Microbial Source Tracking with qPCR: Technology Transfer and Research

Orin C. Shanks
Presentation Overview

1. Microbial Source Tracking Background

2. Technology Transfer Support

3. Research Activities

Disclaimer: The views expressed in this presentation are those of the author[s] and do not necessarily represent the views or policies of the U.S. Environmental Protection Agency. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.
Fecal Pollution is a Nationwide Challenge

- Fecal microbes most common biological contaminant
- Public health, economic, and ecological impacts

Top10 Causes of Impairment in U.S. Rivers and Streams

- Pathogens
- Sediment
- Nutrients
- Oxygen Depletion
- Temperature
- Metals
- Polychlorinated Biphenyls
- Mercury
- Habitat Alterations
- Turbidity

Miles of Impaired Water

https://ofmpub.epa.gov/waters10/attains_nation_cy.control#causes
EPA Responsibilities

Protect and Restore Waters for Recreational Use
- Clean Water Act 1972

Risk Assessment of Beach Contaminants
- BEACH Act (2000)
- Development of new or revised ambient water quality criteria (AWQC)

Management of Point and Non-Point Pollution Sources
- Total Maximum Daily Load (TMDL) programs
- National Pollutant Discharge Elimination System (NPDES) programs
- National Estuary Program (NEP)
- Combined Sewer Overflow (CSO) consent decrees
Common Fecal Pollution Management Tools

- Based on **general fecal indicators**
- Measure of total fecal pollution
- Presence in water is a warning signal of public health risk
- Do not discriminate between sources
Source of Fecal Pollution is Important

- Public health risk can vary by source
- Mitigation strategies can vary by source
- Source information improves management and public safety
A Microbial Source Tracking qPCR Solution

SOLUTION ... Method designed to collect, isolate, identify, and quantify a host-associated genetic marker from an environmental sample
Many Water Quality Management Applications

- Recreational beach management
- Evaluation of a best management practices
- Urban stormwater management
- Hazardous event response
- Waterborne disease outbreak response
Technology Transfer Support:
Draft EPA Methods 1696 and 1697 Available

• Human fecal pollution qPCR
• Released April 2019

Content Overview:
- Safety
- Laboratory organization
- Equipment, reagents, and supplies
- Sample collection, handling and storage
- Standardized laboratory procedures
- Quality controls
- Data analysis and calculations

Method 1696: Characterization of Human Fecal Pollution in Water by HF183/BacR287 TaqMan® Quantitative Polymerase Chain Reaction (qPCR) Assay

https://www.epa.gov/cwa-methods/other-clean-water-act-test-methods-microbiological
Technology Transfer Support: Automated Data Analysis Tool

- Simplify complex calculations
- Ensure standardized analysis
- Implement data acceptance metrics
- Concentration estimates with error

- Microsoft Excel
- Summary report
Technology Transfer Support: Self-Administered Method Proficiency Tool

- Successfully complete:
 - Prior to environmental sample testing

- Six metrics based on:
 - National laboratory validation
 - Reagent manufacturer recommendations
 - qPCR experts

- Training and management tool
Technology Transfer Support: Reference DNA Material Development

- National implementation requires a high quality reference DNA material
- Standardized and centralized source
- Not feasible for EPA to manufacture and distribute
- Interagency Agreement with National Institute of Standards and Technology
Technology Transfer Support: Technical Support and Collaboration

- **Strategic Partnership with APHL:**
 - Memorandum of Understanding (Jan 2017)
 - Enhance response to contamination events

- **Technical Support and Outreach:**
 - Public presentations
 - Regional and State workshops
 - Trained EPA Regional Lab staff

- **Research Collaborations:**
 - States, tribes, and other local communities
 - Federal agencies
Research Activities:
Large-Scale qPCR MST Implementation

Challenge: Are there spatial and temporal patterns to fecal pollution in my watershed?

- Partners:
 - OR Dept of Environmental Quality
 - OR Dept of Agriculture
 - EPA Region 10 Lab
- 1,500 km² Oregon coast
- 29 sites
- Routine sampling (n = 696)
- 8 MST qPCR methods
- E. coli testing

Research Activities:
MST qPCR and Recreational Beach Monitoring

Challenge: Find links between MST qPCR and general indicator measurements in recreational water setting?

- University of Illinois at Chicago School of Public Health
 - Sam Dorevitch (Principal Investigator)
 - Abhilasha Shrestha (PhD Candidate)
- 9 beaches sampled 5 days/week over beach season
- Enterococci and *E. coli* testing
- MST qPCR testing for human, bird, and dog sources
Research Activities: Urban Stormwater Management

Challenge: What are the sources of fecal pollution in my MS4 outfalls?

- Partners:
 - DC Department of Energy & Environment
 - EPA Region 3 Lab

- 7 catchments
- 32 MS4 outfalls
- Routine & event sampling
- Potential pollution sources (human, ruminant, bird and dog)
Research Activities: Method Development

• New Tools:
 - Cattle
 - Pinnipeds

• Performance Testing:
 - Canine
 - CrAssphage
Acknowledgements

Method Development:
- Jessica Dade (ORISE)
- Jack Paar (EPA Region 1)
- Cathy Kelty (EPA)
- Mano Sivaganesan (EPA)
- Pat Clinton (EPA)
- Maliha Nash (EPA)
- Ian Raffenberg (Pegasus)

Tillamook Study:
- Xiang Li (EPA)
- Mano Sivaganesan (EPA)
- Cathy Kelty (EPA)
- Amity Zimmer-Faust (SCCWRP)
- Pat Clinton (EPA)
- Jay Reichman (EPA)
- York Johnson (ODEQ)
- Wym Matthews (ODA)
- Stephanie Bailey (EPA Region 10)

Chicago Beach Study:
- Abhilasha Shrestha (UIC)
- Sam Dorevitch (UIC)
- Mano Sivaganesan (EPA)
- Cathy Kelty (EPA)

MS4 Study:
- Amir Sharifi (DOEE)
- Mano Sivaganesan (EPA)
- Cathy Kelty (EPA)

MST Technology Transfer:
- Lem Walker (EPA)
- Robin Oshiro (EPA)
- Mano Sivaganesan (EPA)
- Cathy Kelty (EPA)
- Richard Haugland (EPA)
- Sally Gutierrez (EPA)
- Scott Jackson (NIST)
- Validation Study Volunteer Labs