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Introduction

e Originally, the subsurface flow of infiltrated water was considered an
insignificant process in SWMM.

e However, subsurface flow can be significant where the drainage area
has high pervious surfaces, high groundwater tables, or a
combination of these.

* Implementing infiltration LID or Gl practices would also increase
volume inputs to the local water cycle, with enhancement of

subsurface flows.

* This study aims to identify the need of updating the existing
algorithms of subsurface flow routing in SWMM, and consequently
improve its G| modeling capabilities.



SWMM can simulate various subsurface flows
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 Groundwater (GW)
release from a
subcatchment to a node

e Percolation out of
storage units

* Percolation out of low
impact development
(LID) controls

e Rainfall derived inflow
and infiltration (RDII) at
a hode



Structural LID/BMP/GIs

e Disconnected pervious areas

Bioretention/Rain garden

* Porous pavement

Vegetated swale/Bioswale

Vegetative filter strip
e |nfiltration trench
 Green roof

e Rain barrel/Cistern

e Disconnection of paved areas & roofs
from the drainage system

e Soil amendments to alleviate compaction,
improve infiltration




Water Depth (m)

Observed Water Depth in Storage (12/12/2011-3/17/2012)

| |

12/13 12/18 12/23 12/28 1/2 1/7 1/12 1/17 1/22  1/27 2/1 2/6 2/11  2/16 2/21 2/26 3/2 3/7 3/12 3/17

Exfiltration flux, q (mm/hr)

Exfiltration from LID Control
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Exfiltration from LID Control

 Observed stage . T

r i [ T bl T SR L 0 T
data from an 3 | ‘ l 'T
infiltration

trench 1

T T T T e T T T T T T Tt T L e o e e L e e e e e e e e L i e e e o e e e e e . o o o e e B e B L B e e e e o e L e

e Modeled stage o L

" wl L [ |‘ b 1‘- AR B o T

P — u [l L o e e E

data (seepage . ~—~—_ A A I~ lels
only at the |

bottom) 1

e Calibrated stage . __ o L e

. " i r T m T Ty 1 W F[° T
data (applied | " IR i
about 7 times |

higher Ksat than . N

the modeled) LN NN N NN TN I M NN NS .
12/11 12/21 12/26 12/31 1/5 1/10 1/15 1/20 1/25 1/30 2/4 2/14 2/19 2/24 2/29 3/5 3/10 3/15




Sub-Surface Runoff to CSS

e Observed total
flow; and modeled
surface runoff

 Non-surface runoff
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e G\W = Observed - SWMM Surface Runoff



Sub-Surface Runoff to CSS

e RDII R/T/K
e Short: 0.3/0.2/1.8
e Medium: 0.2/0.55/2
e Long: 0.2/1.65/4

* GW parameters
e Eab=10; Ecb=20;
Egw=20
e A1=0.01; B1=2; Esf=25

e Eab=10; Ecb=20;
Egw=20
e A1=5; B1=2; Esf=40




Sub-Surface Runoff to CSS

GW parameters: Eab=10; Ecb=20; Egw=20; Esf=25-30-40-60
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Our Approaches

(dBased on Darcy’s equation:

Q=KAdH/dL

Where, Q = rate of water flow [L3T1], K = hydraulic conductivity [LT!], A = cross-sectional area in flow [L?], dH/dL =
hydraulic gradient [dimensionless], H = hydraulic head [L], and L = flow length between the points of interest [L].

v’ An appropriate site-specific value for Kcan be estimated using field data.

v’ Suitable approximation must be applied for estimating A as a function of Hand the size
of drainage area.

v The appropriate value of Lfrom a drainage area to a channel system can be initially
estimated using GIS.

v’ Geometric approximation would also need to be applied when we estimate A, H, and L
between the points of interest.

v’ Some alternatives can be examined using the custom lateral or groundwater flow
equation editor in SWMM.



Horizontal Exfiltration from an LID/Storage Unit

a) pressure head and wetted area b) horizontal exfiltration c) wetted area vertical move
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Reference: Lee, J.G., Borst, M., Brown, R.A., Rossman, L., and Simon, M.A. (2015). “Modeling the hydrologic processes of a permeable pavement system.”
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Exfiltration from LID Control

 Modeled stage
data (seepage
only at the
bottom)

e Calibrated stage
data (applied
about 7 times
higher Ksat than
the modeled)

 Modeled by new
algorithms, for
both vertical
and horizontal
exfiltration
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Upper Zone Receiving

Mode

GW Algorithm (Hypothesis)

Q

e Alternative Approach
Lower Zone

QL =Ksat *H * A/ Lgw (Gaining when H>0; Losing when H<O0)
GD = Kpercol * Asub

Where, QL: lateral inflow/exfitration of the sewer (_); QD: deep percolation (_); H =

Hgw — Hsw; When (Hgw > Hsw), A = SQRT(Asub) * (Hgw — Hsw) * F; When (Hgw < Hsw), A = Lsewer *
(Hsw — Hgw) * F; Hgw = Egw — Eab; Esw = Ecb + Dw; Hsw = Esw — Eab; Ecb = (Invert_up + Invert_down) /
2

Ksat: Ksat of each subcatchment; Lgw: shortest distance from subcatchment to channel; Lsewer: length of
the channel; Esurf: subcatchment surface elevation; Eab: aquifer bottom elevation; Ecb: channel
bottom elevation; Egw: groundwater surface elevation; Esw: elevation of water in channel; Dw: depth
of flow in the channel; F: fractional adjuster to model the condition of the sewershed; Kpercol:
percolation rate

Color Legends: Fixed; Dynamic; -



Custom Groundwater Flow Equation Editor X
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