# Review of Recent Advances in Mercury Research: Assessment and remediation of mercury contaminated sites.

Chris S. Eckley<sup>1</sup>, Cindy Gilmour<sup>2</sup>, Sarah Janssen<sup>3</sup>, Todd P Luxton<sup>4</sup>, Paul M Randall<sup>4</sup>, Lindsay Whalin<sup>5</sup>

1. U.S. EPA, Region-10; 2. Smithsonian Environmental Research Center; 3. USGS Upper Midwest Water Science Center; 4. US EPA, ORD; 5. San Francisco Bay Water Board




### Introduction

#### ICMGP Special Issue:

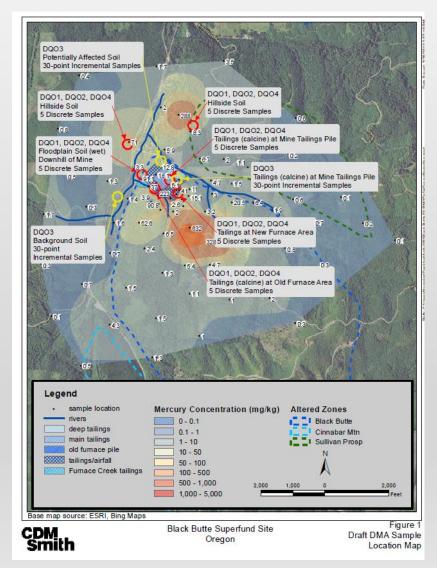
#### **Reviews of Recent Advances in Mercury Research and Understanding the Biogeochemical Cycle**

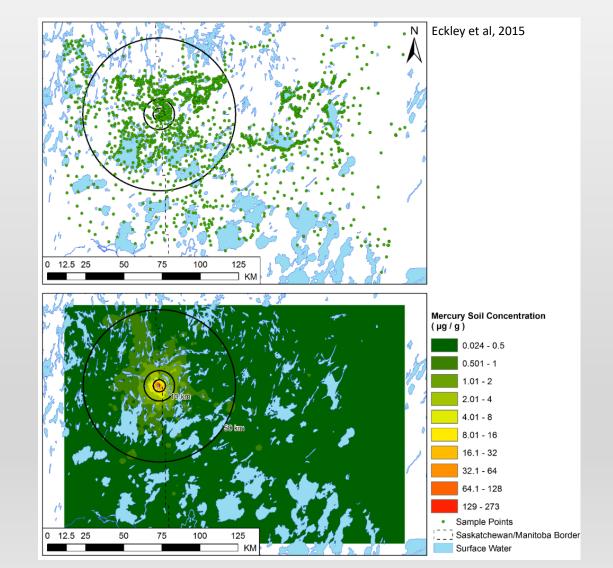
An and a second second



List of papers:

- 1. The mercury science-policy interface: history, evolution and progress (Bank)
- 2. Introduction to the biogeochemical cycle of Hg in light of recent advances in knowledge (Gustin)
- 3. An Updated Review of Atmospheric Mercury (Lyman et al.,)
- 4. Recent advances in understanding and measurement of Hg in the environment: Surface-atmosphere exchange of gaseous elemental mercury (Sommar et al.,)
- 5. Mercury in soil in the context of Minamata Convention (Horvat)
- 6. Recent advances in understanding & measurement of mercury in the environment: Terrestrial Hg cycling (Bishop et al.,)
- 7. What measurements are important for understanding freshwater Hg cycling (Branfireun)
- 8. Recent advances in understanding of factors controlling Hg methylation (Zhong et al., )
- 9. Methylmercury and the microbiome: A review of exploratory bioinformatics tools (Rothenberg et al.,)
- 10. Methylmercury exposure in wildlife: a review of the ecological and physiological processes affecting contaminant concentrations and their interpretation (Chetelat et al.,)
- 11. Recent advances in understanding Hg in the environment: Stable Hg isotopes & their ecological applications (Tsui et al.,)
- 12. The assessment and remediation of mercury contaminated sites: a review of current approaches (Eckley et al.,)
- 13. Environmental archives of atmospheric Hg deposition A review (Cooke et al.,)
- 14. New insight into factors controlling ocean mercury cycling (Bowman et al., )
- 15. How do these advances impact our understanding of the Hg biogeochemical cycle and modeling efforts? (Bieser)


#### **Introduction: Contaminated Sites**


#### Examples of common industrial-scale Hg contaminated sites:



#### **Site Assessment:** Spatial Variability

#### Identifying source areas and geographic extent of contamination

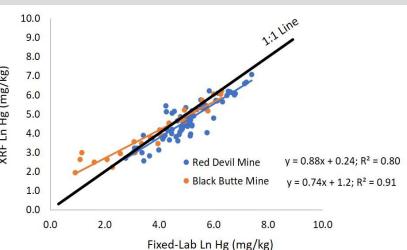




### **Site Assessment:** Spatial Variability

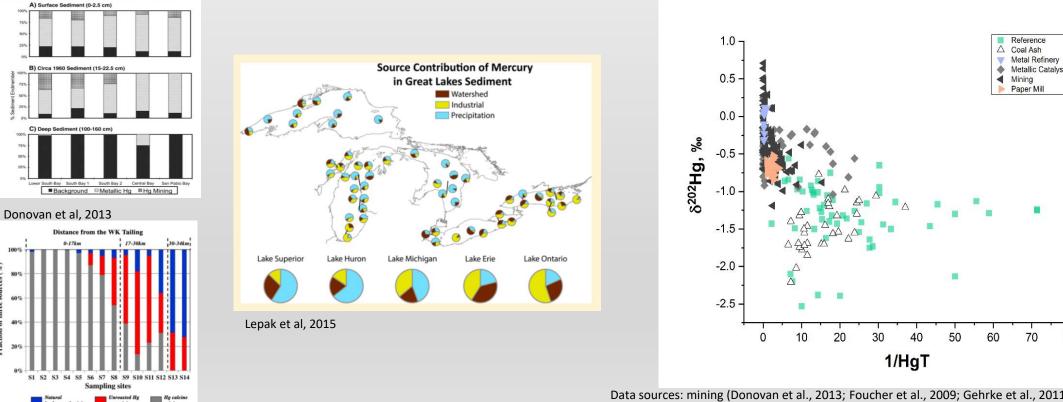
### Handheld X-Ray Fluorescence Spectrometers (XRF)

- Field portable; measurements within seconds/minutes
- High density of data: reduced uncertainty & increased representativeness
- Facilitates adaptive investigations and remedial strategies
- Most useful at highly contaminated sites (>20 mg/kg)
- Hg<sup>0</sup> in soils creates disagreements between lab and XRF data




Legend

Field Mercury Concentrations Site Map


BLACK BUTTE MIN

Lane County Orego



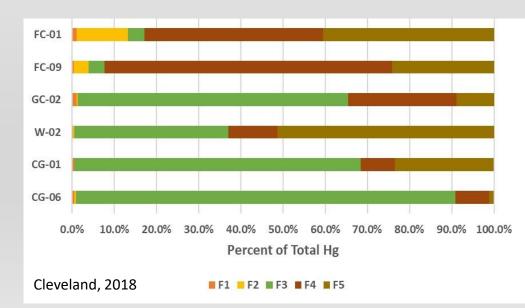
### Site Assessment: Source attribution using stable isotopes

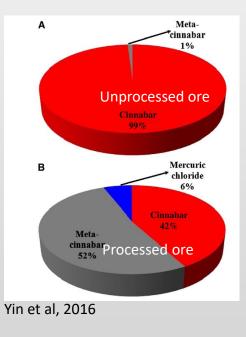
- Downstream/wind of contaminated sites the source of Hg pollution can be more difficult to discern, especially when there are multiple potential sources
- Hg stable isotope analysis has provided insights into different environmental pools of Hg as well as the transformations (requires unique end-members)



Yin et al, 2013

Data sources: mining (Donovan et al., 2013; Foucher et al., 2009; Gehrke et al., 2011a; Yin et al., 2013b), coal ash (Bartov et al., 2012), metallic Hg usage (Feng et al., 2010; Grigg et al., 2018; Mil-Homens et al., 2013; Perrot et al., 2010; Washburn et al., 2018), metal refinery (Sonke et al., 2010), and paper mills (Yin et al., 2016)


#### Site Assessment: Hg speciation, fractions and bioavailability

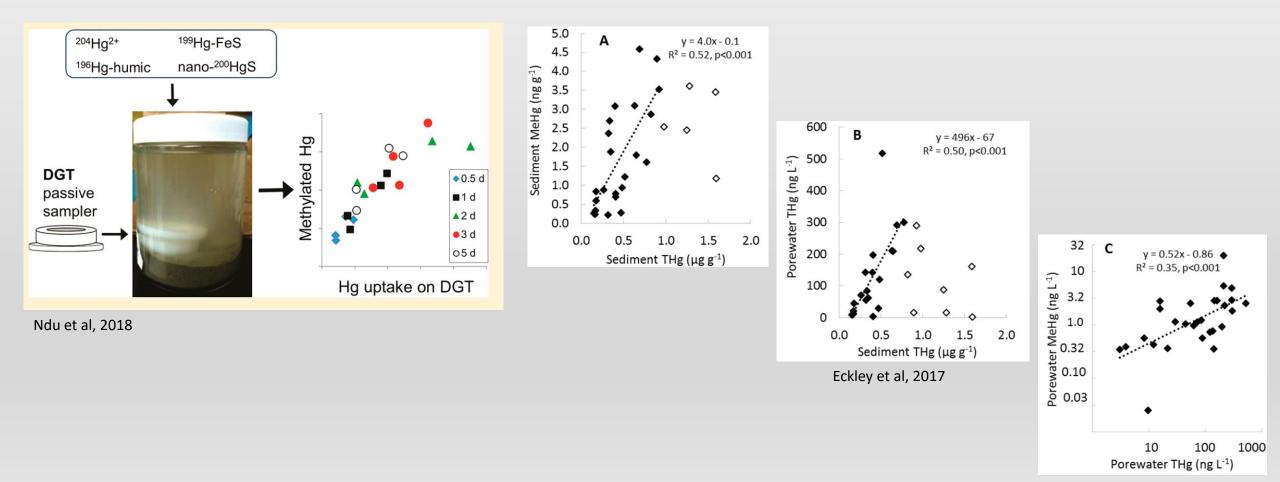

- Many regulatory criteria are based on total-Hg (THg) concentrations.
- Hg speciation impacts its mobility, toxicity and availability for methylation.

#### Types of speciation/fractions measurements:

- X-ray absorption fine structure (XAFS) spectroscopy provides direct measure of Hg speciation
  - Requires relatively high Hg concentrations (typically > 1 mg/kg)
  - Chemical extractions (SPLP, TCLP, IVBA, HgR, SSE)

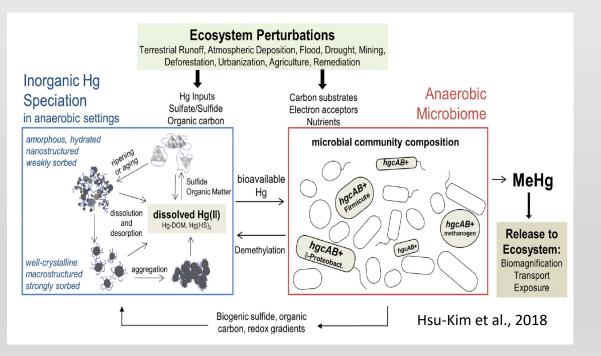
| 2  | Mercury Classification                       | Primary Compounds Extracted                                                       |  |  |
|----|----------------------------------------------|-----------------------------------------------------------------------------------|--|--|
| FI | Water-soluble, i.e. salts                    | HgCl <sub>2</sub>                                                                 |  |  |
| F2 | Weak acid-soluble/<br>"stomach acid" soluble | HgSO₄<br>HgO                                                                      |  |  |
| F3 | Organo-complexed                             | Hg-humics<br>Hg <sub>2</sub> Cl <sub>2</sub><br>CH <sub>3</sub> Hg (MeHg)         |  |  |
| F4 | Strongly-complexed                           | mineral lattice bound<br>Hg_Cl <sub>2</sub><br>Hg <sup>0</sup> (liquid elemental) |  |  |
| F5 | Mineral-bound                                | HgS (cinnabar)<br>m-HgS (meta-cinnabar)<br>HgSe (amalgam)<br>HgAu (amalgam)       |  |  |






**Brooks Applied Labs** 

#### **Site Assessment:** Bioavailability & Methylation


• Porewater & diffuse gradient in thin film (DGT) samplers:

The fraction Hg in the sediment that is more available for methylation



### **Site Assessment:** Bioavailability & Methylation

- MeHg production impacted by: bioavailability of Hg + microbial community/activity •
- Effective management actions should consider the variables limiting/controlling MeHg • production



#### Factorial incubation experiments:

- Varying sulfate, DOC, etc
- Varying redox conditions
- Inhibiting microbial populations

#### Table 1 Controlled factorial addition experimental design

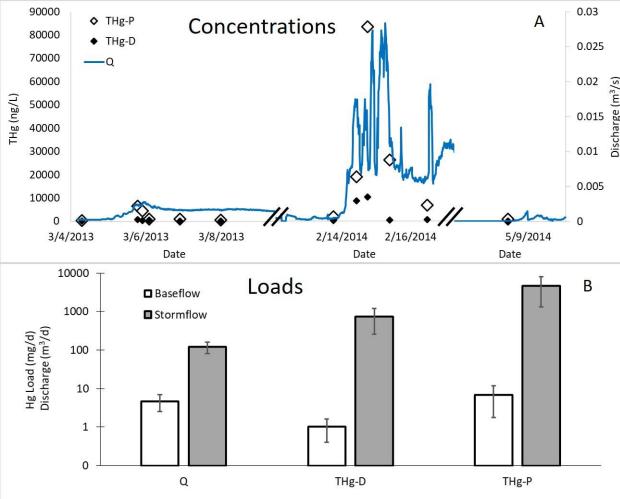
| Controlled la | ictorial add   | ntion experime                    | ental design          |                      |                       |                      |                       |                    |                     |
|---------------|----------------|-----------------------------------|-----------------------|----------------------|-----------------------|----------------------|-----------------------|--------------------|---------------------|
|               | No<br>carbon   | 4X equiv. <sup>a</sup><br>acetate | 10X equiv.<br>acetate | 4X equiv.<br>lactate | 10X equiv.<br>lactate | 4X equiv.<br>glucose | 10X equiv.<br>glucose | Deciduous leachate | Coniferous leachate |
| No sulfate    | 4 <sup>b</sup> | 2                                 | 2                     | 2                    | 2                     | 2                    | 2                     | 2                  | 2                   |
| 4X sulfate    | 2              | 2                                 | n.i.°                 | 2                    | n.i.                  | 2                    | n.i.                  | 2                  | 2                   |
| 10X sulfate   | 2              | n.i.                              | 2                     | n.i.                 | 2                     | n.i.                 | 2                     | 2                  | 2                   |

<sup>a</sup> Equiv. refers to an energetic-equivalent (same number of electrons) load. <sup>b</sup> All numbers represent replicate experiments completed and reported in this paper.

<sup>c</sup> "n.i." indicates that experiments involving these combinations were not investigated.

Mitchell et al, 2008

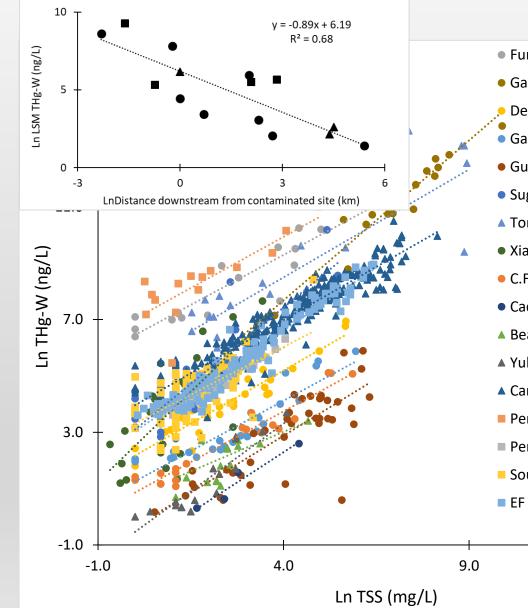





### **Site Assessment:** Pathways of release—flux to water

Releases are a concern due to the potential for downstream methylation & bioaccumulation.

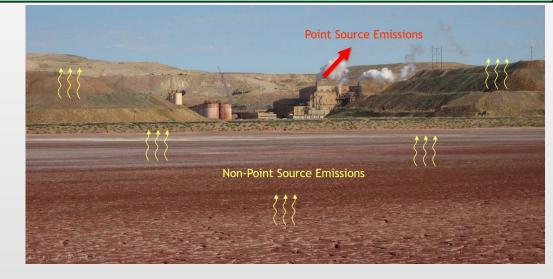
- Typically, flux to surface water > groundwater
- Stormflow flux >>> baseflow flux
- Annual loads dominated by a few large events  $\frac{1}{2}$
- Mobilization from erosion of particles/sediment entrainment

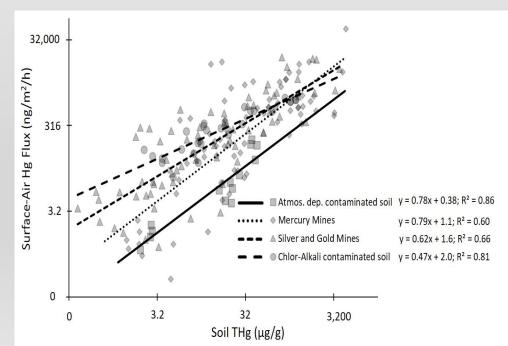


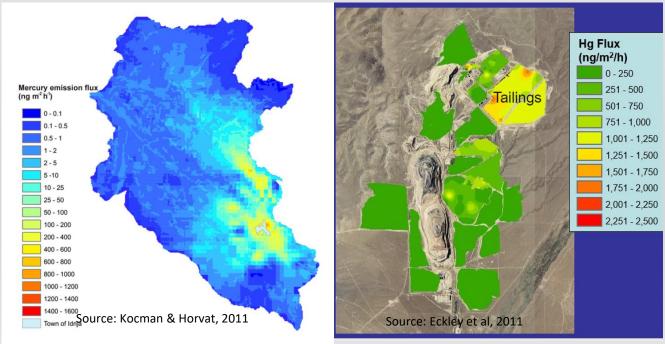



Source: CDM/EPA Black Butte Mine

### **Site Assessment:** Pathways of release—flux to water


- Positive relationship between THg and total suspended solids (TSS).
- Most regression slopes not significantly different
- Most intercepts were significantly different and were correlated with the distance downstream from the contaminated source area.



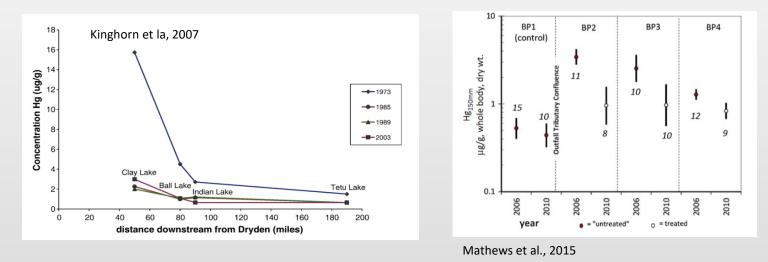


|     | • Furnace Creek y = 0.78x + 6.2 R <sup>2</sup> = 0.86    |
|-----|----------------------------------------------------------|
|     | • Gambonini Creeky = 1.1x + 3.1 R <sup>2</sup> = 0.78    |
|     | • Dennis Creek y = 0.75x + 2.2 R <sup>2</sup> = 0.89     |
| ••• | • Garoutte Creek y = 0.72x + 0.86 R <sup>2</sup> = 0.93  |
|     | • Guadalupe River 0.81x - 0.36; R <sup>2</sup> = 0.65    |
|     | • Sugar Creek y = 1.1x + 3.1; R <sup>2</sup> = 0.94      |
|     | ▲ Tongguan Area y = 0.77x + 5.4; R <sup>2</sup> = 0.77   |
|     | • Xiaxi River y = 1.3x + 2.5; R <sup>2</sup> = 0.49      |
|     | • C.F. Willamette $y = 0.72x + 1.3 R^2 = 0.84$           |
|     | • Cache Creek y = 0.86x - 1.1; R <sup>2</sup> = 0.94     |
|     | ▲ Bear River y = 0.56x + 0.78 R <sup>2</sup> = 0.25      |
|     | ▲ Yuba River y = 0.96x - 0.54; R <sup>2</sup> = 0.73     |
|     | ▲ Carson River $y = 0.75x + 4.0; R^2 = 0.90$             |
|     | Penobscot N. Trýb= 0.73x + 7.0; R <sup>2</sup> = 0.66    |
|     | Penobscot S. Trib.= 0.73x + 3.1; R <sup>2</sup> = 0.90   |
|     | South River y = 0.69x + 3.3; R <sup>2</sup> = 0.43       |
|     | ■ EF Poplar Creek y = 0.89x + 3.0; R <sup>2</sup> = 0.95 |
|     |                                                          |

### **Site Assessment:** Pathways of release—flux to air

- Relative magnitude of surface-air versus water flux depends on hydrological/meteorological conditions.
- Annual fluxes to the air can be 50-100 kg/year from some contaminated sites.
- Soil Hg speciation (along with several environmental parameters) affect surface-air fluxes.

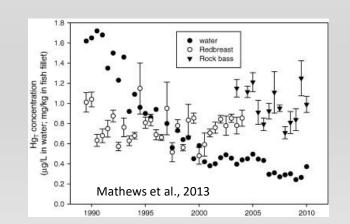







### **Site Remediation:**




#### **Site Remediation: Source Reductions**

• Some studies have shown THg source reductions can result in reduced MeHg in biota





Other studies have shown MeHg remains elevated after THg source reductions



| Date      | Site ID          | Depth<br>m   | T-Hg<br>ng/L | Dissolved Hg<br>ng/L | Methyl Hg<br>ng/L | T-Hg<br>ng/g | Methyl Hg<br>ng/g |  |
|-----------|------------------|--------------|--------------|----------------------|-------------------|--------------|-------------------|--|
|           |                  | water        |              |                      |                   | sediment     |                   |  |
| 6/27/2012 | PBL-A            | 10           | 9.72         | 6.59                 | 2.05              |              | 5.45              |  |
|           |                  | 2            | 5.41         | 5.26                 | 0.097             | 229          | 5.16              |  |
|           | PBL-B            | 8            | 8.43         | 7.29                 | 1.82              |              | 0.70              |  |
|           |                  | 2            | 5.60         | 3.91                 | 0.077             | 239          | 6.78              |  |
|           | PBL-C            | 2            | 6.32         | 3.84                 | 0.175             | 146          | 3.66              |  |
| damp      | W wash local     |              |              |                      |                   | 79.4         |                   |  |
| dry       | S wash local     |              |              |                      |                   | 48.3         |                   |  |
| ~         |                  |              |              |                      |                   |              |                   |  |
| 2012/2012 | PBL-A            | 10           | 18.2         | 7.36                 | 5.00              | $\square$    |                   |  |
|           |                  | 1.7          | 2.72         | 1.78                 | 0.361             | 136          | 3.68              |  |
|           | PBL-B            | 8            | 19.2         | 3.97                 | 6.42              | 70.5         |                   |  |
|           |                  | 1.7          | 2.74         | 1.85                 | 0.253             | 79.5         | 2.20              |  |
|           | PBL-C            | 1.5          | 2.04         | 2.07                 | 0.250             | 87.4         | 0.885             |  |
| wet       | Main wash S trib | Curiel, 2013 |              |                      |                   | 279          |                   |  |
| wet       | Main wash W trib | 1            | Curie        |                      | 163               |              |                   |  |



## Site Remediation: Reducing THg

#### Soils:

#### <u>Commonly applied options</u>:

- Excavation & removal
- Containment in-place

#### Other options:

- Soil-washing
- Solidification/stabilization
- Thermal treatment
- Electrochemical/kinetic recovery
- Bioremediation/biotreatment
- Phytoremediation/stabilization
- Chelating agents

#### Most effective when the sites are:

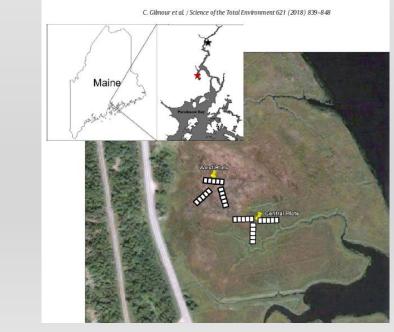
- highly contaminated
- cover relatively small area
- easily accessible
- large remediation budgets

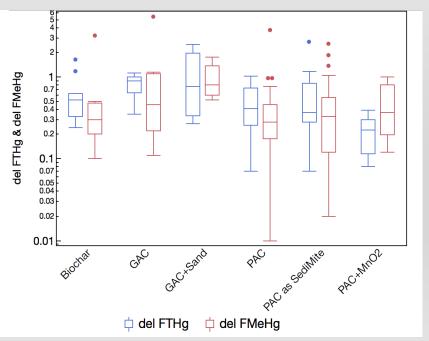
#### Groundwater, surface water, or sediment:

#### **Commonly applied options:**

- Sediment excavation/dredging
- Sediment containment
- Hydraulic groundwater containment
- Pump and treat
- Permeable reactive barriers



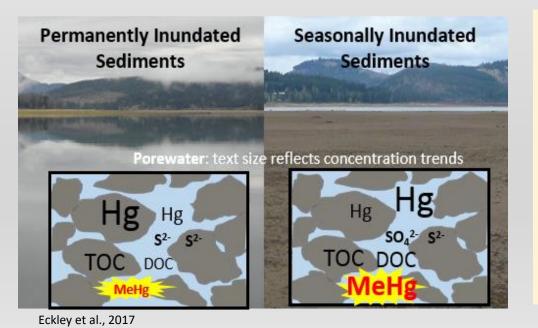

#### Alternative options needed when:

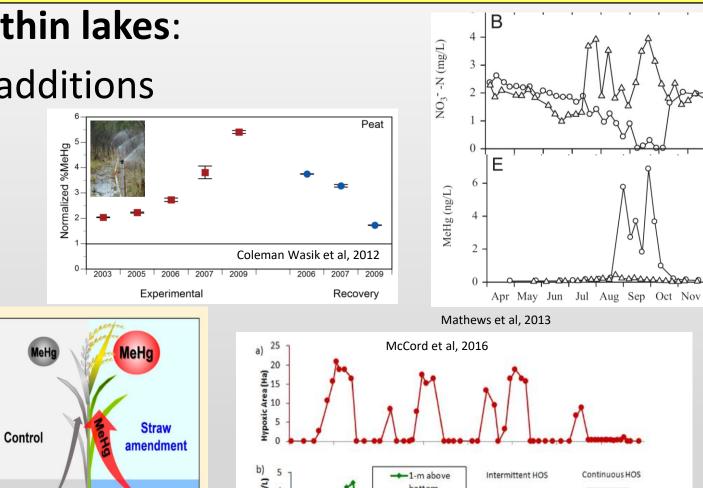

- Widely dispersed contamination
- Remote area/difficult access
- Limited funding

### Site Remediation: In situ amendments

- In situ amendments to sediments/soils to compete for Hg or MeHg against natural sorbents.
- Common types: biochar, activated carbon (AC), material modified with S ligands, Fe.
- Lab and field tests have shown reductions in porewater THg & MeHg from amendments
- However, amendments may be less effective in reducing MeHg production and may accumulate MeHg in the solid-phase.
- Effectiveness impacted by type of amendment and soil/sediment properties, and DOM



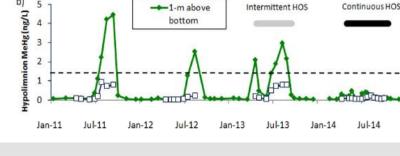



### **Site Remediation: Reducing MeHg**

#### **Reducing MeHg production within lakes:**

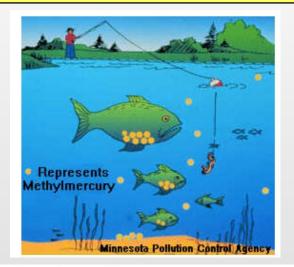
- Redox poising: O<sub>2</sub>, NO<sub>3</sub><sup>-</sup>, Mn additions
- Sulfate reductions
- Carbon reductions
- Hydrological alterations

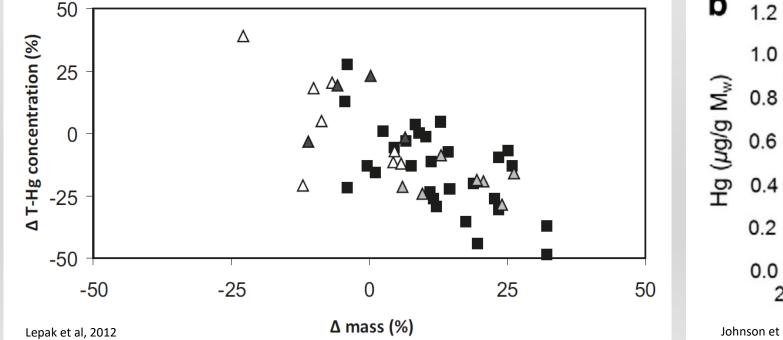


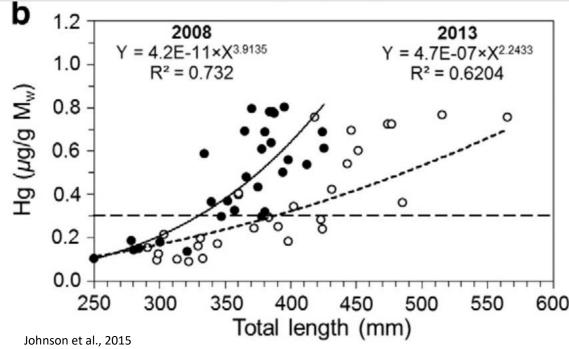



MeHg

MeHg


Tang et al, 2019





### **Site Remediation: Foodweb manipulation**

#### **Reducing MeHg bioaccumulation:**

- Foodweb and fish growth manipulations
  - Introduction of low Hg prey fish
- Only applicable to closed systems amenable to manipulations







### **Conclusions:**

#### **Recent Advances:**

- <u>THg concentrations</u>: increased ability to measure Hg conc., forms/speciation, and potential sources.
- <u>Methylation process</u>: opportunities to reduce MeHg levels by targeting pools of more bioavailable Hg<sub>i</sub> and/or other factors associated with the methylation process
- **Bioaccumulation**: foodweb manipulations

- Many novel approaches have not moved beyond lab/test plot scale and tested site-wide.
- Source reduction of THg has been shown to be effective at reducing MeHg in biota at some sites, but not at others.
- Successful remediation actions require a significant investment in research aimed at identifying the sources and mechanisms responsible for contamination.