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Disclaimer 

The United States Environmental Protection Agency through its Offce of Research and Development funded and 
collaborated in the research described here under an Interagency Agreement # DW89924502 with the Department 
of Energy’s Sandia National Laboratories. It has been subjected to the Agency’s review and has been approved for 
publication. Note that approval does not signify that the contents necessarily refect the views of the Agency. 
Mention of trade names products, or services does not convey offcial EPA approval, endorsement, or 
recommendation. The contractor role did not include establishing Agency policy. 

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and 
Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. 
Department of Energy’s National Nuclear Security Administration under contract DE-NA-0003525. 
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1 Overview 

Drinking water systems face multiple challenges, including aging infrastructure, water quality concerns, 
uncertainty in supply and demand, natural disasters, environmental emergencies, and cyber and terrorist attacks. 
All of these have the potential to disrupt a large portion of a water system causing damage to infrastructure and 
outages to customers. Increasing resilience to these types of hazards is essential to improving water security. 

As one of the United States (US) sixteen critical infrastructure sectors, drinking water is a national priority. The 
National Infrastructure Advisory Council defned infrastructure resilience as “the ability to reduce the magnitude 
and/or duration of disruptive events. The effectiveness of a resilient infrastructure or enterprise depends upon its 
ability to anticipate, absorb, adapt to, and/or rapidly recover from a potentially disruptive event” [11]. 

Being able to predict how drinking water systems will perform during disruptive incidents and understanding how 
to best absorb, recover from, and more successfully adapt to such incidents can help enhance resilience. Simulation 
and analysis tools can help water utilities to explore the capacity of their systems to handle disruptive incidents and 
guide the planning necessary to make systems more resilient over time [17]. 

The Water Network Tool for Resilience (WNTR, pronounced winter) is a Python package designed to simulate and 
analyze resilience of water distribution networks. Here, a network refers to the collection of pipes, pumps, nodes, 
and valves that make up a water distribution system. WNTR has an application programming interface (API) that 
is fexible and allows for changes to the network structure and operations, along with simulation of disruptive 
incidents and recovery actions. WNTR can be installed through the United States Environmental Protection 
Agency (US EPA) GitHub organization at https://github.com/USEPA/WNTR. An integrated development 
environment (IDE), like Spyder, is recommended for users and developers. Figure 1 shows the GitHub webpage, 
Spyder IDE, and sample graphics generated by WNTR. 

Figure 1: WNTR code repository on GitHub, integrated development environment using Spyder, and sample graph-
ics generated by WNTR. 

WNTR includes capabilities to: 

• Generate water network models from scratch or from existing EPANET-formatted water network model 
input (EPANET INP) fles [13] 

• Modify network structure by adding/removing components and changing component characteristics 

• Modify network operation by changing initial conditions, component settings, and time-based and 
conditional controls 

• Add disruptive incidents including damage to tanks, valves, and pumps, pipe leaks, power outages, 
contaminant injection, and changes to supply and demand 

1 

https://github.com/USEPA/WNTR


• Add response/repair/mitigation strategies including leak repair, retroftted pipes, power restoration, and 
backup generation 

• Simulate network hydraulics and water quality using pressure dependent demand or demand-driven 
hydraulic simulation, and the ability to pause and restart simulations 

• Run probabilistic simulations using fragility curves for component failure 

• Compute resilience using topographic, hydraulic, water quality/security, and economic metrics 

• Analyze results and generate graphics including state transition plots, network graphics, and network 
animation 

These capabilities can be linked together in many different ways. Figure 2 illustrates four example use cases, from 
simple to complex. 

Figure 2: Flowchart illustrating four example use cases. 

While EPANET includes some features to model and analyze water distribution system resilience, WNTR was 
developed to greatly extend these capabilities. WNTR provides a fexible platform for modeling a wide range of 
disruptive incidents and repair strategies, and pressure dependent demand hydraulic simulation is included to 
model the system during low pressure conditions. Furthermore, WNTR is compatible with widely used scientifc 
computing packages for Python, including NetworkX [6], Pandas [10], Numpy [19], Scipy [19], and Matplotlib 
[7]. These packages allow the user to build custom analysis directly in Python, and gain access to tools that analyze 
the structure of complex water distribution networks, analyze time-series data from simulation results, run 
simulations effciently, and create high-quality graphics and animations. 
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2 Installation 

WNTR can be installed as a Python package using standard open source software tools. 

Step 1: Setup your Python environment 

Python can be installed on Windows, Linux, and Mac OS X operating systems. WNTR requires 
Python (versions 2.7, 3.4, or 3.5) along with several Python package dependencies. Python 
distributions, such as Anaconda, are recommended to manage the Python environment. Anaconda can 
be downloaded from https://www.continuum.io/downloads. General information on Python can be 
found at https://www.python.org/. 

Anaconda includes the Python packages needed for WNTR, including Numpy, Scipy, NetworkX, 
Pandas, and Matplotlib. For more information on Python package dependencies, see Requirements. 

Anaconda also comes with Spyder, an IDE, that includes enhanced editing and debug features along 
with a graphical user interface. Debugging options are available from the toolbar. Code documentation 
is displayed in the object inspection window. Pop-up information on class structure and functions is 
displayed in the editor and console windows. 

To open a Python console, open a command prompt (cmd.exe on Windows, terminal window on Linux 
and Mac OS X) and run ‘python’, as shown in Figure 3, or open a Python console using an IDE, like 
Spyder, as shown in Figure 4. 

Figure 3: Opening a Python console from a command prompt. 

Step 2: Install WNTR 

The installation process differs for users and developers. Installation instructions for both types are 
described below. 

For users: Users can install WNTR using pip, which is a command line software tool used to install 
and manage Python packages. It can be downloaded from https://pypi.python.org/pypi/pip. 

To install WNTR using pip, open a command prompt and run: 

pip install wntr 

This will install the latest stable version of WNTR from https://pypi.python.org/pypi/wntr. 

Note: A WNTR installation using pip will not include the examples folder, which is referenced 
throughout this manual. 

Users can also download a zip fle that includes source fles and the examples folder from the US EPA 
GitHub organization. To download the master (development) branch, go to 
https://github.com/USEPA/WNTR, select the “Clone or download” button and then select “Download 
ZIP.” This downloads a zip fle called WNTR-master.zip. To download a specifc release, go to 
https://github.com/USEPA/WNTR/releases and select a zip fle. The software can then be installed by 
running a Python script, called setup.py, that is included in the zip fle. 

To build WNTR from the source fles in the zip fle, open a command prompt and run: 

unzip WNTR-master.zip 
cd WNTR-master 
python setup.py install 
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Figure 4: Opening a Python console using Spyder. 
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For developers: Developers can install and build WNTR from source using git, which is a command 
line software tool for version control and software development. It can be downloaded from 
http://git-scm.com. 

To build WNTR from source using git, open a command prompt and run: 

git clone https://github.com/USEPA/WNTR 
cd wntr 
python setup.py develop 

This will install the master (development) branch of WNTR from https://github.com/USEPA/WNTR. 
More information for developers can be found in the Software quality assurance section. 

Step 3: Test installation 

To test that WNTR is installed, open a Python console and run: 

import wntr 

If WNTR is installed properly, Python proceeds to the next line. No other output is printed to the 
screen. 

If WNTR is not installed properly, the user will see the following ImportError: 

ImportError: No module named wntr 

2.1 Requirements 

Requirements for WNTR include Python (2.7, 3.4, or 3.5) along with several Python packages. The following 
Python packages are required: 

• Numpy [19]: used to support large, multi-dimensional arrays and matrices, http://www.numpy.org/ 

• Scipy [19]: used to support effcient routines for numerical integration, http://www.scipy.org/ 

• NetworkX [6]: used to create and analyze complex networks, https://networkx.github.io/ 

• Pandas [10]: used to analyze and store time series data, http://pandas.pydata.org/ 

• enum34 (for Python 2.7): used to add enumerated type support for Python 2.7, 
https://pypi.python.org/pypi/enum34 

These packages are included in the Anaconda Python distribution. 

2.2 Optional dependencies 

The following Python packages are optional: 

• Matplotlib [7]: used to produce fgures, http://matplotlib.org/ 

• Plotly [15]: used to produce interactive scalable fgures, https://plot.ly/ 

• xlwt [22]: used to read/write to Microsoft® Excel® spreadsheets, http://xlwt.readthedocs.io 

• Numpydoc [19]: used to build the user manual, https://github.com/numpy/numpydoc 

• nose: used to run software tests, http://nose.readthedocs.io 

These packages are included in the Anaconda Python distribution. 
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3 Software framework and limitations 

Before using WNTR, it is helpful to understand the software framework. WNTR is a Python package, which 
contains several object-oriented subpackages, listed in Table 1. Each subpackage contains modules which contain 
classes, methods, and functions. See the online API documentation at https://wntr.readthedocs.io for more 
information on the code structure. The classes used to generate water network models and run simulations are 
described in more detail below, followed by a list of software limitations. 

Table 1: WNTR Subpackages 
Subpackage Description 
epanet Contains EPANET 2 compatibility functions for WNTR. 
metrics Contains methods to compute resilience, including hydraulic, water quality, water security, and 

economic metrics. Methods to compute topographic metrics are included in the 
wntr.network.graph module. 

network Contains methods to defne a water network model, network controls, and graph representation 
of the network. 

scenario Contains methods to defne disaster scenarios and fragility/survival curves. 
sim Contains methods to run hydraulic and water quality simulations using the water network 

model. 
graphics Contains methods to generate graphics. 
utils Contains helper functions. 

3.1 Water network model 

The network subpackage contains classes to defne the water network model, network controls, and graph 
representation of the network. These classes are listed in Table 2. Water network models can be built from scratch 
or built directly from EPANET INP fles. Additionally, EPANET INP fles can be generated from water network 
models. 

Table 2: Classes in the network Subpackage 
Class Description 
WaterNetworkModel Contains methods to generate water network models, including methods to read 

and write INP fles, and access/add/remove/modify network components. This 
class links to additional model classes (below) which defne network 
components, controls, and model options. 

Junction Contains methods to defne junctions. Junctions are nodes where links connect. 
Water can enter or leave the network at a junction. 

Reservoir Contains methods to defne reservoirs. Reservoirs are nodes with an infnite 
external source or sink. 

Tank Contains methods to defne tanks. Tanks are nodes with storage capacity. 
Pipe Contains methods to defne pipes. Pipes are links that transport water. 
Pump Contains methods to defne pumps. Pumps are links that increase hydraulic 

head. 
Energy Contains attributes for specifying global energy prices and global pump 

effciencies. 
Valve Contains methods to defne valves. Valves are links that limit pressure or fow. 
Curve Contains methods to defne curves. Curves are data pairs representing a 

relationship between two quantities. Curves are used to defne pump curves. 
Source Contains methods to defne sources. Sources defne the location and 

characteristics of a substance injected directly into the network. 
TimeControl Contains methods to defne time controls. Time controls defne actions that start 

or stop at a particular time. 
ConditionalControl Contains methods to defne conditional controls. Conditional controls defne 

actions that start or stop based on a particular condition in the network. 
WaterNetworkOptions Contains methods to defne model options, including the simulation duration 

and time step. 
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3.2 Simulators 

The sim subpackage contains classes to run hydraulic and water quality simulations using the water network 
model. WNTR contains two simulators: the EpanetSimulator and the WNTRSimulator. These classes are listed in 
Table 3. 

Table 3: Classes in the sim Subpackage 
Class Description 
EpanetSimulator The EpanetSimulator uses the EPANET 2 Programmer’s Toolkit [13] to run 

demand-driven hydraulic simulations and water quality simulations. When using the 
EpanetSimulator, the water network model is written to an EPANET INP fle which is 
used to run an EPANET simulation. This allows the user to read in INP fles, modify 
the model, run an EPANET simulation, and analyze results all within WNTR. 

WNTRSimulator The WNTRSimulator uses custom Python solvers to run demand-driven and pressure 
dependent demand hydraulic simulation and includes models to simulate pipe leaks. 
The WNTRSimulator does not perform water quality simulations. 

3.3 Limitations 

Current software limitations are noted: 

• Certain EPANET INP model options are not supported in WNTR, as outlined below. 

• Pressure dependent demand hydraulic simulation and leak models are only available using the 
WNTRSimulator. 

• Water quality simulations are only available using the EpanetSimulator. 

WNTR reads in and writes all sections of EPANET INP fles. This includes the following sections: 
[BACKDROP], [CONTROLS], [COORDINATES], [CURVES], [DEMANDS], [EMITTERS], [ENERGY], 
[JUNCTIONS], [LABELS], [MIXING], [OPTIONS], [PATTERNS], [PIPES], [PUMPS], [QUALITY], 
[REACTIONS], [REPORT], [RESERVOIRS], [RULES], [SOURCES], [TAGS], [TANKS], [TIMES], [TITLE], 
[VALVES], and [VERTICES]. 

However, the following model options cannot be modifed/created in WNTR: 

• [BACKDROP] section 

• Effciency curves in the [CURVES] section 

• [DEMANDS] section (base demand and patterns from the [JUNCTIONS] section can be modifed) 

• [EMITTERS] section 

• [LABELS] section 

• [MIXING] section 

• [REPORT] section 

• [VERTICES] section 

While the EpanetSimulator uses all EPANET model options, several model options are not used by the 
WNTRSimulator. Of the EPANET model options that directly apply to hydraulic simulations, the following 
options are not supported by the WNTRSimualtor: 

• [DEMANDS] section (base demand and patterns from the [JUNCTIONS] section are used) 

• [EMITTERS] section 

• D-W and C-M headloss options in the [OPTIONS] section (H-W option is used) 

• Accuracy, unbalanced, demand multiplier, and emitter exponent from the [OPTIONS] section 

• Speed option and multipoint head curves in the [PUMPS] section (3-point head curves are supported) 

• Head pattern option in the [RESERVOIRS] section 
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• Volume curves in the [TANKS] section 

• Rule timestep, pattern start, report start, start clocktime, and statistics in the [TIMES] section 

• PSV, FCV, PBV, and GPV values in the [VALVES] section 

Future development of WNTR will address these limitations. 
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4 Units 

All data in WNTR is stored in SI (International System) units: 

• Length = � 

• Diameter = � 

• Water pressure = � (this assumes a fuid density of 1000 ��/�3) 

• Elevation = � 

• Mass = �� 

• Time = � 

• Concentration = ��/�3 

• Demand = �3/� 

• Velocity = �/� 

• Acceleration = � (1 � = 9.81 �/�2) 

• Energy = � 

• Power = � 

• Pressure = � � 

• Mass injection = ��/� 

• Volume = �3 

WNTR is compatible with all EPANET unit conventions. When using an EPANET INP fle to generate a water 
network model, WNTR converts model parameters using the units defned in the Units and Quality options of the 
EPANET INP fle. These options defne the mass and fow units for the model. Some units also depend on the 
equation used for pipe roughness headloss and on the reaction order specifed. Table 4, Table 5, and Table 6 
provide information on EPANET unit conventions (modifed from [13]). 

Table 4: EPANET Hydraulic Unit Conventions 
Hydraulic parameter US customar y units SI-based units 
Flow fow can be defned as: 

• CFS: ft 3 /s 
• GPM: gal/min 
• MGD: million gal/day 
• IMGD: million imperial 

gal/day 
• AFD: acre-feet/day 

fow can be defned as: 
• LPS: L/s 
• LPM: L/min 
• MLD: million L/day 
• CMH: m 3 /hr 
• CMD: m 3 /day 

Demand fow fow 
Diameter: pipes in mm 
Diameter: tanks ft m 
Elevation ft m 
Hydraulic head ft m 
Length ft m 
Emitter coeffcient fow / sqrt(psi) fow / sqrt(m) 
Friction factor unitless unitless 
Minor loss coeffcient unitless unitless 
Pressure psi m or kPa 
Roughness coeff: D-W 10 -3 ft mm 
Roughness coeff: H-W, C-M unitless unitless 
Velocity ft/s m/s 
Volume ft 3 m 3 
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Table 5: EPANET Water Quality Unit Conventions 
Water quality parameter US customary units SI-based units 
Concentration mass /L where mass can be defned 

as mg or ug 
mass /L where mass can be defned 
as mg or ug 

Bulk reaction coeffcient: order-1 1/day 1/day 
Wall reaction coeffcient: order-0 mass /ft 2 /day mass /m 2 /day 
Wall reaction coeffcient: order-1 ft/day m/day 
Reaction rate mass /L/day mass /L/day 
Source mass injection rate mass /min mass /min 
Water age hours hours 

Table 6: EPANET Energy Unit Conventions 
Energy parameter US customary units SI-based units 
Energy kW-hours kW-hours 
Effciency (pumps) percent percent 
Power hp (horse-power) kW 

When running analysis in WNTR, all input values (i.e., time, pressure threshold, node demand) should be specifed 
in SI units. All simulation results are also stored in SI units and can be converted to other units if desired. The 
SymPy Python package can be used to convert between units [9]. 
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5 Getting started 

To start using WNTR, open a Python console and import the package: 

import wntr 

A simple script, getting_started.py, is included in the examples folder. This example demonstrates how to: 

• Import WNTR 

• Generate a water network model 

• Simulate hydraulics 

• Plot simulation results on the network 

import wntr 

# Create a water network model 
inp_file = 'networks/Net3.inp' 
wn = wntr.network.WaterNetworkModel(inp_file) 

# Graph the network 
wntr.graphics.plot_network(wn, title=wn.name) 

# Simulate hydraulics 
sim = wntr.sim.EpanetSimulator(wn) 
results = sim.run_sim() 

# Plot results on the network 
pressure_at_5hr = results.node.loc['pressure', 5*3600, :] 
wntr.graphics.plot_network(wn, node_attribute=pressure_at_5hr, node_size=30, 

title='Pressure at 5 hours') 

Additional examples, listed in Table 7, are included in the examples folder. 

Table 7: Description of WNTR Example Files 
Example fle Description 
water_network_model.py Generate and modify water network models 
networkx_graph.py Generate a NetworkX graph from a water network model 
hydraulic_simulation.py Simulate hydraulics using the EPANET and WNTR simulators 
water_quality_simulation.py Simulate water quality using EPANET 
simulation_results.py Extract information from simulation results 
disaster_scenarios.py Defne disaster scenarios, including power outage, pipe leak, and changes to 

supply and demand 
resilience_metrics.py Compute resilience metrics, including topographic, hydraulic, water quality, 

water security, and economic metrics 
stochastic_simulation.py Run a stochastic simulation 
fragility_curves.py Defne fragility curves 
interactive_graphics.py Create interactive network and time series graphics 
animation.py Animate network graphics 

Several EPANET INP fles are included in the examples/network folder. Example networks range from a simple 9 
node network to a 3,000 node network. Additional network models can be downloaded from the University of 
Kentucky Water Distribution System Research Database at http://www.uky.edu/WDST/database.html. 
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6 Water network model 

The water network model includes junctions, tanks, reservoirs, pipes, pumps, valves, demand patterns, pump 
curves, controls, sources, simulation options, and node coordinates. Water network models can be built from 
scratch or built directly from an EPANET INP fle. Sections of EPANET INP fle that are not compatible with 
WNTR are described in Limitations. The example water_network_model.py can be used to generate, save, and 
modify water network models. 

A water network model can be created by adding components to an empty model: 

wn = wntr.network.WaterNetworkModel() 
wn.add_pattern('pat1', [1]) 
wn.add_pattern('pat2', [1,2,3,4,5,6,7,8,9,10]) 
wn.add_junction('node1', base_demand=0.01, demand_pattern_name='pat1', 

elevation=100.0, coordinates=(1,2)) 
wn.add_junction('node2', base_demand=0.02, demand_pattern_name='pat2', 

elevation=50.0, coordinates=(1,3)) 
wn.add_pipe('pipe1', 'node1', 'node2', length=304.8, diameter=0.3048, roughness=100, 

minor_loss=0.0, status='OPEN') 
wn.add_reservoir('res', base_head=125, head_pattern_name='pat1', coordinates=(0,2)) 
wn.add_pipe('pipe2', 'node1', 'res', length=100, diameter=0.3048, roughness=100, 

minor_loss=0.0, status='OPEN') 
wn.options.duration = 24*3600 
wn.options.hydraulic_timestep = 15*60 
wn.options.pattern_timestep = 60*60 

A water network model can also be created directly from an EPANET INP fle: 

inp_file = 'networks/Net3.inp' 

The water network model can be written to a fle in EPANET INP format. By default, fles are written in LPS units. 
The EPANET INP fle will not include features not supported by EPANET (i.e., pressure dependent demand 
simulation options).: 

wn.write_inpfile('filename.inp') 

For more information on the water network model, see WaterNetworkModel in the API documentation. 
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7 Water network controls 

One of the key features of water network models is the ability to control pipes, pumps, and valves using simple and 
complex conditions. EPANET uses “controls” and “rules” to defne conditions [13]. A control is a single action 
(i.e., closing/opening a link or changing the setting) based on a single condition (i.e., time based or tank level 
based). A rule is more complex; rules take an IF-THEN-ELSE form and can have multiple conditions and multiple 
actions in each of the logical blocks. WNTR supports EPANET’s rules and controls when generating a water 
network model from an INP fle and simulating hydraulics using the EpanetSimulator. WNTR includes additional 
options to defne controls that can be used by the WNTRSimulator. 

The basic steps to defne a control for a water network model are: 

1. Defne the control action 

2. Defne the control or rule using the control action 

3. Add the control or rule to the network 

These steps are defned below. Examples use the “Net3.inp” EPANET INP fle to generate the water network 
model object, called wn. 

7.1 Control actions 

Control actions tell the simulator what to do when a condition becomes “true.” Control actions are created using 
the ControlAction class. A control action is defned by a target link, the property to change, and the value to 
change it to. The following example creates a control action that opens pipe 330: 

>>> import wntr.network.controls as controls 
>>> l1 = wn.get_link('330') 
>>> act1 = controls.ControlAction(l1, 'status', 1) 
>>> print(act1) 
set Pipe('330').status to Open 

7.2 Simple controls 

Control objects that emulate EPANET’s [CONTROLS] section are defned in two classes: 
ConditionalControl and TimeControl. When generating a water network model from an EPANET INP 
fle, a ConditionalControl or TimeControl will be created for each control. 

Conditional controls: ConditionalControl objects defne tank level and junction pressure based controls. 
Conditional controls require a source, operation, threshold, and a control action. The source is defned as tuple 
where the frst value is a water network model component and the second value is the attribute of the object. The 
operation is defned using NumPy functions such as np.greater and np.less. The threshold is the value that triggers 
the condition to be true. The control action is defned above. 

In the following example, a conditional control is defned that opens pipe 330 if the level of tank 1 goes above 
46.0248 m. The source is the tank level and is defned as a tuple with the node object n1 and the attribute level. To 
specify that the condition should be true when the level is greater than the threshold, the operation is set to 
np.greater and the threshold is set to 46.0248. The control action act1 from above is used in the conditional control: 

>>> n1 = wn.get_node('1') 
>>> thresh1 = 46.0248 
>>> ctrl1 = controls.ConditionalControl( (n1, 'level'), np.greater, thresh1, act1) 
>>> ctrl1 
<ConditionalControl: <Tank '1'>, 'level'), <ufunc 'greater'>, 46.0248, 
→˓<ControlAction: <Pipe '330'>, 'status', 'Open'>> 

To get an EPANET-like description of this control, use the print function: 

>>> print(ctrl1) 
LINK 330 Open IF NODE 1 Above 46.0248 
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Time-based controls: TimeControl objects defne time-based controls. Time-based controls require a water 
network model object, a time to start the condition, a control action, and additional fags to specify the time 
reference point and recurrence. The time fag is either SIM_TIME or SHIFTED_TIME; these indicate simulation or 
clock time, respectively. The daily fag is either True or False and indicates if the control should be repeated every 
24 hours. 

In the following example, a time-based control is defned that opens Pump 10 at hour 121. The time fag is set to 
SIM_TIME and the daily fag is set to False. A new control action is defned that opens the pump: 

>>> time2 = 121 60 60* * 
>>> timeflag2 = 'SIM_TIME' 
>>> dailyflag2 = False 
>>> pump2 = wn.get_link('10') 
>>> act2 = controls.ControlAction(pump2, 'status', 1) 
>>> ctrl2 = controls.TimeControl(wn, time2, timeflag2, dailyflag2, act2) 
>>> print(ctrl2) 
LINK 10 Open AT TIME 121:00:00 

Note that the EpanetSimulator is limited to use the following pairs: time_fag=’SIM_TIME’ with daily_fag=False, 
and time_fag=’SHIFTED_TIME’ with daily_fag=True. The WNTRSimulator can use any combination of time 
fag and daily fag. 

7.3 Complex rules 

Control objects that emulate EPANET’s [RULES] section are defned in the IfThenElseControl class. When 
generating a water network model from an EPANET INP fle, an IfThenElseControl will be created for each rule. 
An IfThenElseControl is defned using a ControlCondition object and a ControlAction object. 
Condition classes are listed in Table 8. 

Table 8: Condition Classes 
Condition class Description 
TimeOfDayCondition Time-of-day or “clocktime” based condition statement 
SimTimeCondition Condition based on time since start of the simulation 
ValueCondition Compare a network element attribute to a set value 
RelativeCondition Compare attributes of two different objects (e.g., levels from tanks 1 and 2) 
OrCondition Combine two WNTR Conditions with an OR 
AndCondition Combine two WNTR Conditions with an AND 

All of the above conditions are valid EPANET conditions except RelativeCondition. 

In the following example, the previous simple controls are recreated using the IfThenElseControl: 

>>> cond1 = controls.ValueCondition(n1, 'level', '>', 46.0248) 
>>> print(cond1) 
Tank('1').level > 46.0248 

>>> rule1 = controls.IfThenElseControl(cond1, [act1], name='control1') 
>>> print(rule1) 
Rule control1 := if Tank('1').level > 46.0248 then set Pipe('330').status to Open 

>>> cond2 = controls.SimTimeCondition(wn, '=', '121:00:00') 
>>> print(cond2) 
sim_time = 435600 sec 

>>> rule2 = controls.IfThenElseControl(cond2, [act2], name='control2') 
>>> print(rule2) 
Rule control2 := if sim_time = 435600 sec then set Pump('10').status to Open 

More complex rules can be written using one of the Boolean logic condition classes. The following example 
creates a new rule that will open pipe 330 if both conditions are true, and otherwise it will open pipe 10. This rule 
will behave very differently from the rules above: 
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>>> cond3 = controls.AndCondition(cond1, cond2) 
>>> print(cond3) 
( Tank('1').level > 46.0248 && sim_time = 435600 sec ) 

>>> rule3 = controls.IfThenElseControl(cond3, [ act1 ], [ act2 ], priority=3, name= 
→˓'weird') 
>>> print(rule3) 
Rule weird := if ( Tank('1').level > 46.0248 && sim_time = 435600 sec ) then set 
→˓Pipe('330').status to Open else set Pump('10').status to Open with priority 3 

Actions can also be combined, as shown in the following example: 

>>> cond4 = controls.OrCondition(cond1, cond2) 
>>> rule4 = controls.IfThenElseControl(cond4, [act1, act2]) 
>>> print(rule4) 
Rule := if ( Tank('1').level > 46.0248 || sim_time = 435600 sec ) then set Pipe('330 
→˓').status to Open and set Pump('10').status to Open 

The fexibility of the IfThenElseControl combined with the different ControlCondition classes and ControlActions 
provides an extremely powerful tool for defning complex network operations. 

7.4 Adding controls to a network 

Once a control is created, they can be added to the network. This is accomplished using the add_control 
method of the water network model object. The control should be named so that it can be retrieved and modifed if 
desired: 

>>> wn.add_control('NewTimeControl', ctrl2) 
>>> wn.get_control('NewTimeControl') 
<TimeControl: model, 435600, 'SIM_TIME', False, <ControlAction: <Pump '10'>, 'status 
→˓', 'Open'>> 
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8 NetworkX graph 

WNTR uses NetworkX data objects to store network connectivity as a graph. A graph is a collection of nodes that 
are connected by links. For water networks, nodes represent junctions, tanks, and reservoirs while links represent 
pipes, pumps, and valves. 

Water networks are stored as directed multigraphs. A directed multigraph is a graph with direction associated 
with links and the graph can have multiple links with the same start and end node. A simple example is shown in 
Figure 5. For water networks, the link direction is from the start node to the end node. The link direction is used as 
a reference to track fow direction in the network. For example, positive fow indicates that the fow direction is 
from the start node to the end node while negative fow indicates that the fow direction is from the end node to the 
start node. Multiple links with the same start and end node can be used to represent redundant pipes or backup 
pumps. In WNTR, the graph stores the start and end node of each link, node coordinates, and node and link types 
(i.e., tank, reservoir, valve). WNTR updates the graph as elements are added and removed from the water network 
model. 

Figure 5: Example directed multigraph. 

NetworkX includes numerous methods to analyze the structure of complex networks. For more information on 
NetworkX, see https://networkx.github.io/. WNTR includes a custom Graph Class, WntrMultiDiGraph. This 
class inherits from NetworkX MultiDigraph and includes additional methods that are specifc to WNTR. The 
example networkx_graph.py can be used to generate a graph from a water network model. 

A copy of the graph can an be obtained using the following function: 

G = wn.get_graph_deep_copy() 

The graph is stored as a nested dictionary. The nodes and links (note that links are called edges in NetworkX) can 
be accessed using the following: 

node_name = '123' 
print(G.node[node_name]) 
print(G.edge[node_name]) 

The graph can be used to access NetworkX methods, for example: 

import networkx as nx 
node_degree = G.degree() 
bet_cen = nx.betweenness_centrality(G) 
wntr.graphics.plot_network(wn, node_attribute=bet_cen, node_size=30, 

title='Betweenness Centrality') 

Some methods in NetworkX require that networks are undirected. An undirected graph is a graph with no 
direction associated with links. The following NetworkX method can be used to convert a directed graph to an 
undirected graph: 

uG = G.to_undirected() 

Some methods in NetworkX require that networks are connected. A connected graph is a graph where a path 
exists between every node in the network (i.e., no node is disconnected). The following NetworkX method can be 
used to check if a graph is connected: 
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print(nx.is_connected(uG)) 

Some methods in NetworkX can use weighted graphs. A weighted graph is a graph in which each link is given a 
weight. The WNTR method weight_graph can be used to weight the graph by any attribute. In the following 
example, the graph is weighted by length. This graph can then be used to compute path lengths: 

length = wn.query_link_attribute('length') 
G.weight_graph(link_attribute = length) 
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9 Hydraulic simulation 

WNTR contains two simulators: the WNTRSimulator and the EpanetSimulator. See Software framework and 
limitations for more information on features and limitations of these simulators. 

The EpanetSimulator can be used to run demand-driven hydraulic simulations using the EPANET 2 Programmer’s 
Toolkit. The simulator can also be used to run water quality simulations, as described in Water quality simulation. 
A hydraulic simulation using the EpanetSimulator is run using the following code: 

epanet_sim = wntr.sim.EpanetSimulator(wn) 
epanet_sim_results = epanet_sim.run_sim() 

The WNTRSimulator is a pure Python hydraulics simulation engine based on the same equations as EPANET. The 
WNTRSimulator does not include equations to run water quality simulations. The WNTRSimulator includes the 
option to simulate leaks, and run hydraulic simulations in either demand-driven or pressure dependent demand 
mode. A hydraulic simulation using the WNTRSimulator is run using the following code: 

wntr_sim = wntr.sim.WNTRSimulator(wn) 
wntr_sim_results = wntr_sim.run_sim() 

The example hydraulic_simulation.py can be used to run both simulators. 

More information on the simulators can be found in the API documentation, under EpanetSimulator and 
WNTRSimulator. 

9.1 Options 

Hydraulic simulation options are defned in the WaterNetworkOptions class. These options include duration, 
hydraulic timestep, rule timestep, pattern timestep, pattern start, default pattern, report timestep, report start, start 
clocktime, headloss, trials, accuracy, unbalanced, demand multiplier, and emitter exponent. All options are used 
with the EpanetSimulator. Options that are not used with the WNTRSimulator are described in Limitations. 

9.2 Mass balance at nodes 

Both simulators use the mass balance equations from EPANET [13]: ∑ 
��,� − ���� = 0 ∀� ∈ �� 

�∈�� 

where �� is the set of pipes connected to node �, ��,� is the fow rate of water into node � from pipe � (m3/s), 
���� is the actual demand out of node � (m3/s), and � is the set of all nodes. If water is fowing out of node � and� 
into pipe �, then ��,� is negative. Otherwise, it is positive. 

9.3 Headloss in pipes 

Both simulators use the Hazen-Williams headloss formula from EPANET [13]: 

��� − ��� = ℎ� = 10.667�−1.852�−4.871��1.852 

where ℎ� is the headloss in the pipe (m), � is the Hazen-Williams roughness coeffcient (unitless), � is the pipe 
diameter (m), � is the pipe length (m), � is the fow rate of water in the pipe (m3/s), ��� is the head at the starting 
node (m), and ��� is the head at the ending node (m). 

The fow rate in a pipe is positive if water is fowing from the starting node to the ending node and negative if water 
is fowing from the ending node to the starting node. 

The WNTRSimulator solves for pressures and fows throughout the network as a set of linear equations. However, 
the Hazen-Williams headloss formula is not valid for negative fow rates. Therefore, the WNTRSimulator uses a 
reformulation of this constraint. 
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For � < 0: 

= −10.667�−1.852�−4.871�|�|1.852ℎ� 

For � ≥ 0: 

ℎ� = 10.667�−1.852�−4.871�|�|1.852 

These equations are symmetric across the origin and valid for any �. Thus, this equation can be used for fow in 
either direction. However, the derivative with respect to � at � = 0 is 0. In certain scenarios, this can cause the 
Jacobian of the set of hydraulic equations to become singular (when � = 0). To overcome this limitation, the 
WNTRSimulator splits the domain of � into six segments to create a piecewise smooth function. 

9.4 Demand-driven simulation 

In demand-driven simulation, the pressure in the system depends on the node demands. The mass balance and 
headloss equations described above are solved assuming that node demands are known and satisfed. This 
assumption is reasonable under normal operating conditions and for use in network design. Both simulators can 
run hydraulics using demand-driven simulation. 

9.5 Pressure dependent demand simulation 

In situations that lead to low pressure conditions (i.e., fre fghting, power outages, pipe leaks), consumers do not 
always receive their requested demand and a pressure dependent demand simulation is recommended. In a pressure 
dependent demand simulation, the delivered demand depends on the pressure. The mass balance and headloss 
equations described above are solved by simultaneously determining demand along with the network pressures and 
fow rates. 

The WNTRSimulator can run hydraulics using a pressure dependent demand simulation according to the following 
pressure-demand relationship [20]: 

� = 

⎧ ⎪⎨ ⎪⎩ 

0 � ≤ �0 

�� ( 
�−�0 ) 2

1 
�0 ≤ � ≤ ���� −�0 

�� � ≥ �� 

where � is the actual demand (m3/s), �� is the desired demand (m3/s), � is the pressure (Pa), �� is the pressure 
above which the consumer should receive the desired demand (Pa), and �0 is the pressure below which the 
consumer cannot receive any water (Pa). The set of nonlinear equations comprising the hydraulic model and the 
pressure-demand relationship is solved directly using a Newton-Raphson algorithm. 

Figure 6 illustrates the pressure-demand relationship using both the demand-driven and pressure dependent 
demand simulations. In the example, �� is 0.0025 m3/s (39.6 GPM), �� is 30 psi, and �0 is 5 psi. Using the 
demand-driven simulation, the demand is equal to �� regardless of pressure. Using the pressure dependent demand 
simulation, the demand starts to decrease when the pressure is below �� and goes to 0 when pressure is below �0. 

9.6 Leak model 

The WNTRSimulator includes the ability to add leaks to the network. The leak is modeled with a general form of 
the equation proposed by Crowl and Louvar [4] where the mass fow rate of fuid through the hole is expressed as: √ 

����� = ����� 2 
� 

where ����� is the leak demand (m3/s), �� is the discharge coeffcient (unitless), � is the area of the hole (m2), � is 
the gauge pressure inside the pipe (Pa), � is the discharge coeffcient, and � is the density of the fuid. The default 
discharge coeffcient is 0.75 (assuming turbulent fow), but the user can specify other values if needed. The value 
of � is set to 0.5 (assuming large leaks out of steel pipes). Leaks can be added to junctions and tanks. A pipe break 
is modeled using a leak area large enough to drain the pipe. WNTR includes methods to add leaks to any location 
along a pipe by splitting the pipe into two sections and adding a node. 

Figure 7 illustrates leak demand. In the example, the diameter of the leak is set to 0.5 cm, 1.0 cm, and 1.5 cm. 
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Figure 6: Example relationship between pressure (p) and demand (d) using both the demand-driven and pressure 
dependent demand simulations. 

Figure 7: Example relationship between leak demand (d) and pressure (p). 
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9.7 Pause and restart 

The WNTRSimulator includes the ability to 

• Reset initial values and re-simulate using the same water network model. Initial values include tank head, 
reservoir head, pipe status, pump status, and valve status. 

• Pause a hydraulic simulation, change network operations, and then restart the simulation 

• Save the water network model and results to fles and reload for future analysis 

These features are helpful when evaluating various response action plans or when simulating long periods of time 
where the time resolution might vary. The fle hydraulic_simulation.py includes examples of these features. 
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10 Water quality simulation 

Water quality simulations can only be run using the EpanetSimulator. As listed in the Software framework and 
limitations section, this means that the hydraulic simulation must use demand-driven simulation. Note that the 
WNTRSimulator can be used to compute demands under pressure dependent demand conditions and those 
demands can be used in the EpanetSimulator. The following code illustrates how to reset demands in a water 
network model using a pressure dependent demand simulation: 

sim = wntr.sim.WNTRSimulator(wn) 
results = sim.run_sim() 
wn.reset_demand(results.node['demand'], 'PDD') 
sim = wntr.sim.EpanetSimulator(wn) 
results_withPDdemands = sim.run_sim() 

After defning water quality options and sources (described in the Options and Sources sections below), a hydraulic 
and water quality simulation using the EpanetSimualtor is run using the following code: 

sim = wntr.sim.EpanetSimulator(wn) 
results = sim.run_sim() 

The example water_quality_simulation.py can be used to run water quality simulations and plot results. 

10.1 Options 

Water quality simulation options are defned in the WaterNetworkOptions class. Three types of water quality 
analysis are supported. These options include water age, tracer, and chemical concentration. 

• Water age: Water quality simulation can be used to compute water age at every node. To compute water 
age, set the ‘quality’ option as follows: 

wn.options.quality = 'AGE' 

• Tracer: Water quality simulation can be used to compute the percent of fow originating from a specifc 
location. The results include tracer percent values at each node. For example, to track a tracer from node 
‘111’, set the ‘quality’ and ‘tracer_node’ options as follows: 

wn.options.quality = 'TRACE' 
wn.options.quality_value = '111' 

• Chemical concentration: Water quality simulation can be used to compute chemical concentration given a 
set of source injections. The results include chemical concentration values at each node. To compute 
chemical concentration, defne sources (described in the Sources section below) and set the ‘quality’ options 
as follows: 

wn.options.quality = 'CHEMICAL' 

• To skip the water quality simulation, set the ‘quality’ options as follows: 

wn.options.quality = 'NONE' 

Additional water quality options include viscosity, diffusivity, specifc gravity, tolerance, bulk reaction order, wall 
reaction order, tank reaction order, bulk reaction coeffcient, wall reaction coeffcient, limiting potential, and 
roughness correlation. These parameters are defned in the WaterNetworkOptions API documentation. 

When creating a water network model from an EPANET INP fle, water quality options are populated from the 
[OPTIONS] and [REACTIONS] sections of EPANET INP fle. All of these options can be modifed in WNTR and 
then written to an EPANET INP fle. 
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10.2 Sources 

Sources are required for CHEMICAL water quality analysis. Sources can still be defned, but will not be used if 
AGE, TRACE, or NONE water quality analysis is selected. Sources are added to the water network model using 
the add_source method. Sources include the following information: 

• Source name: A unique source name used to reference the source in the water network model. 

• Node name: The injection node. 

• Source type: Options include ‘CONCEN,’ ‘MASS,’ ‘FLOWPACED,’ or ‘SETPOINT.’ 

– CONCEN source represents injection of a specifc concentration. 

– MASS source represents a booster source with a fxed mass fow rate. 

– FLOWPACED source represents a booster source with a fxed concentration at the infow of the node. 

– SETPOINT source represents a booster source with a fxed concentration at the outfow of the node. 

• Strength: Baseline source strength (in mass/time for MASS and mass/volume for CONCEN, 
FLOWPACED, and SETPOINT). 

• Pattern: The pattern name associated with the injection. 

For example, the following code can be used to add a source, and associated pattern, to the water network model: 

wn.add_pattern('SourcePattern', start_time=2*3600, end_time=15*3600) 
wn.add_source('Source1', '121', 'SETPOINT', 1000, 'SourcePattern') 

In the above example, the pattern is given a value of 1 between 2 and 15 hours, and 0 otherwise. The method 
remove_source can be used to remove sources from the water network model. 

When creating a water network model from an EPANET INP fle, the sources that are defned in the [SOURCES] 
section are added to the water network model. These sources are given the name ‘INP#’ where # is an integer 
related to the number of sources in the INP fle. 
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11 Simulation results 

WNTR uses Pandas data objects to store simulation results. The use of Pandas facilitates a comprehensive set of 
time series analysis options that can be used to evaluate results. For more information on Pandas, see 
http://pandas.pydata.org/. 

Results are stored in Pandas Panels. A Panel is a 3-dimensional database. One Panel is used to store nodes results 
and one Panel is used to store link results. The Panels are indexed by: 

• Node or link attribute 

• Time in seconds from the start of the simulation 

• Node or link name 

Conceptually, Panels can be visualized as blocks of data with 3 axis, as shown in Figure 8. 

Figure 8: Conceptual representation of Panels used to store simulation results. 

Node attributes include: 

• Demand 

• Expected demand 

• Leak demand (only when the WNTRSimulator is used) 

• Pressure 

• Head 

• Quality (only when the EpanetSimulator is used for a water quality simulation. Water age, tracer percent, or 
chemical concentration is stored, depending on the type of water quality analysis) 

• Type (junction, tank, or reservoir) 

Link attributes include: 

• Velocity 

• Flowrate 

• Status (0 indicates closed, 1 indicates open) 

• Type (pipe, pump, or valve) 

The example simulation_results.py demonstrates use cases of simulation results. Node and link results are 
accessed using: 

print(results.node) 
print(results.link) 
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The indices can be used to extract specifc information from the Panels. For example, to access the pressure and 
demand at node ‘123’ at 1 hour: 

print(results.node.loc[['pressure', 'demand'], 3600, '123']) 

To access the pressure for all nodes and times (the “:” notation returns all variables along the specifed axis): 

print(results.node.loc['pressure', :, :]) 

Attributes can be plotted as a time-series, as shown in Figure 9: 

pressure_at_node123 = results.node.loc['pressure', :, '123'] 
pressure_at_node123.plot() 

Figure 9: Example time-series graphic. 

Attributes can be plotted on the water network model, as shown in Figure 10. In this fgure, the node pressure at 1 
hr and link fowrate at 1 hour are plotted on the network. A colorbar is included for both node and link attributes: 

pressure_at_1hr = results.node.loc['pressure', 3600, :] 
flowrate_at_1hr = results.link.loc['flowrate', 3600, :] 
wntr.graphics.plot_network(wn, node_attribute=pressure_at_1hr, 

link_attribute=flowrate_at_1hr) 

Network and time-series graphics can be customized to add titles, legends, axis labels, etc. 

Panels can be saved to Excel fles using: 

results.node.to_excel('node_results.xls') 
results.link.to_excel('link_results.xls') 
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Figure 10: Example network graphic. 
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12 Disaster scenarios 

Drinking water utilities might be interested in examining many different disaster scenarios. They could be acute 
incidents like power outages and earthquakes or they could be long term issues like persistent pipe leaks, 
population fuctuation, and changes to supply and demand. The following section describes disaster scenarios that 
can be modeled in WNTR. The example disaster_scenarios.py demonstrates methods to defne disaster scenarios. 

12.1 Earthquake 

Earthquakes can be some of the most sudden and impactful disasters that a water systems experiences. An 
earthquake can cause lasting damage to the system that could take weeks, if not months, to fully repair. 
Earthquakes can cause damage to pipes, tanks, pumps, and other infrastructure. Additionally, earthquakes can 
cause power outages and fres. 

WNTR includes methods to add leaks to pipes and tanks, shut off power to pumps, and change demands for fre 
conditions, as described in the sections below. The Earthquake class includes methods to compute peak ground 
acceleration, peak ground velocity, and repair rate based on the earthquake location and magnitude. Alternatively, 
external earthquake models or databases (e.g., ShakeMap [21]) can be used to compute earthquake properties and 
those properties can be loaded into Python for analysis in WNTR. 

When simulating the effects of an earthquake, fragility curves are commonly used to defne the probability that a 
component is damaged with respect to peak ground acceleration, peak ground velocity, or repair rate. The 
American Lifelines Alliance report [1] includes seismic fragility curves for water system components. See 
Stochastic simulation for more information on fragility curves. 

Since properties like peak ground acceleration, peak ground velocity, and repair rate are a function of the distance 
to the epicenter, node coordinates in the water network model must be in units of meters. Since some network 
models use other units for node coordinates, WNTR includes a method to change the coordinate scale. To change 
the node coordinate scale by a factor of 1000, for example, use the following code: 

wn.scale_node_coordinates(1000) 

The following code can be used to compute peak ground acceleration, peak ground velocity, and repair rate: 

epicenter = (32000,15000) # x,y location 
magnitude = 6.5 # Richter scale 
depth = 10000 # m, shallow depth 
earthquake = wntr.scenario.Earthquake(epicenter, magnitude, depth) 
distance = earthquake.distance_to_epicenter(wn, element_type=wntr.network.Pipe) 
pga = earthquake.pga_attenuation_model(distance) 
pgv = earthquake.pgv_attenuation_model(distance) 
repair_rate = earthquake.repair_rate_model(pgv) 

12.2 Pipe breaks or leaks 

Pipes are susceptible to leaks. Leaks can be caused by aging infrastructure, the freeze/thaw process, increased 
demand, or pressure changes. This type of damage is especially common in older cities where distribution systems 
were constructed from outdated materials like cast iron and even wood. 

WNTR includes methods to add leaks to junctions and tanks. Leaks can be added to a pipe by splitting the pipe and 
adding a junction. To add a leak to a specifc pipe: 

# Define a leak at pipe '123' 
wn.split_pipe_with_junction('123', '123_A', '123_B', '123_leak_node') 
leak_node = wn.get_node('123_leak_node') 

The method add_leak adds time controls to a junction which includes the start and stop time for the leak. 
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12.3 Power outage 

Power outages can be small and brief, or they can also span over several days and effect whole regions as seen in 
the 2003 Northeast Blackout. While the Northeast Blackout was an extreme case, a 2012 Lawrence Berkeley 
National Laboratory study [5] showed the frequency and duration of power outages are increasing by a rate of two 
percent annually. In water distribution systems, a power outage can cause pump stations to shut down and result in 
reduced water pressure. This can lead to shortages in some areas of the system. Typically, no lasting damage in the 
system is associated with power outages. 

WNTR can be used to simulate power outages by changing the pump status from ON to OFF and defning the 
duration of the outage. To model the impact of a power outage on a specifc pump: 

# Define a power outage at pump '335' 

The method add_pump_outage adds time controls to a pump to start and stop a power outage. When 
simulating power outages, consider placing check bypasses around pumps and check valves next to reservoirs. 

12.4 Fires 

WNTR can be used to simulate damage caused to system components due to fre and/or to simulate water usage 
due to fghting fres. To fght fres, additional water is drawn from the system. Fire codes vary by state. Minimum 
required fre fow and duration are generally based on building area and purpose. While small residential fres 
might require 1500 gallons/minute for 2 hours, large commercial spaces might require 8000 gallons/minute for 4 
hours [8]. This additional demand can have a large impact on water pressure in the system. 

WNTR can be used to simulate fre fghting conditions in the system. WNTR simulates fre fghting conditions by 
specifying the demand, time, and duration of fre fghting. Pressure dependent demand simulation is recommended 
in cases where fre fghting might impact expected demand. To model the impact of fre conditions at a specifc 
node: 

# Define fire conditions at node '197' 
fire_flow_demand = 0.252 # 4000 gal/min = 0.252 m3/s 
time_of_fire = 10 
duration_of_fire = 4 
remainder = int(wn.options.duration/3600-time_of_fire-duration_of_fire) 
fire_flow_pattern = [0]*time_of_fire + [1]*duration_of_fire + [0]*remainder 
wn.add_pattern('fire_flow', fire_flow_pattern) 
node = wn.get_node('197') 
original_base_demand = node.base_demand 
original_demand_pattern_name = node.demand_pattern_name 
node.base_demand = original_base_demand+fire_flow_demand 

12.5 Environmental change 

Environmental change is a long term problem for water distribution systems. Changes in the environment could 
lead to reduced water availability, damage from weather incidents, or even damage from subsidence. For example, 
severe drought in California has forced lawmakers to reduce the state’s water usage by 25 percent. Environmental 
change also leads to sea level rise which can inundate distribution systems. This is especially prevalent in cities 
built on unstable soils like New Orleans and Washington, DC which are experiencing land subsidence. 

WNTR can be used to simulate the effects of environmental change on the water distribution system by changing 
supply and demand, adding disruptive conditions (i.e., power outages, pipe leaks) caused by severe weather, or by 
adding pipe leaks caused by subsidence. Power outages and pipe leaks are described above. Changes to supply and 
demand can be simple (i.e., changing all nodes by a certain percent), or complex (i.e., using external data or 
correlated statistical methods). To model simple changes in supply and demand: 

# Reduce supply, imcrease demand 
for reservoir_name, reservoir in wn.reservoirs(): 

reservoir.base_head = reservoir.base_head*0.9 
for junction_name, junction in wn.junctions(): 
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12.6 Contamination 

Water distribution systems are vulnerable to contamination by a variety of chemical, microbial, or radiological 
substances. During disasters, contamination can enter the system through reservoirs, tanks, and at other access 
points within the distribution system. Long term environmental change can lead to degradation of water sources. 
Contamination can be diffcult to detect and is very expensive to clean up. Recent incidents, including the Elk River 
chemical spill and Flint lead contamination, highlight the need to minimize human health and economic impacts. 

WNTR simulates contamination incidents by introducing contaminants into the distribution system and allowing 
them to propagate through the system. The example water_quality_simulation.py includes steps to defne and 
simulate contamination incidents. 

Future versions of WNTR will be able to simulate changes in source water quality due to disruptions. 

12.7 Other disaster scenarios 

Drinking water systems are also susceptible to other natural disasters including foods, droughts, hurricanes, 
tornadoes, extreme winter storms, and wind events. WNTR can be used to simulate these events by combining the 
disaster models already described above. For example, tornadoes might cause power outages, pipe breaks, other 
damage to infrastructure, and fres. Floods might cause power outages, changes to source water (because of 
treatment failures), and pipe breaks. 
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13 Resilience metrics 

Resilience of water distribution systems refers to the design, maintenance, and operations of that system. All these 
aspects must work together to limit the effects of disasters and enable rapid return to normal delivery of safe water 
to customers. Numerous resilience metrics have been suggested [17]. These metrics generally fall into fve 
categories: topographic, hydraulic, water quality, water security, and economic. When quantifying resilience, it is 
important to understand which metric best defnes resilience for a particular scenario. WNTR includes many 
metrics to help users compare resilience using different methods. 

The following sections outline metrics that can be computed using WNTR, including: 

• Topographic metrics (Table 9) 

• Hydraulic metrics (Table 10) 

• Water quality metrics (Table 11) 

• Water security metrics (Table 12) 

• Economic metrics (Table 13) 

While some metrics defne resilience as a single system-wide quantity, other metrics defne quantities that are a 
function of time, space, or both. For this reason, state transition plots [3] and network graphics are useful ways to 
visualize resilience and compare metrics, as shown in Figure 11. In the state transition plot, the x-axis represents 
time (before, during, and after a disruptive incident). The y-axis represents performance. This can be any time 
varying resilience metric that responds to the disruptive state. State transition plots are often generated to show 
time varying performance of the system, but they can also represent the time varying performance of individual 
components, like tanks or pipes. Network graphics are useful to visualize resilience metrics that vary with respect 
to location. For metrics that vary with respect to time and space, network animation can be used to illustrate 
resilience. 

Figure 11: Example state transition plot and network graphic used to visualize resilience. 

The example resilience_metrics.py demonstrates how to compute these metrics. 

13.1 Topographic metrics 

Topographic metrics, based on graph theory, can be used to assess the connectivity of water distribution networks. 
These metrics rely on the physical layout of the network components and can be used to understand how the 
underlying structure and connectivity constrains resilience. For example, a regular lattice, where each node has the 
same number of edges, is considered to be the most reliable graph structure. On the other hand, a random lattice 
has nodes and edges that are placed according to a random process. A real world water distribution system 
probably lies somewhere in between a regular lattice and a random lattice in terms of structure and reliability. 

NetworkX includes a wide range of topographic metrics that can be computed using the WntrMultiDiGraph. 
WNTR includes additional methods/metrics to help compute resilience. These methods are in the 
WntrMultiDiGraph class. Commonly used topographic metrics are listed in Table 9. Information on additional 
topographic metrics supported by NetworkX can be found at https://networkx.github.io/. 
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Table 9: Topographic Resilience Metrics 
Metric Description 
Node degree Node degree is the number of links adjacent to a node. Node degree is a measure 

of the number of branches in a network. A node with degree 0 is not connected to 
the network. Terminal nodes have degree 1. A node connected to every node 
(including itself) has a degree equal to the number of nodes in the network. The 
average node degree is a system wide metric used to describe the number of 
connected links in a network. Node degree can be computed using the NetworkX 
method degree. Terminal nodes can be found using the method 
terminal_nodes. 

Link density Link density is the ratio between the total number of links and the maximum 
number of links in the network. If links are allowed to connect a node to itself, then 
the maximum number of links is �2, where � is the number of nodes. Otherwise, 
the maximum number of nodes is �(� − 1). Link density is 0 for a graph without 
edges and 1 for a dense graph. The density of multigraphs can be higher than 1. 
Link density can be computed using the NetworkX method density. 

Eccentricity and diameter Eccentricity is the maximum number of links between a node and all other nodes 
in the graph. Eccentricity is a value between 0 and the number of links in the 
network. Diameter is the maximum eccentricity in the network. Eccentricity and 
diameter can only be computed using undirected, connected networks. Network X 
includes a method to convert directed graphs to undirected graphs, 
to_undirected, and to check if graphs are connected, is_connected. 
Eccentricity and diameter can be computed using the NetworkX methods 
eccentricity and diameter. 

Simple paths A simple path is a path between two nodes that does not repeat any nodes. 
NetworkX includes a method, all_simple_paths, to compute all simple 
paths between two nodes. The method links_in_simple_paths can be used 
to extract all links in a simple path along with the number of times each link was 
used in the paths. Paths can be time dependent, if related to simulated fow 
direction. The method weight_graph can be used to weight the graph by a 
specifed attribute. 

Shortest path lengths Shortest path lengths is the minimum number of links between a source node and 
all other nodes in the network. Shortest path length is a value between 0 and the 
number of links in the network. The average shortest path length is a system wide 
metric used to describe the number of links between a node and all other nodes. 
Shortest path lengths and average shortest path lengths can be computed using the 
following NetworkX methods shortest_path_length and 
average_shortest_path_length. 

Betweenness centrality Betweenness centrality is the fraction of shortest paths that pass through each node. 
Betweenness coeffcient is a value between 0 and 1. Central point dominance is the 
average difference in betweenness centrality of the most central point (having the 
maximum betweenness centrality) and all other nodes. These metrics can be 
computed using the NetworkX methods betweenness_centrality and the 
method central_point_dominance 

Closeness centrality Closeness centrality is the inverse of the sum of shortest path from one node to all 
other nodes. Closeness centrality can be computed using the NetworkX method 
closeness_centrality. 

Articulation points A node is considered an articulation point if the removal of that node (along with 
all its incident edges) increases the number of connected components of a network. 
Density of articulation points is the ratio of the number of articulation points and 
the total number of nodes. Density of articulation points is a value between 0 and 
1. Articulation points can be computed using the NetworkX method 
articulation_points. 

Bridges A link is considered a bridge if the removal of that link increases the number of 
connected components in the network. The ratio of the number of bridges and the 
total number of links in the network is the bridge density. Bridge density is a value 
between 0 and 1. The method bridges can be used to fnd bridges in a network. 
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13.2 Hydraulic metrics 

Hydraulic metrics are based upon variable fows and/or pressure. The calculation of these metrics requires 
simulation of network hydraulics that refect how the system operates under normal or abnormal conditions. 
Hydraulic metrics included in WNTR are listed in Table 10. 

Table 10: Hydraulic Resilience Metrics 
Metric Description 
Pressure To determine the number of node-time pairs above or below a specifed 

pressure threshold, use the query method on results.node[‘pressure’]. 
Todini index The Todini index [16] is related to the capability of a system to overcome 

failures while still meeting demands and pressures at the nodes. The Todini 
index defnes resilience at a specifc time as a measure of surplus power at each 
node and measures relative energy redundancy. The Todini index can be 
computed using the todini method. 

Entropy Entropy [2] is a measure of uncertainty in a random variable. In a water 
distribution network model, the random variable is fow in the pipes and 
entropy can be used to measure alternate fow paths when a network 
component fails. A network that carries maximum entropy fow is considered 
reliable with multiple alternate paths. Connectivity will change at each time 
step, depending on the fow direction. The method weight_graph method 
can be used to weight the graph by a specifed attribute. Entropy can be 
computed using the entropy method. 

Fraction of delivered volume Fraction of delivered volume is the ratio of total volume delivered to the total 
volume requested [12]. This metric can be computed as a function of time or 
space using the fdv method. 

Fraction of delivered demand Fraction of delivered demand is the fraction of time periods where demand is 
met [12]. This metric can be computed as a function of time or space using the 
fdd method. 

Population impacted Population that is impacted by a specifc quantity can be computed using the 
population_impacted method. For example, this method can be used to 
compute the population impacted by pressure below a specifed threshold. 

13.3 Water quality metrics 

Water quality metrics are based on the concentration or water age. The calculation of these metrics require a water 
quality simulation. Water quality metrics included in WNTR are listed in Table 11. 

Table 11: Water Quality Resilience Metrics 
Metric Description 
Water age To determine the number of node-time pairs above or below a specifed water 

age threshold, use the query method on results.node[‘quality’] after a 
simulation using AGE. 

Concentration To determine the number of node-time pairs above or below a specifed 
concentration threshold, use the query method on results.node[‘quality’] after 
a simulation using CHEM or TRACE. 

Fraction of delivered quality Fraction of delivered quality is the fraction of time periods where water quality 
standards are met [12]. This metric can be computed as a function of time or 
space using the fdq method 

Average water consumed Average water consumed is computed at each node, based on node demand and 
demand patterns [18]. The metric can be computed using the 
average_water_consumed method. 

Population impacted As stated above, population that is impacted by a specifc quantity can be 
computed using the population_impacted method. This can be applied to 
water quality metrics. 
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13.4 Water security metrics 

Water security metrics quantify potential consequences of contamination scenarios. These metrics are documented 
in [18]. Water security metrics included in WNTR are listed in Table 12. 

Table 12: Water Security Resilience Metrics 
Metric Description 
Mass consumed Mass consumed is the mass of a contaminant that exits the network via node 

demand at each node-time pair [18]. The metric can be computed using the 
mass_contaminant_consumed method. 

Volume consumed Volume consumed is the volume of a contaminant that exits the network via node 
demand at each node-time pair [18]. A detection limit can be specifed. The metric 
can be computed using the volume_contaminant_consumed method. 

Extent of contamination Extent of contamination is the length of contaminated pipe at each node-time pair 
[18]. A detection limit can be specifed. The metric can be computed using the 
extent_contaminant method. 

Population impacted As stated above, population that is impacted by a specifc quantity can be computed 
using the population_impacted method. This can be applied to water security 
metrics. 

13.5 Economic metrics 

Economic metrics include network cost and greenhouse gas emissions. Economic metrics included in WNTR are 
listed in Table 13. 

Table 13: Economic Resilience Metrics 
Metric Description 
Network cost Network cost is the annual maintenance and operations cost of tanks, pipes, 

vales, and pumps based on the equations from the Battle of Water Networks 
II [14]. Default values can be included in the calculation. Network cost can 
be computed using the cost method. 

Greenhouse gas emissions Greenhouse gas emissions is the annual emissions associated with pipes 
based on equations from the Battle of Water Networks II [14]. Default 
values can be included in the calculation. Greenhouse gas emissions can be 
computed using the ghg_emissions method. 

Pump operating energy and cost The energy and cost required to operate a pump can be computed using the 
pump_energy method. This uses the fowrates and pressures from 
simulation results to compute pump energy and cost. 
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14 Stochastic simulation 

Stochastic simulations can be used to evaluate an ensemble of hydraulic and/or water quality scenarios. For 
disaster scenarios, the location, duration, and severity of different types of incidents can be drawn from 
distributions and included in the simulation. Distributions can be a function of component properties (i.e., age, 
material) or based on engineering standards. The Python packages Numpy and Scipy include statistical 
distributions and random selection methods that can be used for stochastic simulations. 

For example, the following code can be used to select N unique pipes based on the failure probability of each pipe: 

N = 2 
failure_probability = {'pipe1': 0.10, 'pipe2': 0.20, 'pipe3': 0.25, 'pipe4': 0.15, 

'pipe5': 0.30} 
pipes_to_fail = np.random.choice(failure_probability.keys(), N, replace=False, 

p=failure_probability.values()) 

The example stochastic_simulation.py runs multiple realizations of a pipe leak scenario where the location and 
duration are drawn from probability distributions. 

14.1 Fragility curves 

Fragility curves are commonly used in disaster models to defne the probability of exceeding a given damage state 
as a function environmental change. Fragility curves are closely related to survival curves, which are used to defne 
the probability of component failure due to age. To estimate earthquake damage, fragility curves are defned as a 
function of peak ground acceleration, peak ground velocity, or repair rate. The American Lifelines Alliance report 
[1] includes seismic fragility curves for water network components. Fragility curves can also be defned as a 
function of food stage, wind speed, and temperature for other types of disasters. 

Fragility curves can have multiple damage states. Each state should correspond to specifc changes to the network 
model that represent damage, for example, a major or minor leak. Each state is defned with a name (i.e., ‘Major,’ 
‘Minor’), priority (i.e., 1, 2, where higher numbers = higher priority), and distribution (using the Scipy Python 
package). The distribution can be defned for all elements using the keyword ‘Default,’ or can be defned for 
individual components. Each fragility curve includes a ‘No damage’ state with priority 0 (lowest priority). 

The example fragility_curves.py uses fragility curves to determine probability of failure: 

from scipy.stats import lognorm 
FC = wntr.scenario.FragilityCurve() 
FC.add_state('Minor', 1, {'Default': lognorm(0.5,scale=0.3)}) 
FC.add_state('Major', 2, {'Default': lognorm(0.5,scale=0.7)}) 

Figure 12 illustrates a fragility curve based on peak ground acceleration with two damage states: Minor damage 
and Major damage. For example, if the peak ground acceleration is 0.5 at a specifc junction, the probability of 
exceeding a Major damage state 0.25 and the probability of exceeding the Minor damage state is 0.85. For each 
stochastic simulation, a random number is drawn between 0 and 1. If the random number is between 0 and 0.25, 
the junction is assigned Minor damage. If the random number is between 0.25 and 0.85, then the junction is 
assigned Major damage. If the random number is between 0.85 and 1, then the junction is assigned No damage. 
After selecting a damage state for the junction, the network should be changed to refect the associated damage. 
For example, if the junction has Major damage, a large leak might be defned at that location. 
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Figure 12: Example fragility curve. 
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15 Copyright and license 

The WNTR Python package is copyright through Sandia National Laboratories. The software is distributed under 
the Revised BSD License. WNTR also leverages a variety of third-party software packages, which have separate 
licensing policies. 

15.1 Copyright 

Copyright 2015-2017 Sandia Corporation. 
Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, 
the U.S. Government retains certain rights in this software. 

15.2 Revised BSD license 

Redistribution and use in source and binary forms, with or without 
modification, are permitted provided that the following conditions 
are met: 

* Redistributions of source code must retain the above copyright notice, this 
list of conditions and the following disclaimer. 

* Redistributions in binary form must reproduce the above copyright notice, 
this list of conditions and the following disclaimer in the documentation 
and/or other materials provided with the distribution. 

* Neither the name of Sandia National Laboratories, nor the names of 
its contributors may be used to endorse or promote products derived from 
this software without specific prior written permission. 

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED 
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 
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16 Software quality assurance 

The following section includes information about the WNTR software repository, software tests, documentation, 
examples, bug reports, feature requests, and ways to contribute. 

16.1 GitHub repository 

WNTR is maintained in a version controlled repository. WNTR is hosted on US EPA GitHub organization at 
https://github.com/USEPA/WNTR. 

16.2 Software tests 

WNTR includes continuous integration software tests that are run using Travis CI. The tests are run each time 
changes are made to the repository. The tests cover a wide range of unit and integration tests designed to ensure 
that the code is performing as expected. New tests are developed each time new functionality is added to the code. 
Testing status (passing/failed) and code coverage statistics are posted on the README section at 
https://github.com/USEPA/WNTR. 

Tests can also be run locally using the Python package nose. For more information on nose, see 
http://nose.readthedocs.io/. nose comes with a command line software tool called nosetests. Tests can be run in the 
WNTR directory using the following command: 

nosetests -v --with-coverage --cover-package=wntr wntr 

16.3 Documentation 

WNTR includes a user manual that is built using the Read the Docs service. The user manual is automatically 
rebuilt each time changes are made to the code. The documentation is publicly available at 
http://wntr.readthedocs.io/. The user manual includes an overview, installation instructions, simple examples, and 
information on the code structure and functions. WNTR includes documentation on the API for all public 
functions, methods, and classes. New content is marked Draft. 

16.4 Examples 

WNTR includes examples to help new users get started. These examples are intended to demonstrate high level 
features and use cases for WNTR. The examples are tested to ensure they stay current with the software project. 

16.5 Bug reports and feature requests 

Bug reports and feature requests can be submitted to https://github.com/USEPA/WNTR/issues. The core 
development team will prioritize and assign bug reports and feature requests to team members. 

16.6 Contributing 

Software developers, within the core development team and external collaborators, are expected to follow standard 
practices to document and test new code. Software developers interested in contributing to the project are 
encouraged to create a Fork of the project and submit a Pull Request using GitHub. Pull requests will be reviewed 
by the core development team. 

Pull requests must meet the following minimum requirements to be included in WNTR: 

• Code is expected to be documented using Read the Docs. 

• Code is expected to be suffciently tested using Travis CI. Suffcient is judged by the strength of the test and 
code coverage. 80% code coverage is recommended. 
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• Large fles (> 1Mb) will not be committed to the repository without prior approval. 

• Network model fles will not be duplicated in the repository. Network fles are stored in examples/network 
and wntr/tests/networks_for_testing only. 

16.7 Development team 

WNTR was developed as part of a collaboration between the United States Environmental Protection Agency 
National Homeland Security Research Center, Sandia National Laboratories, and Purdue University. See 
https://github.com/USEPA/WNTR/graphs/contributors for a list of contributors. 
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