Influence of Combustion Factors on
Biomass Emissions

Johanna Aurelll, Amara Holder?, Brian Gullett?
lUniversity of Dayton Research Institute
U.S. Environmental Protection Agency, Office of Research
and Development

ED ST,
UNIVERSITY R g
of DAYTON g ° P
RESEARCH %M 3
INSTITUTE &

AL proTe

The Fire Continuum Conference, Missoula, MT,
7’ 7’ 7’ 1
S May 21-24, 2018



Pollution from Wildland Fires

* Emissions from wildland fires, including wildfires and prescribed
forest and agricultural fires, are recognized for their impact on
— ambient air quality

— respiratory health
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Are Emissions Inevitable?

* |s there nothing we can do about emissions
other than mapping the path of smoke and
informing the impacted public about health

risks?
* Or can we undertake land management
processes to limit the impact of wildfires?

* And can we optimize conditions under which
prescribed burns are done?

This will be the focus of this talk....
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 The concentration and pollutant species vary as a function of

— Fuel variables
* Species
* Moisture
* Season
— Burn variables
* Fire intensity and combustion completeness
» Stage of burn
— Meteorology
e Humidity
 Wind
e temperature

These effects have been minimally characterized,
if at all.
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Definitions

e Quantification = Emission factor x Activity
level

— Emission factor = mass of pollutant/mass of fuel
— Activity level = acres burned, mass combusted

 Modified Combustion Efficiency
ACO,

ACO, + ACO
— Does not account for unburned carbon in PM

— Does not account for unburned biomass

MCE =

The Fire Continuum Conference, Missoula, 5

5/15/2018 MT, May 21-24, 2018



Seven Sources,
Field and Laboratory

o Prairie, KS - Spring
Biomass piles, OR

e Forest, FL - OBTF

e Forest, FL - Field

o Bluegrass, ID - OBTF

o Wheat, WA

e Forest, SC - Field
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Six Sources, Field
and Laboratory:

e Prairie, KS - Fall

¢ Prairie, KS - Spring
Biomass piles, OR

® Forest, FL - OBTF

e Forest, FL - Field

e Bluegrass, ID - OBTF
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Carbon Oxidation and Pollutant Concentration

Real time measurements on biomsss
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Carbon Oxidation and Pollutant Concentration

 Pollutant

concentrations
parallel carbon
oxidation rate.
High conversion
rate of C to CO2
= high pollutant
concentration,
first order.
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Emissions and Combustion Quality

Emission factors are
now being categorized
as either “Flaming” or
“Smoldering”

— A semi-arbitrary designation of MCE < 0.84=
Smoldering, MCE > 0.95 = Flaming

— However, fires are a continuum between flaming
and smoldering with all fire conditions occurring
simultaneously across the burn area

The Fire Continuum Conference, Missoula,
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PM, - Results in the Flint Hills, KS
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Good relationship
between particulate
matter (PM) and
combustion efficiency,
MCE.

Better combustion
(higher MCE) = less
PM
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Effect of Combustion Efficiency and

Season on Emissions
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Carbon Emissions

Carbon in PM, .
increases as
combustion
efficiency, MCE,
declines
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Study Objective

* |n general, emissions drop as combustion
efficiency improves.

* Can we relate fire dynamics, or how things
burn, to combustion efficiency and then to

emissions?

The Fire Continuum Conference, Missoula,
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Combining Fire Science and Emission Science

 Many variables are believed to determine fire
emissions

— Fuel variables
* Species
e Density (area and volume)
* Moisture

— Meteorological

e Relative humidity

* Wind speed
£ Fire dynamics (including combustion efficiency, MCE)’
* Fire intensity

* |gnition pattern
. J
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Open Burn Test Facility

collection of

biomass Combustion testing

and emission
sampling

The Fire Continuum Conference, Missoula, 17
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The unimpressive-looking OBTF
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Open Burn Test Facility

Exhaust Duct, 40.6 cm diameter

Air outlet

e Air flow through facility

e 39x3.9%x4.6m

 ~60 second air turnover
* Interior measurements

* Mass loss scale

* Flyerl,2
____________________ * IR and video cameras

 Exhaust duct measurements
j Biomass
7

c PM(t)
Schematic

Air inlet

The Fire Continuum Conference, Missoula,
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Open Burn Experiments

Methods Variables
* Pine straw e “Baseline” = Field-collected density
 2.421b (1.1 kg) pine straw * “High Fuel Density” = 2x area density
* ~1m?burn pan e “High Burn Intensity” = pine straw
* On aluminum foil spread out on 3 shelves

* Ignited with butane burner

R R >.~‘
B S
:'.)

Baseline High Density High Intensity

The Fire Continuum Conference, Missoula,
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Measurements

e CO(t)

e CO2(2)

e PM2.5(t)
 VOCs batch
« BC/EC/OC/TC
e Carbonyls

* PAHs
 T(IR)

Flaming (left) and Smoldering (right)

The Fire Continuum Conference, Missoula
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Studying Fire Intensity — IR Measurements

Thermal
IR camera.

Camera: 382 x 288 pixels |
Spectral Range: 7.5 to 13 microns ‘ TR

Thermal Sensitivity: 0.08K : nIT’H‘hu\
System Accuracy: +/- 22C ) e vt

The Fire Continuum Conference, Missoula,
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Mass: Baseline, HI, HD
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High Intensity (HI) burns lose weight faster than the
Baseline burns and faster than the High Density (HD) burns.
Our conditions appear to have defined three different burn

intensities for which we can determine potential effects on
emission factors.
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Baseline, HI, HD: Mass and MCE

e HD Mass (kg)

== « HD MCE

e Baseline Mass (kg)
= - -Baseline MCE
e H| Mass (kg)
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MCE is consistent (although burn have different
durations) while mass loss profile changes
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Baseline and HI: Temp., PM2.5

== Baseline Temp (°C)
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High Intensity burns reach high temperatures quickly and this
is associated with quicker PM2.5 peaks.
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Baseline and HD: Temp., PM2.5

e HD Temp. ( C)

e Baseline Temp ( C)
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* High Density burns saturated optical detector and have higher burn
temperatures that persist.
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Modeling a Multi-Fireline Ignition Pattern

During a prescribed fire, 400 Time=0s
multiple drip lines are being
ignited in a staggered
fashion. The model shows
the effect on downwind fuel

300

consumption/fire spread. 2
p— 0
= 115 @

Coupling fire >,200 £

spread/dynamics with L%L’

fuel emissions can 100

provide us with means
to minimize emissions.

0 100 200 300 400 500 600
x[m]
Density = 4.5 tons/ac
Wind speed = 13.5 MPH

Courtesy of Rod Linn, Los Alamos National Security, LLC
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What is the practical impact?

* |f we can tie fire dynamics to emissions
amount and composition, this will enable us
to improve fire prescriptions (e.g., how and
when is the best time to burn):

— Optimum frequency for prescribed burns

— Assessment of health impacts

— How the fire is conducted (e.g., head fire, flanking
fire) affects emissions

— Moisture, humidity, wind prescription for fire

The Fire Continuum Conference, Missoula
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