

Stochastic industrial source detection using lower cost methods

AGU, New Orleans LA, December 14, 2017

E. Thoma¹, I. George¹, H. Brantley^{1*}, W. Tang², P. Deshmukh³, J. Cansler³

¹EPA Office of Research and Development, Durham, NC 27711; *ORISE

²Applied Research Associates, Durham, NC 27711

³Jacobs Technology, Durham, NC 27711

Disclaimer: Mention of companies, trade names, or products do not constitute endorsement by U.S. EPA. Information presented does not necessarily reflect the views of U.S. EPA. No policy implications are implied.

Stochastic industrial source emissions An evolving term....

An air pollutant source that can be:

- Spatially distributed, unknown location
- Temporally episodic, difficult to predict
- Unexpected or unintended
- Not monitored or well understood

Next Generation
Emission
Measurements
(NGEM)

<u>Examples</u>:

Fugitive leaks, malfunctions, process upsets, waste water/area sources, vented liquids storage, drains/sumps, startup/maintenance events, etc.

Process Malfunction NGEM = Airborne OGI Courtesy of D. Lyon, EDF, 2016

Lots of NGEM Tools in the Bag.....

- Non-speciating sensors (mobile, fixed, network)
- Single compound sensors (spectroscopic)
- Lower cost field gas chromatographs

Combining with

- Wind field diagnostics
- Time-integrated samplers (sector and geospatial)
- Triggered laboratory acquisitions (grabs)

Two-week passive sampler data

Benzene spatial gradient from source (Philly study)

Two-week passive sampler data (fenceline group)

Elevated benzene in sampling period 34 (Philly study)

The Importance of QA Validation UV DOAS *Elevated benzene in period 34 (Philly study)*

Combining sensor data and wind flow models

Helps understand concentration fields and source locations

Los Alamos Quick Urban & Industrial Complex (QUIC) Dispersion Model http://www.lanl.gov/projects/quic/ Easy to setup, runs on a laptop!

Time (Hr: Min)

1.0

---135-TMB

Example Plume Event

Possibly from fuel storage across street

Plume composition complexity is high

This presents additional challenges

*DRAFT-Prelim data- Subject to change – uncertainty in compound assignment and concentrations

*DRAFT-Prelim data- Subject to change – uncertainty in compound assignment and concentrations

VOC Emissions Tracker (VET)

..... in development

- SPod or other sensor
 - Fast, nonspecific concentrations
 - Wind field
 - Pressure, temp, R/H
- Field GC (low cost)
 - Compound specific (10 minute)
- Triggered canister grab sample
 - Optimal acquisition (in-plume)
 - Detailed Lab speciation

Next- gen sensors and such

- Low cost sensors
- Fenceline and facility
- Mobile measurements
- Community monitoring
- Satellites and tower
- Measurement /model system
- Data fusion across scales

www.acs.org

http://www2.epa.gov/air-research/next-generation-air-measuring-research

Snyder, E. G. et al. The changing paradigm of air pollution monitoring. Environ. Sci. Technol. 2013, 47 (20), 11369-11377

Next generation air monitoring (NGAM) and Next generation emissions measurements (NGEM)

NGEM

- Reduce emissions
- Improve work practices
- Reconcile inventories
- Improve transparency
- Enable new management strategies

http://www.leaksurveysinc.com/

Component Leak

NGEM = Optical Gas Imaging (OGI)

