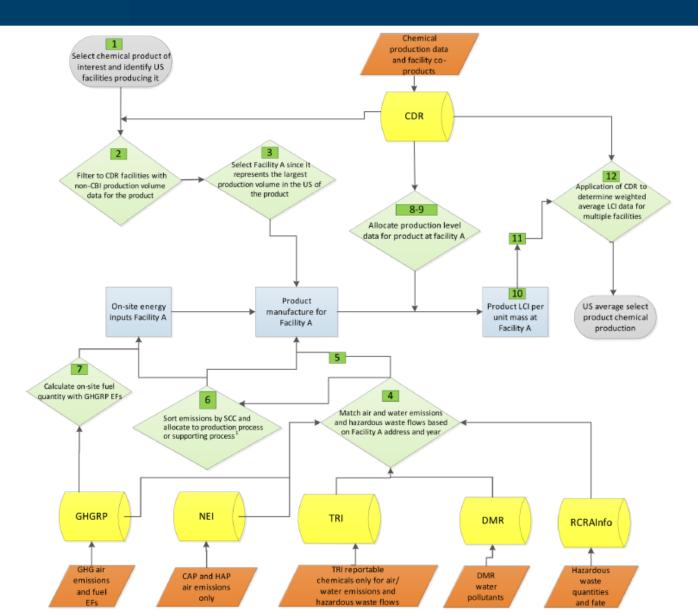
Equipment Type	Service	Emission Factor				
		(kg/h/source)				
Pumps	Light liquid	0.0199				
	Heavy liquid	0.00862				
Compressors	Gas	0.228				
Valves	Gas	0.00597				
	Light liquid	0.00403				
	Heavy liquid	0.00023				
Connectors (e.g., flanges)	All	0.00183				
Open-ended lines	All	0.0017				
Sampling connections	All	0.0150				
Pressure relief valves	Gas	0.104				

Top-Down Data Mining

Advantages: primary data reported by industry and States; detailed release profiles; automation capabilities (linked open data)

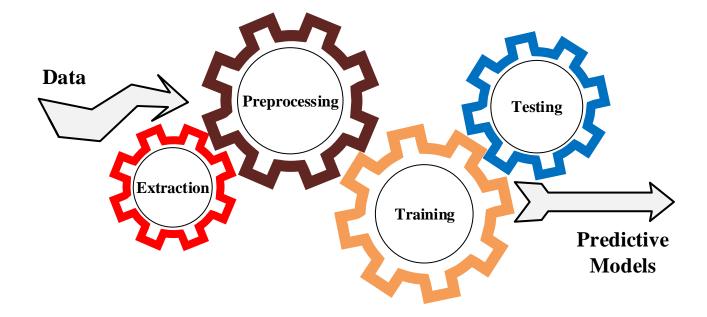
Policy Analysis pubs.acs.org/est

Mining Available Data from the United States Environmental Protection Agency to Support Rapid Life Cycle Inventory Modeling of Chemical Manufacturing


Sarah A. Cashman,[†] David E. Meyer,^{**,‡} Ashley N. Edelen,^{§,||} Wesley W. Ingwersen,[‡] John P. Abraham,[‡] William M. Barrett,[‡] Michael A. Gonzalez,[‡] Paul M. Randall,[‡] Gerardo Ruiz-Mercado,[‡] and Raymond L. Smith[‡]

[†]Eastern Research Group, 110 Hartwell Avenue, Lexington, Massachusetts 02421, United States

[‡]United States Environmental Protection Agency, National Risk Management Research Laboratory, 26 West Martin Luther King Drive, Cincinnati, Ohio 45268, United States


[§]Oak Ridge Institute of Science and Education (ORISE) hosted by U.S. Environmental Protection Agency Office of Research and Development, 26 West Martin Luther King Drive, Cincinnati, Ohio 45268, United States **Challenges:** multi-chemical facility-level allocation; input data gaps; currently limited to TSCA Chemical Data Reporting chemicals

Top-Down Data Mining

Machine Learning

Data Mining Literature

- Search Terms
- Searches
- Compilation of Search Results
- Applying Filters
- Scraping Desired Data

Acrylamide Case Study

Collection of Chemical Input Parameters

SMILES Structure: O=C(N)C=C

Molecular Weight71.079 g/molXLogP3-0.7Hydrogen Bond Donor Count1Hydrogen Bond Acceptor Count1Rotatable Bond Count1Topological Polar Surface Area43.1 A^2Heavy Atom Count5

19,048 rows of literature results about Acrylamide

Filtering Results

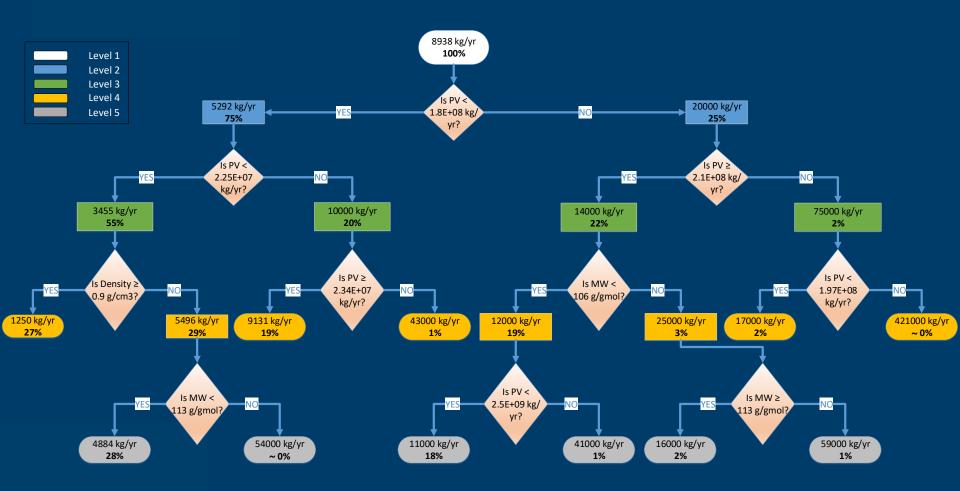
'health' and 'exposure'
209 results
and 'coffee'
18 results (7 articles)

'release' and 'model'
64 results
and 'exposure'
2 results

'exposure' and 'cancer' and 'industr'
28 results
and
not 'food'
3 results (2 current articles)

Tables as Results

	2007				2008				20	the Margins of Exposure for neurotoxic risk assessment (MOE _N) and carcinog					1 carcinogenic
	N ^b	Mean ^a	SD ^c	Max.	$N^{\rm b}$	Mean ^a	SD ^c	Max.	N^1	risk assessment (M	AOE _C)	are report	ed. Data are expr	essed as µg/kg-l	w/day for di-
Biscuits crackers	66	284	315	1526	131	204	178	1042	ç	etary intake. MOI	N val	ues are rep	orted for BMDL	10 (0.2 mg/kg-b	w/day). MOE _C
Biscuits infant	97	204	352	2300	88	110	147	1200	5	values are reporte	d for F	MDL ₁₀ (0.3	1 and 0.18 mg/kg	-bw/day)	
Biscuits not specified	291	303	433	4200	260	209	247	1940	33	values are reporte	1 101 1	MBEI0 (0.3	and only mg/kg	burrauy).	
Wafers	38	210	256	1378	48	252	416	2353	ę.	Mean Acrylamid	o Inta	ka: ug/kg b	wlday		
Bread crisp	153	228	328	2430	90	235	273	1538	13	Weath Act yianno	e inta	ке, µg/кg-u	w/uay		
Bread soft	123	70	116	910	191	49	56	528	11	Age (magne)	L	hanasa	Amorican	Chasalata	Fannagaa
Bread non specified	54	190	424	2565	17	23	19	86	5	Age (years)	Le	banese	American	Chocolate	Espresso
Coffee instant	51	357	327	1047	58	502	285	1373	4	Deputation (2, 7	5)				
Coffee non specified	41	261	268	1158	10	241	215	720	1	Population (3–7					
Coffee roasted	151	253	203	958	253	208	182	1524	17	Dietary Intake	10	0.9 ± 6.5	0.37 ± 0.24	1.2 ± 0.8	7.4 ± 4.4
Gingerbread	357	425	494	3615	246	437	545	3307	30	MOEN	18	2	535	163	27
Muesli and porridge	47	215	183	805	18	43	27	112	5						
Other products not specified	378	271	355	2529	445	198	309	2592	24	^a MOE _C	- 22	3(17)	829(481)	252(139)	42(24)
Substitute coffee	59	800	1062	4700	73	1124	1138	7095	3	Children/Teens (3 - 18				
Breakfast cereals	132	152	184	1600	120	170	247	2072	15	Dietary Intake	8	5 ± 5.5	0.26 ± 0.15	1.3 ± 1.0	6.1 ± 3.7
Cereal-based baby food	92	69	72	353	96	45	81	660	5				· · · · - · · · ·		
Jarred baby food	87	44	35	162	128	35	39	297	11	MOE _N	24	-	775	148	33
Home cooked potato products deep fried	54	354	413	1661	39	228	253	1220	4	^a MOE _C	31	7(21)	1202(698)	230(134)	51(30)
Home cooked potato products not specified	82	277	392	2175	100	192	402	3025	15	Young Adults (18-30)					
Home cooked potato products oven fried	8	385	342	941	94	235	268	1439	2				0.2 0.2	12 07	62 41
French fries	647	357	382	2668	521	280	279	2466	46	Dietary Intake		6 ± 6.9	0.3 ± 0.2	1.2 ± 0.7	6.3 ± 4.1
Potato crisps	273	565	259	4180	435	616	634	4382	38	MOE _N	2	l	633	172	32
^a Values based on an upper bond scenario (val	ues below	IOD and va	lues betwee	en LOD and	1100 wer	e set to the	IOD or the	100 valu	ie resp	^a MOE _C	3	2(19)	981(570)	266(155)	49(29)
^b Number of individual samples analyzed for each			ides betwee		1 2002 1101	e set to the	LOD OF the	2002 1414	ie, resp				561(576)	200(100)	15(25)
^c Standard deviation of the upper bond scenari			not availabl	e for the 2	009 data					Adults (31–40)					
standard deviation of the upper bond scenari	o. standa	id deviation	not availabl	ie for the 2	2005 data.					Dietary Intake	1	1.1 ± 5.9	0.37 ± 0.23	1.3 ± 1.0	9.5 ± 4.6
m 11 1													548	151	21
Table 1													+ +-		
Experimental limits for AA toxicity related	d to hun	nan exposu	re									16)	849(493)	234(136)	33(19)
Effect	Ex	perimenta	l limit	М	Margin of exposure			RfD	or TDI Unce	rtainty					
		(µg/kg bw/day)			See of orly come				kg bw/day) factor		5±7.2	0.40 ± 0.25	1.1 ± 0.6	7.5 ± 3.8	
	(H				ta a vrtata b		1 b	(µg/i	g ow/day) lactor			474	182	27	
		A				verage intake ^a High intake ^b									
Neurotoxicity	20	0 (or 500)	(NOAEL) 2	00		50		0.6	7 300		- 14)	735(427)	282(164)	42(24)
Toxicity to reproduction and development		00 (NOAE	· · · · · · · · · · · · · · · · · · ·		00		500		20	100					
			· · · · · · · · · · · · · · · · · · ·		00		75		1	300		2 ± 5.9	0.45 ± 0.35	13 ± 1.1	7.7 ± 4.7
Carcinogenesis		0 (BMDL)		-			1.4		1			1 1 0.0			
Carcinogenesis	44	0 (POD as	LED_{10})	4	40		110		1.4	300			441	144	25
^a Average intake: 1 µg/kg/day.												17)	683(396)	223(129)	39(22)
Average intake. I µg/kg/uay.												-			

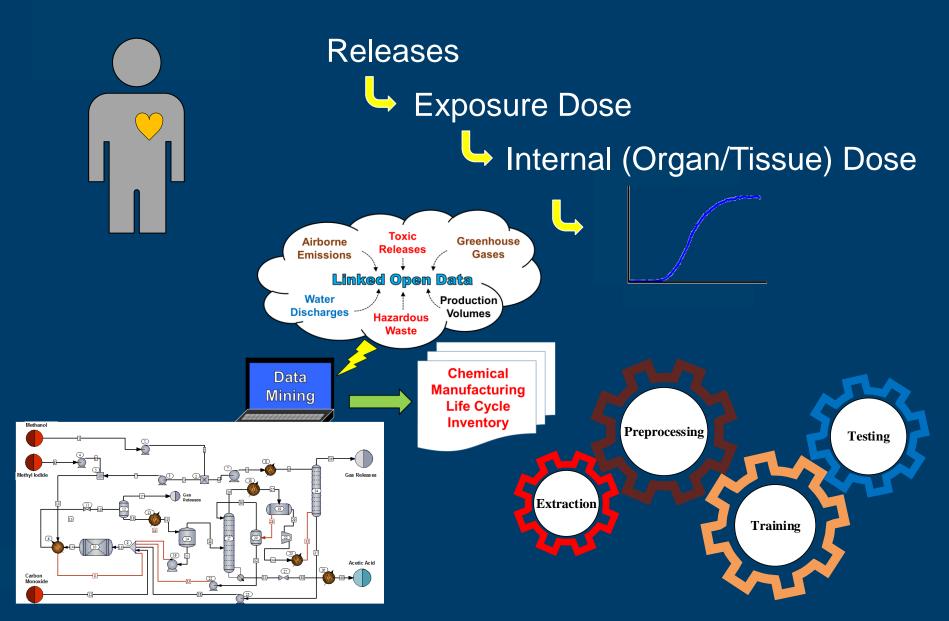

^b High intake: 4 μg/kg/day.

spond to BMDL10 0.31 (0.18 mg/kg-bw/day).

Tentative Process to Obtain Results

- Developing input data is time intensive
- While efforts continue, use input parameters from EPA's ChemSTEER program:
 - Density
 Molecular Weight
 Production Volume
 Solubility
 Vapor Pressure

Regression Tree Model


Meyer, D.E. et al. "Purpose-Driven Reconciliation of Approaches to Estimate Chemical Releases," ACS Sustainable Chemistry & Engineering, 7, 1260-1270 (2019).

Case Study: Cumene Emissions

Approach Emission Factor (kg/kg)

Top-Down Data Mining2.0x10-5Bottom-Up Simulation1.3x10-4Regression Tree9.3x10-5Random Forest2.0x10-4

Summary

smith.raymond@epa.gov

References

S.A. Cashman et al. (2016). "Mining Available Data from the United States Environmental Protection Agency to Support Rapid Life Cycle Inventory Modeling of Chemical Manufacturing," *Environmental Science & Technology*, 50(17), 9013-9025.

R.L. Smith et al. (2017). "Coupling Computer-Aided Process Simulation and Estimations of Emissions and Land Use for Rapid Life Cycle Inventory Modeling," *ACS Sustainable Chem. Eng.* 5, 3786-3794.

D.E. Meyer et al. (2019). "Purpose-Driven Reconciliation of Approaches to Estimate Chemical Releases," *ACS Sustainable Chem. Eng.*, 7, 1260-1270.