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Introduction

• Originally, the subsurface flow of infiltrated water was considered an 
insignificant process in SWMM.

• However, subsurface flow can be significant where the drainage area 
has high pervious surfaces, high groundwater tables, or a 
combination of these.

• Implementing infiltration LID or GI practices would also increase 
volume inputs to the local water cycle, with enhancement of 
subsurface flows.

• This study aims to identify the need of updating the existing 
algorithms of subsurface flow routing in SWMM, and consequently 
improve its GI modeling capabilities.



SWMM can simulate various subsurface flows

• Groundwater (GW) 
release from a 
subcatchment to a node

• Percolation out of 
storage units

• Percolation out of low 
impact development 
(LID) controls

• Rainfall derived inflow 
and infiltration (RDII) at 
a node



• Disconnected pervious areas
• Bioretention/Rain garden
• Porous pavement
• Vegetated swale/Bioswale
• Vegetative filter strip
• Infiltration trench
• Green roof
• Rain barrel/Cistern
• Disconnection of paved areas & roofs 

from the drainage system
• Soil amendments to alleviate compaction, 

improve infiltration

Structural LID/BMP/GIs
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• Observed stage 
data from an 
infiltration 
trench

• Modeled stage 
data (seepage 
only at the 
bottom)

• Calibrated stage 
data (applied 
about 7 times 
higher Ksat than 
the modeled)
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• Observed total 
flow; and modeled 
surface runoff

• Non-surface runoff 
= Observed –
Modeled surface 
runoff
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• RDII R/T/K
• Short: 0.3/0.2/1.8
• Medium: 0.2/0.55/2
• Long: 0.2/1.65/4

• GW parameters
• Eab=10; Ecb=20; 

Egw=20
• A1=0.01; B1=2; Esf=25

• Eab=10; Ecb=20; 
Egw=20

• A1=5; B1=2; Esf=40Su
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• L: A1=0.01; B1=2
• C: A1=0.1; B1=2
• R: A1=1; B1=2

• L: A1=0.1; B1=1
• C: A1=0.1; B1=2
• R: A1=0.1; B1=5
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Our Approaches

Based on Darcy’s equation:

Q = K A dH/dL
Where, Q = rate of water flow [L3T-1], K = hydraulic conductivity [LT-1], A = cross-sectional area in flow [L2], dH/dL = 
hydraulic gradient [dimensionless], H = hydraulic head [L], and L = flow length between the points of interest [L].

An appropriate site-specific value for K can be estimated using field data.
 Suitable approximation must be applied for estimating A as a function of H and the size 

of drainage area.
 The appropriate value of L from a drainage area to a channel system can be initially 

estimated using GIS.
Geometric approximation would also need to be applied when we estimate A, H, and L

between the points of interest.
 Some alternatives can be examined using the custom lateral or groundwater flow 

equation editor in SWMM.



Horizontal Exfiltration from an LID/Storage Unit
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• Modeled stage 
data (seepage 
only at the 
bottom)

• Calibrated stage 
data (applied 
about 7 times 
higher Ksat than 
the modeled)

• Modeled by new 
algorithms, for 
both vertical 
and horizontal 
exfiltration
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GW Algorithm (Hypothesis)

• Alternative Approach

QL = Ksat * H * A / Lgw (Gaining when H>0; Losing when H<0)
GD = Kpercol * Asub

Where, QL: lateral inflow/exfitration of the sewer (cfs, not cfs/ac); QD: deep percolation (cfs, not in/hr); H = 
Hgw – Hsw; When (Hgw > Hsw), A = SQRT(Asub) * (Hgw – Hsw) * F; When (Hgw ≤ Hsw), A = Lsewer * 
(Hsw – Hgw) * F; Hgw = Egw – Eab; Esw = Ecb + Dw; Hsw = Esw – Eab; Ecb = (Invert_up + Invert_down) / 
2

Ksat: Ksat of each subcatchment; Lgw: shortest distance from subcatchment to channel; Lsewer: length of 
the channel; Esurf: subcatchment surface elevation; Eab: aquifer bottom elevation; Ecb: channel 
bottom elevation; Egw: groundwater surface elevation; Esw: elevation of water in channel; Dw: depth 
of flow in the channel; F: fractional adjuster to model the condition of the sewershed; Kpercol: 
percolation rate

Color Legends: Fixed; Dynamic; Caution



Preliminary Trial and Result
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