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EPA’s Safe and Sustainable Water 
Resources (SSWR) Research Program

• Watershed Sustainability

• Nutrients

• Green Infrastructure and Stormwater

• Water Systems
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Water System Analyses

1. Development of a transformative technology toolkit library

2. Metrics, tools improvement, and expansion 

3. System analyses comparing conventional and transformative community  
water systems and applications in community-based case studies 
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Water System Analyses
LCA and LCCA for current centralized water and wastewater systems

─ Greater Cincinnati region (GCWW and MSD)

Resource recovery-based community system
─ Small-scale WWRF in NY (energy recovery via co-digestion, water 

reuse, nutrient recovery via composting)

─ Medium-scale WWRF in MA (expanded energy recovery via co-
digestion, nutrient recovery via pellet land application)

Evaluation of alternative scenarios for decentralized non-potable water 
reuse systems (mixed wastewater and graywater, scale, source 
separation of wastes, treatment approach)
─ San Francisco, CA and other stakeholders (from knowledge to 

application)

 Emergency response options (Atmospheric water generation, single-
serve single use bottled water, multi-serve reusable jugs)



Why are Cities Interested?
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• Water resource stress (quantity-drought)
• Water resource stress (quality – safety)
• Drinking water quality (pathogens, DBPs, PFOS/PFOA)
• Wastewater treatment (eutrophication)
• Combine sewer overflow (CSO) 
• Storm water management (flooding)
• Aging infrastructure (rated as “D+”)
• Financial burden ($540 billion gap in next 20 years)

“Siloed” water management approaches.



Centralized Treatment Resources
• S Cashman, A Gaglione, J Mosley, L Weiss, N Ashbolt, T Hawkins, 

J Cashdollar, X Xue, X Ma, and S Arden. Environmental and Cost 
Life Cycle Assessment of Disinfection Options for Municipal Drinking 
Water Treatment. U.S. Environmental Protection Agency, 
Washington, DC, EPA/600/R-14/376, 2014. 
https://nepis.epa.gov/Exe/ZyPDF.cgi/P100LHTP.PDF?Dockey=P100
LHTP.PDF

• S Cashman, A Gaglione, J Mosley, L Weiss, N Ashbolt, T Hawkins, 
J Cashdollar, X Xue, X Ma, and S Arden. Environmental and Cost 
Life Cycle Assessment of Disinfection Options for Municipal 
Wastewater Treatment. U.S. Environmental Protection Agency, 
Washington, DC, EPA/600/R-14/377, 2014. 
https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=298
570

• X Xue, S Cashman, A Gaglione, J Mosley, L Weiss, X Ma, J 
Cashdollar, J Garland. Holistic Analysis of Urban Water Systems in 
the Greater Cincinnati Region: (1) Life Cycle Assessment and Cost 
Implications. Water Research, 2018 (Accepted).
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https://nepis.epa.gov/Exe/ZyPDF.cgi/P100LHTP.PDF?Dockey=P100LHTP.PDF
https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=298570


Centralized Treatment Unit Process 
Coverage

• Functional unit = cubic 
meter of water delivered 
to consumer, which is 
subsequently treated.

• Unit processed based on 
data received directly 
from utilities in the 
Greater Cincinnati 
region.
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From Xue et al., 2018 
(Accepted)



Analysis of Complete Municipal 
Water System
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Results by Life Cycle Stage
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Results by Underlying Drivers
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From Xue et al., 2018 (Accepted)



Onsite Non-potable 
Water Systems 
Resources

• S Cashman, X Ma, J Mosley, JL Garland, BC Crone, X Xue. Energy and greenhouse gas life cycle assessment 
and cost analyst of aerobic and anaerobic membrane bioreactor systems:  Influence of scale, population density, 
climate, and methane recovery.  Bioresource Technology, 2018.   
https://www.sciencedirect.com/science/article/pii/S0960852418300749.  ORD-018382.

• S Cashman, X Ma, J Garland, X Xiaobo, J Mosley, B Crone. Holistic evaluation of decentralized water reuse: life 
cycle assessment and cost analysis of membrane bioreactor systems in water reuse implementation. 11th IWA 
International Conference on Water Reclamation and Reuse, Long Beach, California, 2017. 
http://www.werf.org/c/Events/2017/IWA_Presentations/B1/B1__Distributed_Treatment_and_.aspx

• B Morelli, S Cashman, Cissy Ma, J Garland, D Bless, M Jahne. Life Cycle Assessment and Cost Analysis of 
Distributed Mixed Wastewater and Graywater Treatment for Water Recycling in the Context of an Urban Case 
Study. EPA report: EPA/600/X-18/280, 2018. Under Clearance.  

• S Cashman, J Mosley, X Ma, JL Garland, J Cashdollar, D Bless. Life cycle assessment and cost analysis of water 
and wastewater treatment options for sustainability: Influence of scale on membrane bioreactor systems. U.S. 
Environmental Protection Agency, Washington, DC, EPA/600/R-16/243, 2016. 
https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=336242.
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https://www.sciencedirect.com/science/article/pii/S0960852418300749
http://www.werf.org/c/Events/2017/IWA_Presentations/B1/B1__Distributed_Treatment_and_.aspx
https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=336242


Buildings Produce Water   
Precipitation 
collected from 
roofs and 
above-grade 
surfaces

Precipitation 
collected at 
or below 
grade

Nuisance 
groundwater 
from dewatering 
operations

Wastewater 
from clothes 
washers, 
bathtubs, 
showers, and 
bathroom sinks 

Wastewater 
from toilets, 
dishwashers, 
kitchen sinks, 
and utility sinks
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Presenter
Presentation Notes
We also have another opportunity before us.  We can think about our new buildings can as water resources.  By designing our buildings to collect and treat water generated on-site, can be and reused for flushing our toilets and irrigating our landscaping.  Several water sources are generated with-in a building including: rainwater, stormwater, graywater, blackwater and foundation drainage. 
 




Finding New 
Water

NON POTABLE USE

GRAYWATER
(SHOWER, SINK, 

LAUNDRY)

BLACKWATER
(TOLIET 

WASTEWATER)

STORMWATER
(LAWN & 

SURFACE 
RUNOFF)

FINDING NEW WATER  Alternative Water Reuse

TREATMENT

Aerobic Membrane 
Bioreactor (AeMBR)

Mesophilic 
Anaerobic MBR 
(AnMBR)

Psychrophilic 
AnMBR

Recirculating 
Vertical Flow 
Wetland

Presenter
Presentation Notes
This study aims to examine environmental impacts of shifting from traditional centralized treatment towards novel decentralized or distributed treatment systems.  The study assesses treatment of mixed wastewater from residential sources via membrane bioreactors. We look at three options for MBRs – aerobic membrane bioreactors (a commercial technology), and two options for anaerobic membrane bioreactors operated at either a hotter 35 C temperature or operated at ambient temperature. The treated water is then recycled for purposes such as irrigation. 



Life Cycle Impacts for Building Scale Mixed 
Wastewater and Graywater Treatment 
Technologies – Full Utilization of Treated 
Water (Global Warming Potential)
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From Morelli et al, 2018 (Under Clearance Review)
WW = Wastewater
GW = Graywater



Example Influence of Parameters on Study 
Outcome: psychrophilic AnMBR
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From Cashman et al. (2017)

Presenter
Presentation Notes
This slide displays the influence of regional and technology parameters investigated in results for three main impact categories assessed for the psychrophilic AnMBR. The relative change in GWP is shown in blue, while the relative change in energy demand is shown in green, and the relative change in cost is shown in yellow. Overall, you see similar trends for energy and global warming potential, but very different trends for costs. Cost is almost exclusively dominated by the scale parameter, and not very sensitive to the other parameters investigated. The main difference between energy demand and global warming potential results in terms of parameter sensitivity is for permeate methane recovery. While permeate methane recovery shows strong benefits for GWP, it impacts overall energy demand results less. While energy is able to be generated from the recovered methane, notable energy is also required for the recovery process. Overall, we see that reactor scale, temperature and climate conditions had the strongest impacts on overall GWP and energy results. As discussed, we saw limited impact from population density. We do see some sensitivity to the technology option selected for methane recovery as well as reactor insulation assumptions, electricity intensity of displaced grid and the electrical grid mix itself. Overall, developing a framework for analyzing technologies with these scenarios will help us to customize the unit processes for specific regional and technological contexts.



Resource Recovery Studies

• B Morelli, S Cashman, X Ma, J Garland, D Bless, J 
Cashdollar. Environmental Life Cycle Assessment and 
Cost Analysis of Bath, NY Wastewater Treatment Plant: 
Potential Upgrade Implications. EPA Report EPA/600/R-
17/207, 2017. 
https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEnt
ryId=338074

• B Morelli, S Cashman, X Ma, J Garland, J Turgeon, L 
Fillmore, D Bless, M Nye. Effect of Nutrient Removal and 
Resource Recovery on Life Cycle Cost and Environmental 
Impacts of Small Scale Wastewater Resource Recovery 
Facility. Sustainability, 2018 (Under Review).

• B Morelli, S Cashman, X Ma, J Garland, J Turgeon, D 
Bless. Life Cycle Assessment and Cost
Analysis of Municipal Wastewater Treatment Anaerobic 
Digestion Expansion Options. EPA Report, 2018. Under 
Clearance.  
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https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=338074
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Potential Upgraded Treatment 
System (Bath, NY)
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From Morelli et al. (2017)



Bath, NY Plant Upgrade Global 
Climate Change Potential
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* Error bar on the Upgraded (Base) scenario reflects the full range of results across all feedstock, 
anaerobic digestion, and end-of-life scenarios. 

From Morelli et al. (2017)



Emergency Response Potable 
Water Options

• Atmospheric Water Generator (AWG) in 3 scales 
(large scale,  medium scale and home/office scale) 

• Bottled Water
– Single use 16.9 oz bottles in a 24 pack 
– Multi-use 5 gallon jug

16

System Boundary – AWG General



Next Steps
• Compile a "Toolkit" inventory of transformative 
alternative unit processes used in resource-
recovery-based water system design

• Develop Smart Water Management Evaluation 
Tool to compare quantitative impacts of 
different alternatives and make balanced 
decisions

• Allow dynamic generation of LCA and LCCA 
results through selection of key regional and 
technological parameters.
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Disclaimer
This research was part of the U.S. Environmental 
Protection Agency (U.S. EPA) Office of Research and 
Development’s Safe and Sustainable Water Resources 
(SSWR) Program. The research was supported by U.S. 
EPA contracts to EP-C-12-021 and EP-C-16-0015 to 
Eastern Research Group, Inc. and EPA Contract No. 
EP-C-15-010 to Pegasus Technical Services, Inc.
Although the information in this document has been 
funded by the U.S. EPA, it does not necessarily reflect 
the views of the Agency and no official endorsement 
should be inferred. 
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Contact Information
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