

Supply Chain Management for Upgrading Waste Materials to Value-Added Products

Edgar Martín-Hernández^{1,2}, Mariano Martín¹, Gerardo Ruiz-Mercado³

¹Department of Chemical Engineering, University of Salamanca ²ORISE Research Fellow, NRMRL, ³U.S. Environmental Protection Agency

The views expressed in this presentation are those of the authors and do not represent the views or policies of the U.S. Environmental Protection Agency

II.Problem definition

III.Approach

IV.Tool

Nutrient pollution prevention and control

Avoid the harmful algal blooms (HABs)

- I. Public health protection from microbial contaminants in water bodies
- II. Protect aquatic life from toxic chemicals
 - III.Maximizing treatment effectiveness and minimizing cost

Excess levels of nutrients in the watersheds of the US

Impediment to water quality

Environmental issues Economic concerns

Environmental issues

The rapid growth or bloom of phytoplankton (HABs) is triggered primarily by increased nutrient levels. Also, low water flows, warmer temperatures, and other factors.

Economic concerns

Economic impacts may include: •Medical and veterinary expenses •Increased cost of drinking water treatment •Decreased recreational revenue and property values.

Goal

Provide tools, technologies, and best practices to predict, monitor, manage, and assess effectiveness of nutrientreducing efforts

6 CLEAN WATER AND SANITATION

2 RESPONSIBLE CONSUMPTION AND PRODUCTION

Problems of nutrients in agriculture:				
	Organic	Inorganic		
Ν	 Chemically bounded to C Must be converted to inorg. N by microorganisms to be available to plants Mostly present in the solid phase of manure. 	 Immediately available to plants Mostly available in the liquid phase of the manure. 		
Ρ	 Chemically bounded to C Must be converted to inorg. P by microorganisms to be available to plants Mostly available in the solid phase of manure. 	 P in phosphate form Available disolved and bounded to minerals Soluble P is immediately available to plants Mostly available in the liquid phase of the manure. 		

SUPPLY CHAIN DESIGN FOR UPGRADING WASTE MATERIALS TO VALUE-ADDED PRODUCTS

Develop a techno-economic decision tool for nutrient management from animal waste to guide decision maker's to design the optimal waste management system for nutrient pollution prevention and control

SUPPLY CHAIN DESIGN FOR UPGRADING WASTE MATERIALS TO VALUE-ADDED PRODUCTS

Techno-economic decision tool

Technoeconomic evaluation modules for nutrient recovery and treatment

Watershed-scale approach to prevent or mitigate potential occurrence of HABs Aid in the nutrient recovery technology decision making process

ON AGENCY

28

Cattle digestate hindrances:

Complex matrix

- I. Complex Interactions between different chemical systems
- II. High ionic strength (reduce the availability of ions for product formation)
- III.Presence of calcium ions (compete for phosphate ions and reduce the selectivity for struvite)

High variability in the composition

Search EPA.gov

CONTACT US

Data from the National Aquatic

SHARE (f)

 (\mathbf{y})

Geographic data

Laws & Regulations

National Aquatic Resource Surveys

About EPA

Resource Surveys

SEPA United States Environmental Protection

Environmental Topics

National Aquatic Resource

Surveys Home Background

Indicators

NARS data: TP and NH₄

+ HUC8: extent of surface water drainage using a hierarchical system of nesting hydrologic units (USGS)

34

[NH₄] (mg/L)

[TP] (µg/L)

Geographic data

AGENCY

← → ♂ ଢ	① 127.0.0.1:8000/cereslibrary/	± II\ ⊡ ≡

Home Library of Technologies References

Ceres project

Ceres_Filtration_v1. Tool for selection of nutrients recovery technologies. Edgar Martín Hernández. Cincinnati 2019.

Model data

The model has the following statistics:

- Technologies considered: 4
- Technologies considered with generation of added value products: 2
- Technologies considered with only nutrients removal: 2

Technology selection

Open model to select the optimal nutrients recovery technology: Input data

240%

… ⊘ ☆

(←) → C' @ ① 127.0.0.1:8000/cereslibrary/user-input/ **Technology selection** Home Library of 0 Facility size: **Technologies** Enter the facility size in kg/s of manure References 0 User budget: It is not working yet Product: Select an expected product produced 0 Manure composition: It is not working yet Crop: Select an objective crop for the fertilizer Submit

) > C 🏠 (i) 127.0.0.1:8000/cereslibrary/user-input/ **Technology selection** Home Library of Facility size: **Technologies** Enter the facility size in kg/s of manure References 0 User budget: It is not working yet **Product:** ed product produced No product \$ Manure composition: Struvite vet Other product Crop: NP fertilizer ve crop for the fertilizer P fertilizer

N fertilizer

Submit

... 🖂 🕁

Supply Chain Management for Upgrading Waste Materials to Value-Added Products

Edgar Martín-Hernández^{1,2}, Mariano Martín¹, Gerardo Ruiz-Mercado³

¹Department of Chemical Engineering, University of Salamanca ²ORISE Research Fellow, NRMRL, ³U.S. Environmental Protection Agency

The views expressed in this presentation are those of the authors and do not represent the views or policies of the U.S. Environmental Protection Agency