

Overview of T.E.S.T. (Toxicity Estimation Software Tool)

Todd Martin, US EPA, Cincinnati, OH, USA

Office of Research and Development National Risk Management Research Laboratory / Sustainable Technology Division / Clean Processes Branch

April 26, 2018

Our goal was to develop user friendly software that can estimate toxicity and physical properties from molecular structure

Experimental data such as critical properties or biological assays are not used
Values can be used for alternatives assessment

OECD* Principles

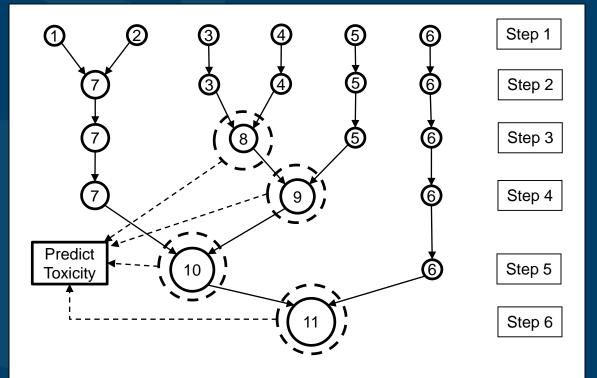
- >An unambiguous algorithm
- ➤A defined endpoint
- >A defined domain of applicability
- Appropriate measures of goodness-of-fit, robustness and predictivity
- >A mechanistic interpretation, if possible

*Organisation for Economic Co-operation and Development: http://bit.ly/2r8bVAs

Methods

There are several quantitative structure activity relationship (QSAR) methods available in TEST:

- Hierarchical clustering
- Single Model
- Group contribution
- FDA (Food and Drug Administration)
- Nearest neighbor
- Consensus


See the TEST User's guide for detailed information

Hierarchical clustering

Similar chemicals are grouped together but not necessarily on expert defined chemical classes

Uses structural information from entire dataset instead of just from chemicals in SAR

Clustering is based on Ward's method (which aims to minimize the variance of the clusters)
 A prediction is made using the closest cluster from each step in the clustering

Hierarchical clustering, cont.

Predictions made using weighted average of several different models:

$$Tox = \sum_{i=1}^{k} w_i \times Tox_i / \sum_{i=1}^{k} w_i$$

The weights are based on the standard error for each prediction:

$$w_j = \frac{1}{se_j^2}$$

For binary endpoints (i.e. mutagenicity) the predictions are equally weighted (w=1)

Hierarchical Clustering, cont.

>Advantages

- Most accurate single method since prediction represents prediction from multiple models
- Disadvantages
 - Cannot provide external estimates of toxicity for compounds in the training set

Single model

Predictions are made using multilinear regression model fit to entire training set:

$$Tox = \sum a_i x_i + a_0$$

>Descriptors, x_i , are 2d molecular descriptors >Example, 48 hr *Daphnia magna* LC₅₀ model:

Toxicity = 1.2157 × (xc4) + 0.1341 × (StN) + 0.6974 × (SsSH)

- 1.3213 × (SsOH_acnt) + 0.8605 × (Hmax) + 1.4685 × (ssi) -0.9197 × (MDEN33) + 0.2238 × (BEHm1) + 1.4502 × (BEHp1) + 2.4060 × (Mv) + 1.9085 × (MATS1m) -2.4036 × (MATS1e) - 0.3463 × (GATS3m) + 0.0255 × (AMR) -1.4215 × (-C(=S)- [2 nitrogen attach]) - 0.7185 × (AN) -

7 1.0232 × (-N< [attached to P]) - 1.5228 × (-S(=O)(=O)-[aromatic attach]) - 6.5594

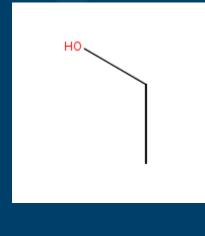
Single model, cont.

>Advantages

- Single transparent model can be easily viewed/exported
- The model does not need to rely on clustering the chemicals correctly

Disadvantages

- Since the model is fit to the entire dataset it may incorrectly predict the trends in toxicity for certain chemical classes
- Cannot provide external estimates of toxicity for compounds in the training set


Group contribution

Predictions are made using multilinear regression model fit to entire training set:

$$Tox = \sum a_i x_i + a_0$$

> Descriptors, x_i , are molecular fragment counts

Descriptor	Xi	a _i	$a_i \times x_i$
-CH3 [aliphatic attach]	1	0.23	0.23
-CH2- [aliphatic attach]	1	0.27	0.27
-OH [aliphatic attach]	1	-0.58	-0.58
Model intercept (a ₀)	1	1.96	1.96
Tox (-Log10(LC ₅₀ mol/L))			1.88

Group contribution, cont.

>Advantages

- Easy to understand the model and estimates can be made without using a computer program
- Toxicity estimates are rapid and can be used for molecular design

Disadvantages

- The model doesn't correct for the interactions of adjacent fragments
- Since the model is fit to the entire dataset it may incorrectly predict the trends in toxicity for certain chemical classes

Predictions are made using a multilinear regression model fit to the 30-75 most similar compounds in the training set:

$$Tox = \sum a_i x_i + a_0$$

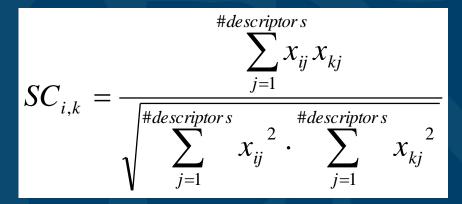
 Descriptors, x_i, are 2d molecular descriptors
 Example model built for benzene for FHM LC50:
 Toxicity = 0.4642 × (SsssCH) + 0.3255 × (SdssC) + 0.7706 × (Hmin) + 0.7088 × (iedem) -1.0033 × (BEHm3) + 0.8268 × (ALOGP) + 2.5756

FDA, cont.

>Advantages

- Can generate a new model based on the closest analogs to the test compound
- Always provides an external prediction of toxicity

Disadvantages


Predictions sometimes take longer since it has to generate a new model each time

Nearest Neighbor

Predicted toxicity is simply the average of the three nearest neighbors (i.e. read across)

>The neighbors are those with highest similarity coefficient:

All neighbors must exceed a minimum cosine similarity coefficient

For example the predicted FHM LC₅₀ for benzene is made using average of values for

$$\begin{array}{c} & & \\$$

Nearest neighbor, cont.

>Advantages

- Provides a quick estimate of toxicity
- Allows one to determine structural analogs for a given test compound
- Always provide an external prediction of toxicity
- Disadvantages
 - It does not use a QSAR model to correlate the differences between the test compound and the nearest neighbors
 - Was shown to achieve the worst prediction results during external validation

Consensus model

The consensus prediction is simply the average predicted value for all the models that have predictions inside their applicability domain

A prediction is made if at least two models have a valid prediction in terms of their respective applicability domain

- Using multiple models minimizes bad predictions and maximizes prediction accuracy
- Using different applicability domains maximizes prediction coverage

This method is recommended method to use

Consensus, cont.

>Advantages

 Was shown to achieve the best prediction accuracy and coverage during external validation

Disadvantages

- Cannot provide external estimates of toxicity for compounds in the training set
- Calculations take longer

Applicability Domain

Model ellipsoid constraint

- Test chemical must be within ellipsoid of descriptor values for model chemicals (based on descriptors in model)
- The model ellipsoid constraint is satisfied if the leverage of the test compound (*h*₀₀) is less than the maximum leverage value for all the compounds used in the model:

$$h_{00} = X_{o}^{T} (X^{T} X)^{-1} X_{0}$$

Applicability Domain, cont.

≻Rmax constraint

 Distance to the centroid of the cluster must be < the maximum distance for any cluster chemical (based on entire descriptor pool)

$$distance_{i} = \sqrt{\sum_{j=1}^{d} (x_{ij} - C_{j})^{2}}$$

Applicability Domain, cont.

Fragment Constraint

- Compounds in the cluster must have at least one example of each of the fragments contained in the test chemical
 - Note: not used for binary endpoints (i.e. mutagenicity)
- >Example:
 - If a cluster contained only primary alcohols, it shouldn't be used to predict the toxicity for a primary aldehyde (since the cluster doesn't contain any compounds with an aldehyde group)

Applicability Domain, cont.

Method	AD Measures
Hierarchical clustering	Ellipsoid, Rmax, Fragment
Single model	Ellipsoid, Rmax, Fragment
FDA	Ellipsoid, Fragment
Group contribution	Ellipsoid, Fragment
Nearest neighbor	Must have 3 chemicals with SC > SC _{min}

21

Molecular descriptors

TEST generates ~800 descriptors: Estate values and E-state counts Constitutional descriptors Topological descriptors Walk and path counts Connectivity Information content 2d autocorrelation Burden eigenvalue Molecular property (such as Kow) Kappa Hydrogen bond acceptor/donor counts Molecular distance edge Molecular fragment counts See Molecular Descriptor Guide in TEST (accessible) from Help menu or from link on website)

Required Model Statistics

Continuous endpoints
 q² ≥ 0.5
 Binary endpoints
 LOO Concordance ≥ 0.8
 LOO Sensitivity ≥ 0.5
 LOO Specificity ≥ 0.5

Validation Procedure

The overall datasets are randomly divided into a training set (80%) and a test set (20%) five times

- Splitting is done in 5 fold fashion and models are fit to a new set of descriptors each time
- The results are reported for the random splitting that provides results closest to the average results
 - Goal is to provide a reasonable estimate of the predictive ability of the models
- Test set results are evaluated in terms of
 - Prediction accuracy (r²)
 - Prediction coverage (fraction predicted)

Endpoint	Description
96 hr fathead minnow LC ₅₀	Concentration in mg/L that causes 50% of fathead minnows to die after 96 hours
48 hour <i>Daphnia</i> <i>magna</i> LC ₅₀	Concentration in mg/L that causes 50% of Daphnia magna to die after 48 hours
48 hour <i>Tetrahymena</i> pyriformis IGC ₅₀	Concentration in mg/L that causes 50% growth inhibition to <i>Tetrahymena pyriformis</i> after 48 hours
Oral rat LD ₅₀	Amount in mg/kg body weight that causes 50% of rats to die after oral ingestion

Endpoints, cont.

Endpoint	Description
Bioaccumulation factor	Ratio of the chemical concentration in fish as a result of absorption via the respiratory surface to that in water at steady state
Developmental toxicity	Whether or not a chemical causes developmental toxicity effects to humans or animals
Ames mutagenicity	A compound is positive for mutagenicity if it induces revertant colony growth in any strain of <i>Salmonella typhimurium</i>

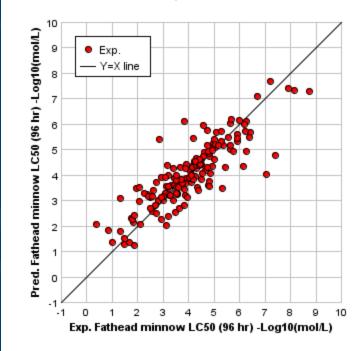
Physical properties in T.E.S.T.

Property	Description
Normal boiling point	Temperature (°C) at which a chemical boils at atmospheric pressure (1 atm)
Vapor pressure	The pressure (mmHg) exerted by a vapor in thermodynamic equilibrium with the liquid phase at 25° C in a closed system
Melting point	The temperature (°C) at which a chemical changes state from solid to liquid
Flash point	The lowest temperature (°C) at which a chemical can vaporize to form an ignitable mixture in air
Density	The mass per unit volume (g/cm ³)

Physical properties, cont.

Property	Description
Surface tension	A property of the surface of a liquid (dyn/cm) that allows it to resist an external force
Thermal conductivity	The property of a material (mW/mK) reflecting its ability to conduct heat
Viscosity	A measure of the resistance of a fluid to flow (cP) defined as the proportionality constant between shear rate and shear stress
Water solubility	The amount of a chemical (mg/L) that will dissolve in liquid water to form a homogeneous solution

"Future Endpoints in T.E.S.T.


 Skin sensitization/irritation/corrosion potential
 Eye irritation potential
 Octanol water partition coefficient
 Requests??? United States Environmental Protection Agency

 $\frac{R^2 - R_0^2}{R^2}$

96 hour fathead minnow LC₅₀

Method	R ²	Coverage	
Hierarchical	0.710	0.951	
Single Model	0.704	0.945	
FDA	0.626	0.945	
GC	0.686	0.872	
NN	0.667	0.939	
Consensus	0.728	0.951	
ECOSAR	0.620	0.976	

External prediction results

IGC₅₀ performance*

(19.3)

19.5 Software Performance with Tetrahymena pyriformis Test Set

The Tetrahymena pyrtformls toxicity data for the 350-compound test set used in this study were taken from Enoch et al.¹²⁵ and Ellison et al.¹²⁶

Two expert systems, ADMET Predictor from SimulationsPlus⁶² and T.E.S.T. from the US EPA⁸⁴ have a *Tetrahymena pyriformis* toxicity prediction module. SimulationsPlus kindly ran the test set used in this study through its module and obtained a reasonably good correlation of observed *vs.* predicted IGC₃₀ values:

 $\log 1/IGC_{so}(observed) = 1.04 \log 1/IGC_{so}(predicted) - 0.021$ (19.2)

ADMET Predictor $n = 350 r^2$

 $n = 350r^2 = 0.701s = 0.433F - 816.9$

Figure 19.1 shows the plot of observed vs. predicted log 1/IGC₅₀ values from ADMET Predictor.

The consensus predictions from T.E.S.T. were somewhat better:

 $\log 1/IGC_{so}(observed) = 1.06 \log 1/IGC_{so}(predicted) - 0.023$

T.E.S.T. $n = 349 r^2 = 0.751 s = 0.395 F = 1048.5$

³⁰ *Dearden, 2010

Expert Systems for Taxielty Prediction

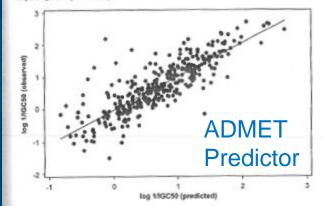


Figure 19.1 Observed Tetrahymena pyriformit toxicities w. those predicted by ADMET Predictor.

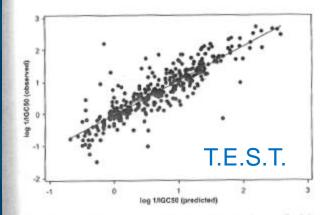


Figure 19.2 Observed Tetrahymens pyriformia toxicities vs. those predicted by T.E.S.T.

Mutagenicity performance*

Table 2: Performance of the 8 Predictive Mutagenicity Models

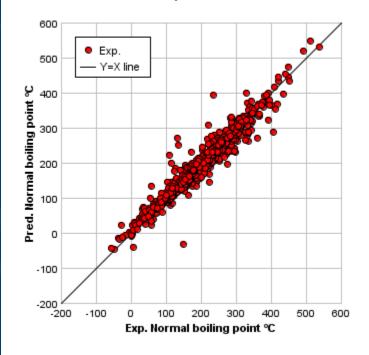
58		ACD	ADMET	CAESAR	Derek	SARpy	T.E.S.T.	TOPKAT	Toxtree
	Interpretation of the results	Ames probability $\geq 0,5$	Tox Mut Risk > 2,5	Suspect = mutagen	Toxicophore = mutagen	Presence of SA = mutagen	yes/no	yes/no	Presence of SA = mutagen
	Compounds predicted Not predicted Accuracy Sensitivity Specificity	6062 3 0.88 0.95 0.79	6065 0 0.76 0.72 0.82	6064 1 0.82 0.91 0.71	6062 3 0.77 0.78 0.75	6062 3 0.77 0.82 0.71	6060 5 0.83 0.84 0.82	6065 0 0.83 0.82 0.84	6065 0 0.76 0.84 0.65
	% of compounds predicted Accuracy Sensitivity Specificity	87.7% 0.93 0.95 0.91	1 70.8% 0.78 0.73 0.84	nside training 50.1% 0.90 0.97 0.82	gset NA	50.1% 0.82 0.85 0.79	72.4% 0.85 0.86 0.83	No data	NA
	% of compounds predicted	12.3%	29.1%	side predictio 49.9%	on set	49,9%	27.6%		
	Accuracy Sensitivity Specificity	0.47 0.84 0.34	0.72 0.69 0.76	0.73 0.85 0.60		0.72 0.79 0.64	0.79 0.79 0.80		

>T.E.S.T. achieved highest prediction accuracy for external set

³¹ *Bakhtyari, 2013

Developmental Toxicity

Method	Concor- dance	Sensitivity	Specificity	Coverage
Hierarchical	0.741	0.854	0.471	1.000
Single Model	0.754	0.900	0.412	0.983
FDA	0.672	0.780	0.412	1.000
Nearest neighbor	0.795	0.844	0.667	0.759
Consensus	0.759	0.902	0.412	1.000
Random Forest	0.852	0.949	0.600	0.931



 $R^2 - R_0^2$

Normal boiling point

Method	R ²	Coverage
Hierarchical	0.949	0.935
FDA	0.936	0.988
GC	0.897	0.977
NN	0.877	0.988
Consensus	0.947	0.986

External prediction results

When not to use T.E.S.T.

 \succ Compounds containing elements other than C, H, O, N, F, CI, Br, I, S, P, Si, As >Inorganic compounds ➢Polymers \succ Mixtures (more than one molecule) Salts / Ionic species \succ Very complicated polycyclic aromatics such as Bucky balls >When only one model can make a prediction

(especially if method is NN method)

Where can I get T.E.S.T.?

http://bit.ly/1suh4kr

T.E.S.T (Toxicity Estimation Software Tool) C P H S Br Si D F I Sn 4 / 1 + 2 ∠ 0 0 0 Draw a structure or enter a CAS number (i.e. 71-43-2) in the Molecule D field and click "Enter structure". A Molecule D is required for file output Molecule ID 333-41-5 Enter structure Endpoint. Fathead minnow LC50 (96 hr) - 7 Method: Group contribution 💌 ? Options

Tutorial

Importing files

T.E.S.T (Toxicity Estimation Software Tool)

File Edit	
	1
Import from MDL molfile	Ď
Generate from SMILES string	5
Generate from SMILES on clipboard	2
Import from structure database	
Create a batch list	
Batch import from MDL SDfile	
Batch import from list of CAS numbers	
Batch import from list of SMILES strings	
Batch import of toxicity training/test sets	•
Batch import of physical property training/test sets	•
Save as MDL molfile	
Copy SMILES to clipboard	
Recent structures analyzed	•
Recent batch results files	•

Download TEST (version 4.2.1)

- TEST for Windows with Automatic Installation (EXE) (298 MB)
- TEST for MacOS (ZIP) (307 MB)
- TEST for Linux (ZIP) (309 MB, August 2016)

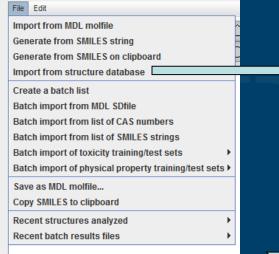
Training and prediction sets (12 MB) used in T.E.S.T. (sdf format)

Structure Data Files (ZIP) (3 K) (such as a MDL SD file).

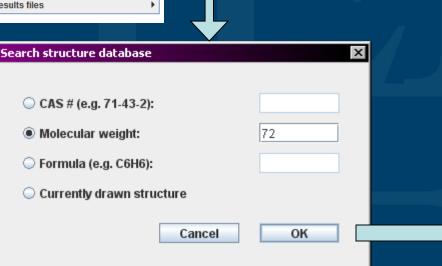
Example of SD File

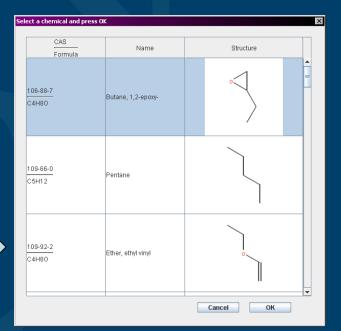
on					C7143														
		ST			42217			1.0	000	0	0	.00	000						
				str	y Webl	Book													
	12		0		0 0				1	V20	00								
		3.2	883		3.38	91	0	.2345	С	0	0	0	0	0	0		0	0	0
		1.9	047		3.53	33		.2237		0	0	0	0	0	0		0	0	0
		3.8	560		2.12	13	0	.1612	С	0	0	0	0	0	0		0	0	0
		1.0	888		2.40	99	0	.1396	С	0	0	0	0	0	0		0	0	0
		3.0	401		0.99	77	0	.0771	С	0	0	0	0	0	0		0	0	0
		1.6	565		1.14	21	0	.0663	С	0	0	0	0	0	0		0	0	0
		3.9	303		4.27	34	0	.3007	Η	0	0	0	0	0	0		0	0	0
		1.4	582		4.53	12	0	.2815	Η	0	0	0	0	0	0		0	0	0
		4.9	448		2.00	77	0	.1699	Η	0	0	0	0	0	0		0	0	0
		0.0	000		2.52	34	0	.1311	Η	0	0	0	0	0	0		0	0	0
		3.4	870		0.00	0 C	0	.0197	Η	0	0	0	0	0	0		0	0	0
		1.0	145		0.25	78	0	.0000	Η	0	0	0	0	0	0		0	0	0
	2	1	2	0	0	0													
	1	3	1	0	0	0													
	1	7	1	0	0	0													
	4	2	1	0	0	0													
	2	8	1	0	0	0													
	3	5	2	0	0	0													
	3	9	1	0	0	0													
	6	4	2	0	0	0													
	4	10	1	0	0	0													
	5	6	1	0	0	0													
	5	11	1	0	0	0													
	6	12	1	0	0	0													
	M E	ND																	
	> <c< th=""><th>AS></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></c<>	AS>																	
N	71-4	3-2																	

SMILES Example


)	T.E.S.T (Toxicity Estimation Software Tool)		
	File Edit		
	Import from MDL molfile Generate from SMILES string Generate from SMILES on clipboard Import from structure database		
	Create a batch list Batch import from MDL SDfile Batch import from list of CAS numbers Batch import from list of SMILES strings Batch import of toxicity training/test sets		
	Batch import of physical property training/test sets Save as MDL molfile Copy SMILES to clipboard Recent structures analyzed		
	Recent batch results files		

I.E.S.T (Toxicity Estimation Software Tool) - 🗆 × File Edit Help С Ρ +1 H| Libe \Leftrightarrow 0 \diamond Si \leftarrow Н S Br 9 ٢ 4 Sn F 0 Ø Т с→о ₩ -1 \rightarrow As Ν CI . Input × Enter a SMILES string ? lcco OK Cancel




Importing from the database

T.E.S.T (Toxicity Estimation Software Tool)

There are approximately 20,000 compounds in the database

. .

 $CC (=0) NC1=CC=C2C (CC3=C2C=CC=C3) = C1 \quad 53-96-3$ $CCOC1=CC=C (NC (C) = 0) C=C1 \quad 62-44-2$ $NC1=CC=C (C=C1) S (=0) (=0) C1=CC=C (N) C=C1 \qquad 80-08-0$ $CC1=CC=CC (C) = C1N \quad 87-62-7$ $CN (C) C1=CC=C (C=C1) C (=0) C1=CC=C (C=C1) N (C) C \quad 90-94-8$ $NC1=CC2=C (C=CC=C2) C=C1 \quad 91-59-8$ $NC1=C (C1) C=C (C=C1) C1=CC (C1) = C (N) C=C1 \qquad 91-94-1$

Environmental Protection 53 - 96 - 3Agency T.E.S.T (Toxicity Estimation Software Tool) 62 - 44 - 2File Edit 80 - 08 - 0Import from MDL molfile Generate from SMILES string 87-62-7 Generate from SMILES on clipboard Import from structure database 90 - 94 - 8Create a batch list Batch import from MDL SDfile 91 - 59 - 8Batch import from list of CAS numbers Batch import from list of SMILES strings Batch import of toxicity training/test sets . . . Batch import of physical property traini Save as MDL molfile... Copy SMILES to clipboard Recent structures analyzed Recent batch results files

Batch Importing

United States Environmental Protection Agency

42

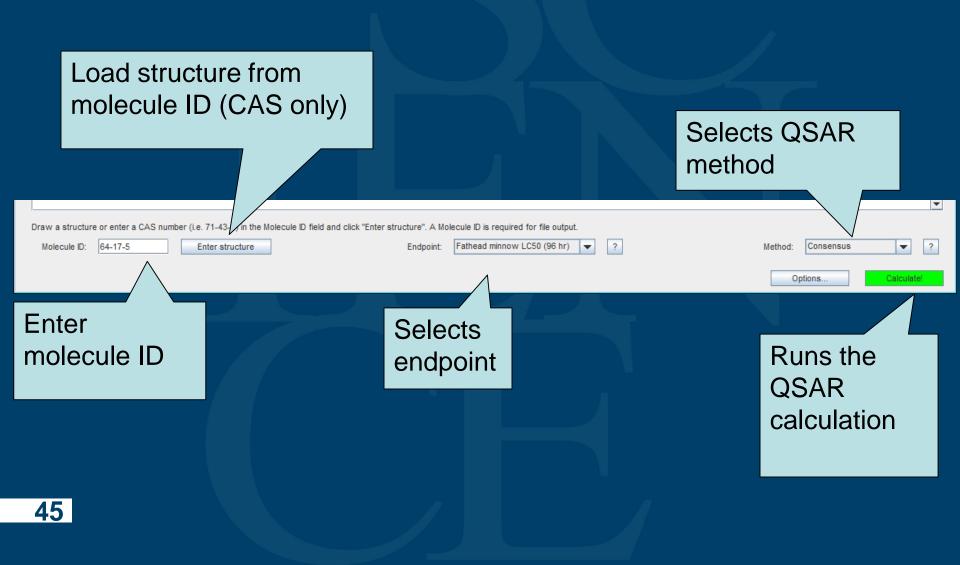
Batch importing continued

You can import training and test sets used for each endpoint

File Edit Import from MDL molfile	© C
	88 6
Import from MDI molfile	200 C
	C H
Generate from SMILES string	
Generate from SMILES on clipboard	8 N
Import from structure database	
Create a batch list	
Batch import from MDL SDfile	
Batch import from list of CAS numbers	
Batch import from list of SMILES strings	
Batch import of toxicity training/test sets Training set for Fathead minnow LC50 (96 hr)	
Batch import of physical property training/test sets Test set for Fathead minnow LC50 (96 hr)	
Save as MDL molfile Training set for Daphnia magna LC50 (48 hr)	
Copy SMILES to clipboard Test set for Daphnia magna LC50 (48 hr)	
Recent structures analyzed	
Recent batch results files • Test set for T. pyriformis IGC50 (48 hr)	
Training set for Oral rat LD50	
Test set for Oral rat LD50	
Training set for Bioaccumulation factor	
Test set for Bioaccumulation factor	
Training set for Developmental Toxicity	
Test set for Developmental Toxicity	
Training set for Mutagenicity	
Test set for Mutagenicity	
Training set for Fathead minnow LC50 (96 hr) (MOA base	ed models)
Test set for Fathead minnow LC50 (96 hr) (MOA based m	nodels)

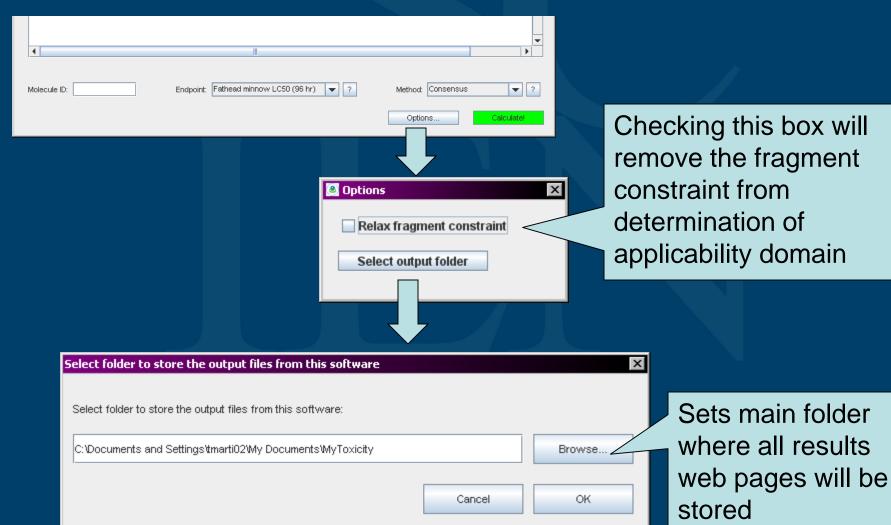
Batch mode

	15	E a marcal a	F	
#	ID 51-28-5	Formula	Error	Sortable
	55-18-5	C4H10N2O		
	57-14-7	C2H8N2		
	57-43-2	C11H18N2O3		
	59-50-7	C7H7OCI		
	62-53-3	C6H7N		
	67-64-1	C3H6O		
	67-66-3	СНСІЗ		
9	71-55-6	C2H3Cl3		
10	75-99-0	C3H4O2CI2		
11	76-01-7	C2HCI5	Edit chemical	×
12	76-29-9	C10H150Br	Import Chemical Ealt	* C P
13	77-71-4	C5H8N2O2		C P SI H S Br O O F I N F I As As
14	78-92-2	C4H10O		
	79-01-6			
	79-20-9	C3H802		
	79-94-7	C15H12O2Br4		
	80-62-6	C5H8O2		CH ₃
	83-32-9	C12H10		
	84-69-5	C16H22O4		сн, —
	86-50-0	C10H12N3O3S2P		
	90-12-0	C11H10		
	90-15-3	C10H80		
	90-43-7 90-59-5	C12H100 C7H402Br2	4	
	95-52-3	C7H402BI2	CAS#(e.g. 71-43-2): 79-20-9	Cancel OK
	95-63-6	C/H/F		
				-
	96-18-4 AC	d/delete		-
	08.00.0			-
	99-65-0 Che	emicals		- <mark>_</mark>
Note: double click to san a ch	emical			
Add Delete	Endpoint:	Fathead minnow	d: Consensus	▼ ?
		Save/c	IOSE	
Save list as SDF	Close batch list		tions Calcu	late!


Drawing structures

Structures can also be drawn using graphical user interface:

T.E.S.T (Toxicity Estimation Software Tool)	_ 🗆 🛛
File Edit	Help
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CPHSSiOFINCI
он	=

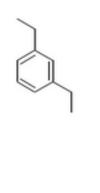


Bottom of interface

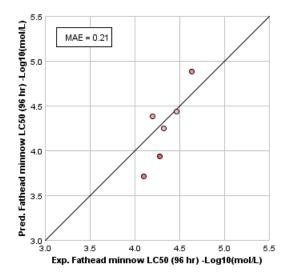
Options button

Examples

Well predicted chemical


Predicted Fathead minnow LC50 (96 hr) for 141-93-5 from Consensus method

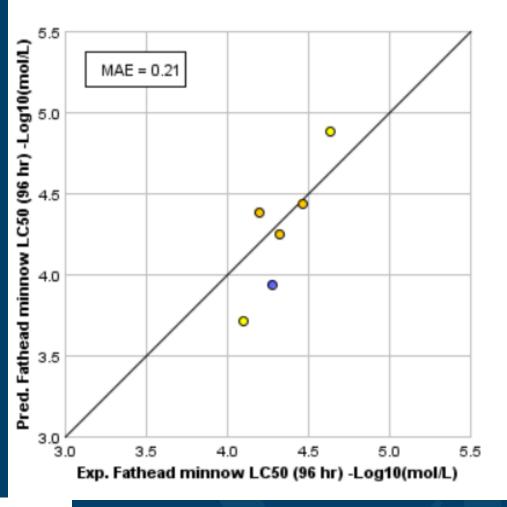
Prediction results					
Endpoint	Experimental value (CAS= 141-93-5) Source: <u>ECOTOX</u>	Predicted value ^a			
Fathead minnow LC50 (96 hr) -Log10(mol/L)	4.51	4.42			
Fathead minnow LC50 (96 hr) mg/L	4.15	5.06			


^aNote: the test chemical was present in the external test set.

Individual Predictions				
Predicted value -Log10(mol/L)				
<u>4.52</u>				
<u>4.29</u>				
<u>4.49</u>				
<u>4.46</u>				
<u>4.36</u>				

Test chemical

Prediction results (redder = more similar)


Predictions are consistent

Similar test set chemicals are predicted well

Well predicted chemical, cont.

Prediction results (colors defined in table below)

Chemicals	MAE*				
Entire set	0.55				
Similarity coefficient ≥ 0.5	0.21				
*Mean absolute error in -Log10(mol/L)					

SEPA Well predicted chemical, cont.

CAS	Structure	Similarity Coefficient	Experimental value -Log10(mol/L)	Predicted value -Log10(mol/L)
141-93-5 (test chemical)			4.51	4.42
98-82-8	H ₃ C CH ₃	0.83	4.28	3.94
106-42-3	CH ₃ CH ₃	0.77	4.10	3.71
99-86-5	CH ₃ H ₃ C CH ₃	0.73	4.64	4.89

United States

Environmental Protection

Similar
 chemicals
 in the test
 set

PA Well predicted chemical, cont.

United States Environmental Protection Agency

CAS	Structure	Similarity Coefficient	Experimental value -Log10(mol/L)	Predicted value -Log10(mol/L)
141-93-5 (test chemical)			4.51	4.42
100-41-4	H ₃ C	0.87	3.95	3.82
538-68-1	Charles Cong	0.83	4.94	4.89
95-63-6	H ₃ C	0.77	4.19	4.07
108-38-3	H ₃ C CH ₃	0.75	3.82	3.71

Similar chemicals are present in the training set

Ex. poorly predicted chemical

Predicted Fathead minnow LC50 (96 hr) for 137-26-8 from Consensus method

Prediction results					
Endpoint	Experimental value (CAS= 137-26-8) Source: <u>ECOTOX</u>	Predicted value ^a			
Fathead minnow LC ₅₀ (96 hr) -Log10(mol/L)	7.04	4.04			
Fathead minnow LC ₅₀ (96 hr) mg/L	2.17E-02	21.74			

^aNote: the test chemical was present in the external test set.

Individual Predictions			
Predicted value -Log10(mol/L)	Test chemical		
4.29			
<u>4.68</u>			
<u>N/A</u>	, ,		
<u>3.17</u>			
<u>N/A</u>			
	Predicted value -Log10(mol/L) 4.29 4.68 N/A 3.17		

Predictions are not consistent or some methods are outside their applicability domain

€ EPA Ex. poorly predicted chemical, cont.

United States Environmental Protection Agency

Predicted Fathead minnow LC50 (96 hr) for 137-26-8 from Hierarchical clustering method

Prediction results				
Endpoint	Experimental value (CAS= 137-26-8) Source: <u>ECOTOX</u>	Predicted value ^a	Prediction interval	
Fathead minnow LC ₅₀ (96 hr) -Log10(mol/L)	7.04	4.29	$3.77 \le Tox \le 4.80$	
Fathead minnow LC ₅₀ (96 hr) mg/L	2.17E-02	12.41	$3.79 \le Tox \le 40.69$	

^aNote: the test chemical was present in the external test set.

Cluster model predictions and statistics						
Cluster model	Test chemical descriptor values	Prediction interval -Log10(mol/L)	r ²	q ²	#chemicals	Test chemica
<u>1301</u>	Descriptors	3.63 ± 0.99	0.782	0.678	113	
<u>1305</u>	Descriptors	5.04 ± 1.00	0.841	0.797	143	
<u>1308</u>	Descriptors	4.40 ± 0.83	0.848	0.811	187	
<u>1314</u>	Descriptors	3.79 ± 1.10	0.750	0.704	477	1 × 1
<u>1315</u>	Descriptors	4.18 ± 1.24	0.716	0.689	563	
<u>1316</u>	Descriptors	4.68 ± 1.26	0.758	0.734	649	

Cluster models with violated constraints

Cluster Mode	l Test chemical descriptor values	Prediction interval -Log10(mol/L)	r ²	q ²	# chemicals	Message
<u>1254</u>	Descriptors	7.67 ± 0.50	0.982	0.961	6	Rmax constraint not met
<u>1268</u>	Descriptors	6.34 ± 0.73	0.953	0.918	12	Rmax constraint not met
<u>1283</u>	Descriptors	4.87 ± 0.79	0.930	0.891	28	Rmax constraint not met
<u>1289</u>	Descriptors	5.18 ± 0.95	0.897	0.849	32	Rmax constraint not met
<u>1297</u>	Descriptors	3.50 ± 1.11	0.904	0.838	36	Rmax constraint not met

Chemical which can't be predicted

Predicted Fathead minnow LC50 (96 hr) for 51235-04-2 from Consensus method

Prediction results				
Endpoint	Experimental value (CAS= 51235-04-2) Source: <u>ECOTOX</u>	Predicted value ^{a,b}		
Fathead minnow LC50 (96 hr) -Log10(mol/L)	2.96	N/A		
Fathead minnow LC50 (96 hr) mg/L	274.17	N/A		

^aNote: the test chemical was present in the external test set.

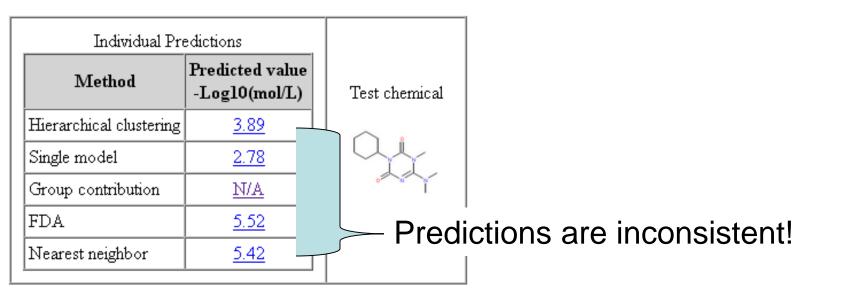
^bThe consensus prediction for this chemical is considered unreliable since only one prediction can only be made

Individual Pro		
Method	Predicted value -Log10(mol/L)	Test chemical
Hierarchical clustering	<u>N/A</u>	
Single model	<u>N/A</u>	
Group contribution	<u>N/A</u>	.~~~~
FDA	<u>N/A</u>	
Nearest neighbor	<u>5.42</u>	

SEPA Nearest neighbor prediction

Agency

Nearest neighbors from the training set					
CAS	Structure	Experimental value -Log10(mol/L)	Similarity Coefficient		
51235-04-2 (test chemical)		2.96			
330-54-1	CI HN CH ₃ CH ₃	4.21	0.63		
2163-79-3	Chy H CH3	3.84	0.55		
96489-71-3	$x_i^{c} \leftarrow d_i$ $x_i^{c} \leftarrow d_i$ $x_i^{c} \leftarrow d_i$	8.20	0.51		



After relaxing fragment constraint

Predicted Fathead minnow LC50 (96 hr) for 51235-04-2 from Consensus method

Prediction results				
Endpoint Experimental value (CAS= 51235- Source: ECOTOX		Predicted value ^a		
Fathead minnow LC50 (96 hr) -Log10(mol/L)	2.96	4.40		
Fathead minnow LC50 (96 hr) mg/L	274.17	10.01		

^aNote: the test chemical was present in the external test set.

Questions???

Email: martin.todd@epa.gov

The views expressed in this presentation are those of the author and do not necessarily represent the views or policies of the U.S. Environmental Protection Agency