Use of Temperature to Track Subsurface Conditions and Process Dynamics

Robert Ford

USEPA Office of Research and Development
Land and Materials Management Division
Cincinnati, OH

Collaborators:
Bob Lien, Steve Acree, Randall Ross
The findings and conclusions in this presentation have not been formally disseminated by the U.S. EPA and should not be construed to represent any agency determination or policy. Any mention of trade names, products, or services does not imply an endorsement by the U.S. Government or the U.S. Environmental Protection Agency. The EPA does not endorse any commercial products, services, or enterprises.
Plan for Presentation

• Context for use of temperature to track process dynamics
• Different types of temperature monitoring tools
• Examples of using temperature for process monitoring
Heat Transfer Processes

- **Conduction** – passive movement of heat through media that is physically connected

- **Convection** – active movement of heat via fluid flow through connected open spaces through media
Types of Heat Sources

• Sunlight (regular cyclic variation)
• Chemical reactions
 – Exothermic (cement curing, iron rusting)
 – Endothermic (liquid water evaporation)
• Biochemical reactions (typically exothermic)
• Engineered source
 – Steam injection (mobile heat source)
 – Electrical resistance (static heat source)
Monitoring Heat Transfer

Track Heat Transfer via Temperature

• Heat transfer modifies the temperature distribution over space and time

• Temperature sensors must be compatible with environmental media and have suitable response characteristics (range, accuracy, resolution, response time)

• Ability to monitor large areas over extended periods governed by sensor cost and data acquisition capabilities
Different Sensor Types to Address Objective

• **Initial Site Screening**
 – Looking for variation across space
 – Hand-held devices

• **Continuous Monitoring**
 – Looking for variation across time
 – Logging devices, internal non-volatile memory

• **Continuous, Remote Monitoring**
 – Facilitate active intervention
 – Logging devices, external memory & telemetry
Hand-held Devices

- Screening measurements to look for variations in space
- Subsurface measurement can be biased by heat conduction from above-ground portion of instrument
- Variations in ambient temperature during measurements can be a problem
Temperature Monitoring Tools

Omni Instruments Tinytag Aquatic 2
-40°C to +70°C, +/-0.5°C accuracy, 0.01°C resolution
Waterproof, non-volatile memory (32,000 measurements)
~$129 each, replaceable battery

ONSET TidbiT v2
-20°C to +70°C, +/-0.21°C accuracy, 0.02°C resolution
Waterproof, non-volatile memory (42,000 Measurements)
~$133 each, non-replaceable battery (5 yrs)

STAR ODDI Starmon mini
-2°C to +40°C, +/-0.025°C accuracy, 0.001°C resolution
Waterproof, non-volatile memory (262,000 measurements)
~$425 each, replaceable battery
Temperature Monitoring Tools

Remote Systems

- Telemetry-based systems possible
- Local power supply (battery, solar, etc.)
- Temperature would need to be a critical measure to justify
Process Monitoring Examples

- Subsurface heating events at landfills (wellhead gas, leachate, waste mass)
- In-situ thermal remediation of contaminated soil or aquifer
- Biosolids composting operations
- Heat as a tracer for stormwater infiltration into soil
- *Heat as a tracer for groundwater flow*
Process Monitoring Examples

- Heat conduction influenced by GW-SW temperature gradient
- Heat convection influenced by flow up (discharge) or flow down (recharge)
- Shape of temperature profile influenced by magnitude and direction of GW flow

Process Monitoring Examples

Sediment Temperature Profile

- No Flow – heat conduction leads to a linear temperature change
- Upward Flow – cooler temperature propagates up profile
- Downward Flow – warmer temperature propagates down profile
• EPA 600/R-15/454 December 2014
• Provides background and technical guidance on appropriate application of technology
• Illustrates use of spreadsheet-based analysis tools for calculating seepage flux magnitude and direction from sediment temperature profile data
Process Monitoring Examples

- Nested Piezometers, Cove Piezometers
- Seepage Flux, Chemistry (Water & Sediment)

Seepage Flux (GW Discharge)

- Continuous sediment temperature profile logs
- Several month deployments
- Logging temperature sensors with non-volatile memory and internal battery
- Equipment cost $2,000/yr (4yr period)
Purpose for monitoring seepage flux

• Initial site characterization
 – Establish link between contamination observed in sediments/SW and discharge of upland plume
 – Assess the spatial extent and variability over time

• Remedy performance monitoring
 – Determine reduction in seepage flux into SW
 – Couple with chemical measurements to demonstrate reduction in contaminant flux
Process Monitoring Examples

Temperature Profile Data

• Sensors have non-volatile memory & programmed for unattended data acquisition

• Temperature monitoring network installed in 1-2 days

• Deployed for 2-3 months & retrieved in 1 day – data downloaded and analyzed
Continuous temperature logs...

Give daily temperature profiles

Temperature (°C)
Depth Below Surface (cm)
Process Monitoring Examples

Water & Sediment Properties

- $k = 1.56 \text{ J/(m.s.C)}$
- $\rho/\theta F = 4.19E+06 \text{ J/(m}^2\text{.C)}$

Measured Temperatures

- $T_0 = 19.87 ^\circ C$
- $T_2 = 17.53 ^\circ C$
- $T_1 = 16.21 ^\circ C$

Sensor Spacing

- $z = 0.30 \text{ m}$
- $L = 0.70 \text{ m}$

Calculated Flux!

- $q_z = 0.0807 \text{ m/day}$

Calculate Seepage

Reset
Process Monitoring Examples

Sediment Temperature Profile Method

Comparison over entire monitoring period…

Middle of Cove (June - August)
- Pre-Installation (2008)
- Post-Installation (2014)
- Upland GW Flux

Calculation of Seepage Flux (cm/d)

Water Flux, cm/d

Calendar Year

Calendar Day
Temperature monitoring can provide a cost-effective approach to assess process dynamics in systems in which heat transfer is occurring.

There is a wide selection of commercial devices with a range of performance characteristics that are sufficiently rugged for long-term deployment in harsh environments.

With sufficient understanding of process details and environmental media characteristics, temperature data can be used as either a qualitative tracer or for quantitative assessments of system response.
Acknowledgements

Engineering Technical Support Center [Bob Lien]
John McKernan, mckernan.john@eda.gov
Ed Barth (Acting), barth.edwin@epa.gov

Groundwater Technical Support Center [Steve Acree, Randall Ross]
David Burden, burden.david@epa.gov

EPA Region 1 – Carol Keating, Bill Brandon, Ginny Lombardo, Jerry Keefe, Dan Boudreau, Tim Bridges, Rick Sugatt, David Chaffin (State of Massachusetts)

Workbook Beta Testing – Region 1 (Bill Brandon, Marcel Belaval, Jan Szaro), Region 4 (Richard Hall, Becky Allenbach), Region 7 (Kurt Limesand, Robert Weber), Region 10 (Lee Thomas, Kira Lynch, Bruce Duncan, Piper Peterson, Ted Repasky), Henning Larsen and Erin McDonnell (State of Oregon)

EPA ORD – Jonathon Ricketts, Patrick Clark (retired!), Kirk Scheckel, Todd Luxton, Mark White, Lynda Callaway, Cherri Adair, Barbara Butler, Alice Gilliland

US Army – Robert Simeone

Don Rosenberry (USGS – Lakewood, CO) – verification studies at Shingobee Headwaters Aquatic Ecosystems Project
Questions or Discussion?