

ACEI9 - Finding Solutions for Small Water Systems

Benefits of Solar Energy for Small Rural Water Systems in Puerto Rico

Craig Patterson, P.E., USEPA, ORD, Cincinnati, Ohio Graciela Ramirez, Ph.D., InterAmerican University, San German, Puerto Rico Cristina Maldonado, USEPA Region 2, San Juan, Puerto Rico Harvey Minnigh, InterAmerican University, San German, Puerto Rico Rajib Sinha, P.E., TriHydro Corporation, Cincinnati, Ohio Carlos Lopez-Maisonave, P.E., Photovoltaic Systems Integrators & Engineers, Puerto Rico

> ACE19 Annual Conference & Exposition Wednesday, June 12, 2019 01:30 PM - 04:30 PM Denver Colorado

SEPA EPA Disclaimer

The U.S. Environmental Protection Agency, through its Office of Research and Development, funded and managed, or partially funded or collaborated in, the research describe herein. It has been subjected to the Agency's peer and administrative review and has been approved for external publication. Any opinions expressed in this paper are those of the author (s) and do not necessarily reflect the views of the Agency, therefore, no official endorsement should be inferred. Any mention of trade names or commercial products does not constitute endorsement or recommendation for use.

Drinking Water Service in Puerto Rico

■ PRASA □ Non-PRASA

Non-PRASA Water Systems

Drinking water in Puerto Rico is supplied by the Puerto Rico Aqueduct and Sewer Authority (PRASA).

EPA

- PRASA does not reach very rural areas and about 242 public water systems are outside of PRASA control.*
- Only about 185 (76%) of these 242 systems use some form of chlorination.
- > 140 of these systems serve between 100 and 500 people.
- There is a clear need for a multi-barrier approach to provide safe water and improve the health of individuals living in communities served by the non-PRASA systems.
- * Survey conducted by the Departamento de Salud-Division de Agua Potable-Inventario Sistemas Non-PRASA (2017)

Set EPA

Non-PRASA Surface Water

An operator rakes leaves from a surface water pool created by damming a creek in the rainforest.

Water storage tank and screened intake pipe at the source

Sepa Non-PRASA Storage Tanks and Tablet Chlorinators

Operators replace chlorine tablets to provide a chlorine residual after contact time in water storage tanks.

令EPA

Violations and Challenges

> Majority of violations are for Total Coliform Rule:

- 1650 violations in 182 systems (FY15)
- 136 MCL violations in 74 systems
- Affecting a population of 39,470 people
- > The most immediate challenges:
 - Filtration for surface water sources
 - Disinfection
 - Not enough water
 - No power
 - No money to pay for improvements

Communicating with the Non-PRASA Communities

*₽***EPA**

Sustainable Small Systems

- Finding drinking water treatment technologies for small communities that are:
 - Easy to build Fabricated with parts available on the Island.
 - Low cost.

EPA

- Easy to operate and maintain.
- Energy efficient.
- Sustainable
 Can be implemented in other communities in tropical regions.
- Community involvement and education (Citizen Science)

Rugged Terrain in a Remote Hillside Location

€

Non-PRASA Surface Water Treatment System at Apeadero

⇔EPA

2014

2009

Installing the Conventional Water Treatment System

SEPA

Set EPA

Installing the Multimedia Filter

Installing 850 lbs of filter media

Filter media had to shipped from Florida

Conventional Water Treatment (Apeadero)

Set EPA

Project Volunteers

Moving Water System Materials

Gluing Pipes for Water Lines in Steep Terrain

Installing Water Lines in Steep Terrain

Connecting Water Lines to the Pump House and Tank

€PA

令EPA

Why Solar Power?

- One major cost for electricity for small communities in Puerto Rico is the transfer, treatment and distribution of drinking water.
- Non-PRASA communities are not able to afford electrical costs and many have abandoned their groundwater sources and reverted to unfiltered surface water systems, creating serious public health risks and non-compliance.
- Many Non-PRASA groundwater systems (141 out of 242) could use solar-powered pumps to extract and deliver groundwater.

Electrical power in Puerto Rico is unreliable and expensive (50% more than the U.S. average). Well water pumps in Puerto Rico are not used due to the high cost of electricity.

The Cost of Solar Cells Has Dropped Dramatically in 40 Years

€PA

Source: Bloomberg New Energy Finance & pv.energytrend.com

Background on Solar Panels

- High-efficiency photovoltaic cells (30-46%) are typically not commercially available and are used by NASA and others. Commercially-available solar panels are made from mono- or poly- crystalline silicon and are half as efficient (14-22%).
- The largest solar panel manufacturing companies are based in China (36%), U.S. (18%), Canada (6%), South Korea, Japan and Taiwan.
- In 2016, the U.S. added about 125 solar panels every minute.

Source: news.energysage.com

€ FPA

In 2016, Solar Power Costs the Same as On-Shore Wind Power

Solar Surprise: Prices Fall Below Wind

A turning point for renewables in lower-income countries

SEPA

Solar Cells Are Also Two Times More Efficient in 40 Years

Best Research-Cell Efficiencies

SEPA

Energy Usage in Puerto Rico

Electrical power in Puerto Rico is generated from Petroleum (51%), Natural Gas (31%), Coal (16%) and Renewable Energy: Wind (1.3%) and Solar (0.7%).

€ FPA

- From July 2012 to April 2015, distributed solar photovoltaic generating capacity in Puerto Rico increased by a factor of nine, but solar power still accounts for less than 1% of energy production.
- Puerto Rico's average electricity cost was \$0.20/Kwh compared to a U.S. average cost of \$0.13/Kwh.

Source: U.S. Energy Information Administration, 2015

Energy Cost Comparison

Enorgy Plant Type	Lifetime	
Lifergy Plant Type	Cost (¢/Kwh)	
Electrical Power in Puerto Rico*	20	
Offshore Wind	20	
Peaker Natural Gas	18	
Coal with CCS	14.4	
PV Solar	12.5	
Gas Combined Cycle with CCS	10	
Biomass	10	
Advanced Nuclear	9.5	
Conventional Coal	9.5	
Hydro-electric	8.4	
Natural Gas Combined Cycle	7.5	
Land Based Wind	7.4	
Geothermal	4.8	

CCS stands for Carbon Control and Storage (Sequestration) in a remote underground location. The LCOE for Peaker Natural Gas (18.0 ¢) is per the California Energy Commission. *The Guardian, Ed Morales, July12, 2015.

Determining Elevation Differences for Pump Selection

SEPA

Anchoring the Solar Panel Mounting Structure for High Winds

⇔EPA

Set EPA

Installing the Solar Panels

\$EPA

Solar Power Work Crew

Building the Solar Power Enclosure

Solar Power Enclosure Work Crew

Set EPA

Cost of Solar Power System

Solar Power System	Specifications	EPA Cost	
Solar Panels	Hanwha Q-Cells 260 W modules (12), Area 10'x22', 10 degree tilt	\$	2,040
Solar Panel Mounting Structure	IronRidge Ground Mounting Structure		2,395
Invertor System	Outback Flexpower One, To convert solar power to 120V		3,336
Batteries	US Battery (Deep Cycle) 12V/360Ah	\$	2,080
Solar Enclosure	For Batteries and Invertor System	\$	1,000
Wiring and Conduit	Miscellaneous	\$	1,500
	Total Cost	\$	12,351

Environmental Benefits

- The energy (6,081 kWH) produced by the 245W system in 1.5 years will offset the energy used to produce and install the system in Apeadero.
- > As installed, the solar panels will eliminate as much:

SEPA

- Greenhouse gas emissions as not burning 3,004 coal lbs/yr.
- Atmospheric carbon as is sequestered by 2.29 forested acres/yr.
- Greenhouse gas emissions as not driving 6,657 vehicle miles/yr.

Sources: www.epa.gov/cleanenergy/energy-resources/calculator and cleantechnica.com

Sepa Keep on Trucking

Solar-Powered Pump House

Installing the Solar-Powered Pump and Control Cabinet

EPA

The control cabinet ensures operation of the solar-powered pump regardless of water supply conditions (no flow, empty/full equalization tank, etc).

A timer was installed to accommodate pumping at various times during the day.

Installing the Equalization Tank

Equalization Tank Float Switch

The solar-powered pump lifts surface water up a steep hill (350 vertical feet) to this tank where it gravity feeds to treatment system.

\$EPA

Cost of Pump and Water System

Pump and Water System	Components		EPA Cost	
Pump	Dayton High Head 5NXZ5, Flow Rate - 5 gpm, Head - 350 feet TDH, Power - 120V	\$	692	
Pump Control Panel	Control Panel Enclosure, Omron Digital Timers, Circuit Breakers, Panel Switches (3), Indicator Lights (2), Motor Starter and Miscellaneous Materials – Wiring, etc	\$	840	
Pump Gauges	Pressure Gauges (2)	\$	200	
Equalization Tank	250 gallons	\$	200	
Water System Pipe	1-inch PVC (40)	\$	120	
Water System Pipe Fittings	Valves, etc.	\$	250	
	Total Cost	\$	2,302	

SEPA

Hurricane Maria

Hurricane María made landfall on the southeastern side of Puerto Rico on Sept. 20, 2017. Apeadero was in the direct path of the hurricane.

Maria caused extensive damage to infrastructure, causing a complete loss of communication, energy and water services.

Rainforest Canopy Tumbles Down

After Maria

Before Maria

After Maria

Apeadero Storage Tank Damage

Battery Enclosure Repairs after Hurricane Maria

€ EPA

Apeadero (Maria Repairs)		
Item	Cost	
Surge Protector	\$125	
Breaker for Batteries	\$215	
Solar Voltage Inverter	\$2,419	
Batteries	\$3,120	
Total	\$5,879	

The Good News!

Solar Panels Before and After Hurricane Maria

Solar Panels withstood 110 mph wind gusts and 35 inches of rain.

Lessons Learned

EPA

- Community involvement and education are critical. Use local assistance to keep the community involved.
- > The economy is a challenge.
- Solar power is a great alternative to highpriced and unpredictable electrical power in Puerto Rico.
- Invest in a waterproof equipment enclosure and a robust solar panel mounting structure.
- It is amazing what can be constructed in difficult terrain with everyone pitching in.

Questions?

Craig Patterson, P.E. U.S. EPA Cincinnati Patterson.Craig@epa.gov Thank You!