VOC Emissions Influenced by Polymer Additives in 3D Printing

Souhail R. Al-Abed, Phillip M. Potter, Farhana Hassan, Slawomir Lomnicki

1. National Risk Management Research Laboratory, Office of Research and Development, USEPA, 26 W Martin Luther King Drive, Cincinnati, OH 45268 USA
2. Oak Ridge Institute for Science and Education, USEPA, 26 W Martin Luther King Jr Dr, Cincinnati, OH 45268 USA
3. Department of Environmental Sciences, Louisiana State University, 1251 Energy Coast & Environment Building, Baton Rouge, Louisiana 70803 USA

Introduction

There is a growing concern over hazardous emissions from 3D printing as printers become more affordable and enter more workplaces and consumer households. Printing emissions containing volatile organic compounds (VOCs) and particulate matter (PM) are still a potential threat to user health. While some studies quantify total VOCs, there have been just a few attempts to fully characterize and quantify VOC emissions.

3D Printer Filaments and Additives

3D printing filaments often contain additives to adjust their physicochemical properties.

- Common additives include: structural fillers, azo dyes, plasticizers, stabilizers, wood fiber, metal particles, and carbon allotropes. While some of these additives may be advertised to the consumer, many are not and can contribute to VOC formation.

In this work, six commercially-available 3D printer filaments are shown as examples of additives affecting VOC emissions. The filaments are: acrylonitrile butadiene styrene (ABS) with carbon nanotubes (CNTs), polycarbonate (PC), polylactic acid (PLA), PLA + copper, PLA + bronze, and PLA + stainless steel.

Methods

All degradation experiments were performed using the System for Thermal Diagnostic Studies (STDS). The STDS is a custom-built, modular instrument shown below.

Results

Reaction Conditions

- Temperature – 180 - 280°C
- Residence time – 1 & 3 min
- Reaction gas – O₂ and N₂

Results (cont.)

CO₂ Emissions and their Use in 3D Printing

PLA with copper, bronze, and stainless steel

- PLA with no advertised additives
- PLA emissions include various silanols and siloxanes
- Silanol copolymers used in some PLA for increased structural integrity

Conclusion

Table 1 shows the inhalation reference concentration (RIC) of five VOCs from various filaments. The amount of filament that would need to be printed to achieve these concentrations in a poorly-ventilated, 37.5 m³ room is also shown. These amounts are easily achieved during any type of residential or industrial printer use.

Acknowledgments

The views expressed in this poster are those of the authors and do not necessarily reflect the views or policies of the U.S. Environmental Protection Agency. This project was supported, in part, by appointments in the Research Participation Program at the Office of Research and Development (ORD), EPA administered by the Oak Ridge Institute for Science and Education (ORISE). EPA administered by the Oak Ridge Institute for Science and Education (92431601).

References