Need to improve SWMM's subsurface flow routing algorithm for green infrastructure modeling

Joong Gwang Lee¹, William Shuster², and Sudhir Kshirsagar³

¹ Center for Urban Green Infrastructure Engineering (CUGIE Inc), Cincinnati, OH, USA ² U.S. Environmental Protection Agency, Cincinnati, OH, USA ³ Global Quality Corp., Covington, KY, USA

Introduction

- Originally, the subsurface flow of infiltrated water was considered an insignificant process in SWMM.
- However, subsurface flow can be significant where the drainage area has high pervious surfaces, high groundwater tables, or a combination of these.
- Implementing infiltration LID or GI practices would also increase volume inputs to the local water cycle, with enhancement of subsurface flows.
- This study aims to identify the need of updating the existing algorithms of subsurface flow routing in SWMM, and consequently improve its GI modeling capabilities.

SWMM can simulate various subsurface flows

HGS

Response	R	Т	K
Short-Term			
Medium-Term			
Long-Term			

R = fraction of rainfall that becomes I&I

- T = time to hydrograph peak (hours)
- K = falling limb duration / rising limb duration

Surface	Soil	Storage	Drain		
Thickness 12 (in. or mm)					
Void Ratio (Voids / Solids)		0.	0.75		
Seepage Rate (in/hr or mm/hr)		0. nr)	0.5		
		_		_	

0

Clogging Factor

 Groundwater (GW) HGW release from a subcatchment to a node

- Percolation out of storage units
- Percolation out of low impact development (LID) controls
- Rainfall derived inflow and infiltration (RDII) at a node

Structural LID/BMP/GIs

- Disconnected pervious areas
- Bioretention/Rain garden
- Porous pavement
- Vegetated swale/Bioswale
- Vegetative filter strip
- Infiltration trench
- Green roof
- Rain barrel/Cistern
- Disconnection of paved areas & roofs from the drainage system
- Soil amendments to alleviate compaction, improve infiltration

Exfiltration from LID Contro

- Observed stage data from an infiltration trench
- Modeled stage data (seepage only at the bottom)
- Calibrated stage data (applied about 7 times higher Ksat than the modeled)

Observed total flow; and modeled surface runoff

Non-surface runoff
= Observed –
Modeled surface
runoff

- RDII R/T/K
 - Short: 0.3/0.2/1.8
 - Medium: 0.2/0.55/2
 - Long: 0.2/1.65/4

- GW parameters
 - Eab=10; Ecb=20; Egw=20
 - A1=0.01; B1=2; Esf=25

- Eab=10; Ecb=20; Egw=20
- A1=5; B1=2; Esf=40

GW parameters: Eab=10; Ecb=20; Egw=20; Esf=25-30-40-60

- L: A1=0.01; B1=2
- C: A1=0.1; B1=2
- R: <mark>A1=1</mark>; B1=2

Sabadoment Sub (WY for (C/S) — Sabadoment Sub GW Plan (C/S) — Sabadoment Sub GW Plan (C/S) — Sabadoment Sub GW Plan (C/S) Sabadoment Sub Plant (C/S)

Subschimment Sahl GW Plan (275) —— Subschimment Sahl GW Plan (275) —— Subschimment Sahl GW Plan (275) —— Subschimment Sahl Rundi (275) —— Subschimment Sahl Rundi (275)

• L: A1=0.1; <mark>B1=1</mark>

- C: A1=0.1; <mark>B1=2</mark>
- R: A1=0.1; B1=5

Our Approaches

Based on Darcy's equation:

Q = K A dH/dL

Where, Q = rate of water flow [L³T⁻¹], K = hydraulic conductivity [LT⁻¹], A = cross-sectional area in flow [L²], dH/dL = hydraulic gradient [dimensionless], H = hydraulic head [L], and L = flow length between the points of interest [L].

✓ An appropriate site-specific value for *K* can be estimated using field data.

- ✓ Suitable approximation must be applied for estimating A as a function of H and the size of drainage area.
- ✓ The appropriate value of ∠ from a drainage area to a channel system can be initially estimated using GIS.
- ✓ Geometric approximation would also need to be applied when we estimate A, H, and L between the points of interest.
- ✓ Some alternatives can be examined using the custom lateral or groundwater flow equation editor in SWMM.

Horizontal Exfiltration from an LID/Storage Unit

Reference: Lee, J.G., Borst, M., Brown, R.A., Rossman, L., and Simon, M.A. (2015). "Modeling the hydrologic processes of a permeable pavement system." Journal of Hydrologic Engineering, 20(5): 04014070. ASCE. <u>https://ascelibrary.org/doi/abs/10.1061/(ASCE)HE.1943-5584.0001088</u>

- Modeled stage data (seepage only at the bottom)
- Calibrated stage data (applied about 7 times higher Ksat than the modeled)
- Modeled by new algorithms, for both vertical and horizontal exfiltration

GW Algorithm (Hypothesis)

• Alternative Approach

QL = Ksat * H * A / Lgw (Gaining when H>0; Losing when H<0) GD = Kpercol * Asub

Where, QL: lateral inflow/exfitration of the sewer (cfs, not cfs/ac); QD: deep percolation (cfs, not in/hr); H = Hgw – Hsw; When (Hgw > Hsw), A = SQRT(Asub) * (Hgw – Hsw) * F; When (Hgw ≤ Hsw), A = Lsewer * (Hsw – Hgw) * F; Hgw = Egw – Eab; Esw = Ecb + Dw; Hsw = Esw – Eab; Ecb = (Invert_up + Invert_down) / 2

Ksat: Ksat of each subcatchment; Lgw: shortest distance from subcatchment to channel; Lsewer: length of the channel; Esurf: subcatchment surface elevation; Eab: aquifer bottom elevation; Ecb: channel bottom elevation; Egw: groundwater surface elevation; Esw: elevation of water in channel; Dw: depth of flow in the channel; F: fractional adjuster to model the condition of the sewershed; Kpercol: percolation rate

Color Legends: Fixed; Dynamic; Caution

Preliminary Trial and Result

Custom Groundwater Flow Equation Editor

(leave blank to use only the standard equation):

Enter an expression to use in addition to the standard equation for lateral groundwater flow