
EPA/600/R-17/264 | September 2017
www.epa.gov/homeland-security-research

Water Network Tool for Resilience
(WNTR) User Manual

Office of Research and Development
Homeland Security Research Program

This page left intentionally blank

EPA/600/R-17/264
August 2017

Water Network Tool for Resilience (WNTR) User Manual

by

Katherine A. Klise, David B. Hart and Dylan Moriarty
Sandia National Laboratories

Geoscience Research and Applications

Michael L. Bynum
Purdue University

Davidson School of Chemical Engineering

Regan Murray, Jonathan Burkhardt, and Terra Haxton
U.S. Environmental Protection Agency
Offce of Research and Development

i

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Contents

Overview

Installation

Software framework and limitations

Units

Getting started

Water network model

Water network controls

NetworkX graph

Hydraulic simulation

Water quality simulation

Simulation results

Disaster scenarios

Resilience metrics

Stochastic simulation

Copyright and license

Software quality assurance

References

1

3

6

9

11

12

13

16

18

22

24

27

30

34

36

37

39

ii

Disclaimer

The United States Environmental Protection Agency through its Offce of Research and Development funded and
collaborated in the research described here under an Interagency Agreement # DW89924502 with the Department
of Energy’s Sandia National Laboratories. It has been subjected to the Agency’s review and has been approved for
publication. Note that approval does not signify that the contents necessarily refect the views of the Agency.
Mention of trade names products, or services does not convey offcial EPA approval, endorsement, or
recommendation. The contractor role did not include establishing Agency policy.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and
Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S.
Department of Energy’s National Nuclear Security Administration under contract DE-NA-0003525.

iii

1
2
3
4
5
6
7
8
9
10
11
12
13

List of Tables

WNTR Subpackages . 6
Classes in the network Subpackage . 6
Classes in the sim Subpackage . 7
EPANET Hydraulic Unit Conventions . 9
EPANET Water Quality Unit Conventions . 10
EPANET Energy Unit Conventions . 10
Description of WNTR Example Files . 11
Condition Classes . 14
Topographic Resilience Metrics . 31
Hydraulic Resilience Metrics . 32
Water Quality Resilience Metrics . 32
Water Security Resilience Metrics . 33
Economic Resilience Metrics . 33

iv

List of Figures

1 WNTR code repository on GitHub, integrated development environment using Spyder, and sample
graphics generated by WNTR. 1

2 Flowchart illustrating four example use cases. 2
3 Opening a Python console from a command prompt. 3
4 Opening a Python console using Spyder. 4
5 Example directed multigraph. 16
6 Example relationship between pressure (p) and demand (d) using both the demand-driven and pres-

sure dependent demand simulations. 20
7 Example relationship between leak demand (d) and pressure (p). 20
8 Conceptual representation of Panels used to store simulation results. 24
9 Example time-series graphic. 25
10 Example network graphic. 26
11 Example state transition plot and network graphic used to visualize resilience. 30
12 Example fragility curve. 35

v

Abbreviations

API: Application programming interface

EPA: Environmental Protection Agency

IDE: Integrated development environment

SI: International System of Units

US: United States

WNTR: Water Network Tool for Resilience

vi

Acknowledgements

The U.S. Environmental Protection Agency acknowledges the technical review of the WNTR software and user
manual and/or technical editing provided by the following individuals:

• Eun Jeong Cha, University of Illinois

• Sudhir Kshirsagar, Global Quality Corp

• Marti Sinclair, Alion Science and Technology, for Attain

vii

1 Overview

Drinking water systems face multiple challenges, including aging infrastructure, water quality concerns,
uncertainty in supply and demand, natural disasters, environmental emergencies, and cyber and terrorist attacks.
All of these have the potential to disrupt a large portion of a water system causing damage to infrastructure and
outages to customers. Increasing resilience to these types of hazards is essential to improving water security.

As one of the United States (US) sixteen critical infrastructure sectors, drinking water is a national priority. The
National Infrastructure Advisory Council defned infrastructure resilience as “the ability to reduce the magnitude
and/or duration of disruptive events. The effectiveness of a resilient infrastructure or enterprise depends upon its
ability to anticipate, absorb, adapt to, and/or rapidly recover from a potentially disruptive event” [11].

Being able to predict how drinking water systems will perform during disruptive incidents and understanding how
to best absorb, recover from, and more successfully adapt to such incidents can help enhance resilience. Simulation
and analysis tools can help water utilities to explore the capacity of their systems to handle disruptive incidents and
guide the planning necessary to make systems more resilient over time [17].

The Water Network Tool for Resilience (WNTR, pronounced winter) is a Python package designed to simulate and
analyze resilience of water distribution networks. Here, a network refers to the collection of pipes, pumps, nodes,
and valves that make up a water distribution system. WNTR has an application programming interface (API) that
is fexible and allows for changes to the network structure and operations, along with simulation of disruptive
incidents and recovery actions. WNTR can be installed through the United States Environmental Protection
Agency (US EPA) GitHub organization at https://github.com/USEPA/WNTR. An integrated development
environment (IDE), like Spyder, is recommended for users and developers. Figure 1 shows the GitHub webpage,
Spyder IDE, and sample graphics generated by WNTR.

Figure 1: WNTR code repository on GitHub, integrated development environment using Spyder, and sample graph-
ics generated by WNTR.

WNTR includes capabilities to:

• Generate water network models from scratch or from existing EPANET-formatted water network model
input (EPANET INP) fles [13]

• Modify network structure by adding/removing components and changing component characteristics

• Modify network operation by changing initial conditions, component settings, and time-based and
conditional controls

• Add disruptive incidents including damage to tanks, valves, and pumps, pipe leaks, power outages,
contaminant injection, and changes to supply and demand

1

https://github.com/USEPA/WNTR

• Add response/repair/mitigation strategies including leak repair, retroftted pipes, power restoration, and
backup generation

• Simulate network hydraulics and water quality using pressure dependent demand or demand-driven
hydraulic simulation, and the ability to pause and restart simulations

• Run probabilistic simulations using fragility curves for component failure

• Compute resilience using topographic, hydraulic, water quality/security, and economic metrics

• Analyze results and generate graphics including state transition plots, network graphics, and network
animation

These capabilities can be linked together in many different ways. Figure 2 illustrates four example use cases, from
simple to complex.

Figure 2: Flowchart illustrating four example use cases.

While EPANET includes some features to model and analyze water distribution system resilience, WNTR was
developed to greatly extend these capabilities. WNTR provides a fexible platform for modeling a wide range of
disruptive incidents and repair strategies, and pressure dependent demand hydraulic simulation is included to
model the system during low pressure conditions. Furthermore, WNTR is compatible with widely used scientifc
computing packages for Python, including NetworkX [6], Pandas [10], Numpy [19], Scipy [19], and Matplotlib
[7]. These packages allow the user to build custom analysis directly in Python, and gain access to tools that analyze
the structure of complex water distribution networks, analyze time-series data from simulation results, run
simulations effciently, and create high-quality graphics and animations.

2

2 Installation

WNTR can be installed as a Python package using standard open source software tools.

Step 1: Setup your Python environment

Python can be installed on Windows, Linux, and Mac OS X operating systems. WNTR requires
Python (versions 2.7, 3.4, or 3.5) along with several Python package dependencies. Python
distributions, such as Anaconda, are recommended to manage the Python environment. Anaconda can
be downloaded from https://www.continuum.io/downloads. General information on Python can be
found at https://www.python.org/.

Anaconda includes the Python packages needed for WNTR, including Numpy, Scipy, NetworkX,
Pandas, and Matplotlib. For more information on Python package dependencies, see Requirements.

Anaconda also comes with Spyder, an IDE, that includes enhanced editing and debug features along
with a graphical user interface. Debugging options are available from the toolbar. Code documentation
is displayed in the object inspection window. Pop-up information on class structure and functions is
displayed in the editor and console windows.

To open a Python console, open a command prompt (cmd.exe on Windows, terminal window on Linux
and Mac OS X) and run ‘python’, as shown in Figure 3, or open a Python console using an IDE, like
Spyder, as shown in Figure 4.

Figure 3: Opening a Python console from a command prompt.

Step 2: Install WNTR

The installation process differs for users and developers. Installation instructions for both types are
described below.

For users: Users can install WNTR using pip, which is a command line software tool used to install
and manage Python packages. It can be downloaded from https://pypi.python.org/pypi/pip.

To install WNTR using pip, open a command prompt and run:

pip install wntr

This will install the latest stable version of WNTR from https://pypi.python.org/pypi/wntr.

Note: A WNTR installation using pip will not include the examples folder, which is referenced
throughout this manual.

Users can also download a zip fle that includes source fles and the examples folder from the US EPA
GitHub organization. To download the master (development) branch, go to
https://github.com/USEPA/WNTR, select the “Clone or download” button and then select “Download
ZIP.” This downloads a zip fle called WNTR-master.zip. To download a specifc release, go to
https://github.com/USEPA/WNTR/releases and select a zip fle. The software can then be installed by
running a Python script, called setup.py, that is included in the zip fle.

To build WNTR from the source fles in the zip fle, open a command prompt and run:

unzip WNTR-master.zip
cd WNTR-master
python setup.py install

3

https://www.continuum.io/downloads
https://www.python.org/
https://pypi.python.org/pypi/pip
https://pypi.python.org/pypi/wntr
https://github.com/USEPA/WNTR
https://github.com/USEPA/WNTR/releases
http:setup.py
http:setup.py

Figure 4: Opening a Python console using Spyder.

4

For developers: Developers can install and build WNTR from source using git, which is a command
line software tool for version control and software development. It can be downloaded from
http://git-scm.com.

To build WNTR from source using git, open a command prompt and run:

git clone https://github.com/USEPA/WNTR
cd wntr
python setup.py develop

This will install the master (development) branch of WNTR from https://github.com/USEPA/WNTR.
More information for developers can be found in the Software quality assurance section.

Step 3: Test installation

To test that WNTR is installed, open a Python console and run:

import wntr

If WNTR is installed properly, Python proceeds to the next line. No other output is printed to the
screen.

If WNTR is not installed properly, the user will see the following ImportError:

ImportError: No module named wntr

2.1 Requirements

Requirements for WNTR include Python (2.7, 3.4, or 3.5) along with several Python packages. The following
Python packages are required:

• Numpy [19]: used to support large, multi-dimensional arrays and matrices, http://www.numpy.org/

• Scipy [19]: used to support effcient routines for numerical integration, http://www.scipy.org/

• NetworkX [6]: used to create and analyze complex networks, https://networkx.github.io/

• Pandas [10]: used to analyze and store time series data, http://pandas.pydata.org/

• enum34 (for Python 2.7): used to add enumerated type support for Python 2.7,
https://pypi.python.org/pypi/enum34

These packages are included in the Anaconda Python distribution.

2.2 Optional dependencies

The following Python packages are optional:

• Matplotlib [7]: used to produce fgures, http://matplotlib.org/

• Plotly [15]: used to produce interactive scalable fgures, https://plot.ly/

• xlwt [22]: used to read/write to Microsoft® Excel® spreadsheets, http://xlwt.readthedocs.io

• Numpydoc [19]: used to build the user manual, https://github.com/numpy/numpydoc

• nose: used to run software tests, http://nose.readthedocs.io

These packages are included in the Anaconda Python distribution.

5

http://git-scm.com
https://github.com/USEPA/WNTR
http://www.numpy.org/
http://www.scipy.org/
https://networkx.github.io/
http://pandas.pydata.org/
https://pypi.python.org/pypi/enum34
http://matplotlib.org/
https://plot.ly/
http://xlwt.readthedocs.io
https://github.com/numpy/numpydoc
http://nose.readthedocs.io
http:setup.py
https://github.com/USEPA/WNTR

3 Software framework and limitations

Before using WNTR, it is helpful to understand the software framework. WNTR is a Python package, which
contains several object-oriented subpackages, listed in Table 1. Each subpackage contains modules which contain
classes, methods, and functions. See the online API documentation at https://wntr.readthedocs.io for more
information on the code structure. The classes used to generate water network models and run simulations are
described in more detail below, followed by a list of software limitations.

Table 1: WNTR Subpackages
Subpackage Description
epanet Contains EPANET 2 compatibility functions for WNTR.
metrics Contains methods to compute resilience, including hydraulic, water quality, water security, and

economic metrics. Methods to compute topographic metrics are included in the
wntr.network.graph module.

network Contains methods to defne a water network model, network controls, and graph representation
of the network.

scenario Contains methods to defne disaster scenarios and fragility/survival curves.
sim Contains methods to run hydraulic and water quality simulations using the water network

model.
graphics Contains methods to generate graphics.
utils Contains helper functions.

3.1 Water network model

The network subpackage contains classes to defne the water network model, network controls, and graph
representation of the network. These classes are listed in Table 2. Water network models can be built from scratch
or built directly from EPANET INP fles. Additionally, EPANET INP fles can be generated from water network
models.

Table 2: Classes in the network Subpackage
Class Description
WaterNetworkModel Contains methods to generate water network models, including methods to read

and write INP fles, and access/add/remove/modify network components. This
class links to additional model classes (below) which defne network
components, controls, and model options.

Junction Contains methods to defne junctions. Junctions are nodes where links connect.
Water can enter or leave the network at a junction.

Reservoir Contains methods to defne reservoirs. Reservoirs are nodes with an infnite
external source or sink.

Tank Contains methods to defne tanks. Tanks are nodes with storage capacity.
Pipe Contains methods to defne pipes. Pipes are links that transport water.
Pump Contains methods to defne pumps. Pumps are links that increase hydraulic

head.
Energy Contains attributes for specifying global energy prices and global pump

effciencies.
Valve Contains methods to defne valves. Valves are links that limit pressure or fow.
Curve Contains methods to defne curves. Curves are data pairs representing a

relationship between two quantities. Curves are used to defne pump curves.
Source Contains methods to defne sources. Sources defne the location and

characteristics of a substance injected directly into the network.
TimeControl Contains methods to defne time controls. Time controls defne actions that start

or stop at a particular time.
ConditionalControl Contains methods to defne conditional controls. Conditional controls defne

actions that start or stop based on a particular condition in the network.
WaterNetworkOptions Contains methods to defne model options, including the simulation duration

and time step.

6

https://wntr.readthedocs.io

3.2 Simulators

The sim subpackage contains classes to run hydraulic and water quality simulations using the water network
model. WNTR contains two simulators: the EpanetSimulator and the WNTRSimulator. These classes are listed in
Table 3.

Table 3: Classes in the sim Subpackage
Class Description
EpanetSimulator The EpanetSimulator uses the EPANET 2 Programmer’s Toolkit [13] to run

demand-driven hydraulic simulations and water quality simulations. When using the
EpanetSimulator, the water network model is written to an EPANET INP fle which is
used to run an EPANET simulation. This allows the user to read in INP fles, modify
the model, run an EPANET simulation, and analyze results all within WNTR.

WNTRSimulator The WNTRSimulator uses custom Python solvers to run demand-driven and pressure
dependent demand hydraulic simulation and includes models to simulate pipe leaks.
The WNTRSimulator does not perform water quality simulations.

3.3 Limitations

Current software limitations are noted:

• Certain EPANET INP model options are not supported in WNTR, as outlined below.

• Pressure dependent demand hydraulic simulation and leak models are only available using the
WNTRSimulator.

• Water quality simulations are only available using the EpanetSimulator.

WNTR reads in and writes all sections of EPANET INP fles. This includes the following sections:
[BACKDROP], [CONTROLS], [COORDINATES], [CURVES], [DEMANDS], [EMITTERS], [ENERGY],
[JUNCTIONS], [LABELS], [MIXING], [OPTIONS], [PATTERNS], [PIPES], [PUMPS], [QUALITY],
[REACTIONS], [REPORT], [RESERVOIRS], [RULES], [SOURCES], [TAGS], [TANKS], [TIMES], [TITLE],
[VALVES], and [VERTICES].

However, the following model options cannot be modifed/created in WNTR:

• [BACKDROP] section

• Effciency curves in the [CURVES] section

• [DEMANDS] section (base demand and patterns from the [JUNCTIONS] section can be modifed)

• [EMITTERS] section

• [LABELS] section

• [MIXING] section

• [REPORT] section

• [VERTICES] section

While the EpanetSimulator uses all EPANET model options, several model options are not used by the
WNTRSimulator. Of the EPANET model options that directly apply to hydraulic simulations, the following
options are not supported by the WNTRSimualtor:

• [DEMANDS] section (base demand and patterns from the [JUNCTIONS] section are used)

• [EMITTERS] section

• D-W and C-M headloss options in the [OPTIONS] section (H-W option is used)

• Accuracy, unbalanced, demand multiplier, and emitter exponent from the [OPTIONS] section

• Speed option and multipoint head curves in the [PUMPS] section (3-point head curves are supported)

• Head pattern option in the [RESERVOIRS] section

7

• Volume curves in the [TANKS] section

• Rule timestep, pattern start, report start, start clocktime, and statistics in the [TIMES] section

• PSV, FCV, PBV, and GPV values in the [VALVES] section

Future development of WNTR will address these limitations.

8

4 Units

All data in WNTR is stored in SI (International System) units:

• Length = �

• Diameter = �

• Water pressure = � (this assumes a fuid density of 1000 ��/�3)

• Elevation = �

• Mass = ��

• Time = �

• Concentration = ��/�3

• Demand = �3/�

• Velocity = �/�

• Acceleration = � (1 � = 9.81 �/�2)

• Energy = �

• Power = �

• Pressure = � �

• Mass injection = ��/�

• Volume = �3

WNTR is compatible with all EPANET unit conventions. When using an EPANET INP fle to generate a water
network model, WNTR converts model parameters using the units defned in the Units and Quality options of the
EPANET INP fle. These options defne the mass and fow units for the model. Some units also depend on the
equation used for pipe roughness headloss and on the reaction order specifed. Table 4, Table 5, and Table 6
provide information on EPANET unit conventions (modifed from [13]).

Table 4: EPANET Hydraulic Unit Conventions
Hydraulic parameter US customar y units SI-based units
Flow fow can be defned as:

• CFS: ft 3 /s
• GPM: gal/min
• MGD: million gal/day
• IMGD: million imperial

gal/day
• AFD: acre-feet/day

fow can be defned as:
• LPS: L/s
• LPM: L/min
• MLD: million L/day
• CMH: m 3 /hr
• CMD: m 3 /day

Demand fow fow
Diameter: pipes in mm
Diameter: tanks ft m
Elevation ft m
Hydraulic head ft m
Length ft m
Emitter coeffcient fow / sqrt(psi) fow / sqrt(m)
Friction factor unitless unitless
Minor loss coeffcient unitless unitless
Pressure psi m or kPa
Roughness coeff: D-W 10 -3 ft mm
Roughness coeff: H-W, C-M unitless unitless
Velocity ft/s m/s
Volume ft 3 m 3

9

Table 5: EPANET Water Quality Unit Conventions
Water quality parameter US customary units SI-based units
Concentration mass /L where mass can be defned

as mg or ug
mass /L where mass can be defned
as mg or ug

Bulk reaction coeffcient: order-1 1/day 1/day
Wall reaction coeffcient: order-0 mass /ft 2 /day mass /m 2 /day
Wall reaction coeffcient: order-1 ft/day m/day
Reaction rate mass /L/day mass /L/day
Source mass injection rate mass /min mass /min
Water age hours hours

Table 6: EPANET Energy Unit Conventions
Energy parameter US customary units SI-based units
Energy kW-hours kW-hours
Effciency (pumps) percent percent
Power hp (horse-power) kW

When running analysis in WNTR, all input values (i.e., time, pressure threshold, node demand) should be specifed
in SI units. All simulation results are also stored in SI units and can be converted to other units if desired. The
SymPy Python package can be used to convert between units [9].

10

5 Getting started

To start using WNTR, open a Python console and import the package:

import wntr

A simple script, getting_started.py, is included in the examples folder. This example demonstrates how to:

• Import WNTR

• Generate a water network model

• Simulate hydraulics

• Plot simulation results on the network

import wntr

Create a water network model
inp_file = 'networks/Net3.inp'
wn = wntr.network.WaterNetworkModel(inp_file)

Graph the network
wntr.graphics.plot_network(wn, title=wn.name)

Simulate hydraulics
sim = wntr.sim.EpanetSimulator(wn)
results = sim.run_sim()

Plot results on the network
pressure_at_5hr = results.node.loc['pressure', 5*3600, :]
wntr.graphics.plot_network(wn, node_attribute=pressure_at_5hr, node_size=30,

title='Pressure at 5 hours')

Additional examples, listed in Table 7, are included in the examples folder.

Table 7: Description of WNTR Example Files
Example fle Description
water_network_model.py Generate and modify water network models
networkx_graph.py Generate a NetworkX graph from a water network model
hydraulic_simulation.py Simulate hydraulics using the EPANET and WNTR simulators
water_quality_simulation.py Simulate water quality using EPANET
simulation_results.py Extract information from simulation results
disaster_scenarios.py Defne disaster scenarios, including power outage, pipe leak, and changes to

supply and demand
resilience_metrics.py Compute resilience metrics, including topographic, hydraulic, water quality,

water security, and economic metrics
stochastic_simulation.py Run a stochastic simulation
fragility_curves.py Defne fragility curves
interactive_graphics.py Create interactive network and time series graphics
animation.py Animate network graphics

Several EPANET INP fles are included in the examples/network folder. Example networks range from a simple 9
node network to a 3,000 node network. Additional network models can be downloaded from the University of
Kentucky Water Distribution System Research Database at http://www.uky.edu/WDST/database.html.

11

http://www.uky.edu/WDST/database.html
http:script,getting_started.py

6 Water network model

The water network model includes junctions, tanks, reservoirs, pipes, pumps, valves, demand patterns, pump
curves, controls, sources, simulation options, and node coordinates. Water network models can be built from
scratch or built directly from an EPANET INP fle. Sections of EPANET INP fle that are not compatible with
WNTR are described in Limitations. The example water_network_model.py can be used to generate, save, and
modify water network models.

A water network model can be created by adding components to an empty model:

wn = wntr.network.WaterNetworkModel()
wn.add_pattern('pat1', [1])
wn.add_pattern('pat2', [1,2,3,4,5,6,7,8,9,10])
wn.add_junction('node1', base_demand=0.01, demand_pattern_name='pat1',

elevation=100.0, coordinates=(1,2))
wn.add_junction('node2', base_demand=0.02, demand_pattern_name='pat2',

elevation=50.0, coordinates=(1,3))
wn.add_pipe('pipe1', 'node1', 'node2', length=304.8, diameter=0.3048, roughness=100,

minor_loss=0.0, status='OPEN')
wn.add_reservoir('res', base_head=125, head_pattern_name='pat1', coordinates=(0,2))
wn.add_pipe('pipe2', 'node1', 'res', length=100, diameter=0.3048, roughness=100,

minor_loss=0.0, status='OPEN')
wn.options.duration = 24*3600
wn.options.hydraulic_timestep = 15*60
wn.options.pattern_timestep = 60*60

A water network model can also be created directly from an EPANET INP fle:

inp_file = 'networks/Net3.inp'

The water network model can be written to a fle in EPANET INP format. By default, fles are written in LPS units.
The EPANET INP fle will not include features not supported by EPANET (i.e., pressure dependent demand
simulation options).:

wn.write_inpfile('filename.inp')

For more information on the water network model, see WaterNetworkModel in the API documentation.

12

http:base_demand=0.02
http:base_demand=0.01
http:water_network_model.py

7 Water network controls

One of the key features of water network models is the ability to control pipes, pumps, and valves using simple and
complex conditions. EPANET uses “controls” and “rules” to defne conditions [13]. A control is a single action
(i.e., closing/opening a link or changing the setting) based on a single condition (i.e., time based or tank level
based). A rule is more complex; rules take an IF-THEN-ELSE form and can have multiple conditions and multiple
actions in each of the logical blocks. WNTR supports EPANET’s rules and controls when generating a water
network model from an INP fle and simulating hydraulics using the EpanetSimulator. WNTR includes additional
options to defne controls that can be used by the WNTRSimulator.

The basic steps to defne a control for a water network model are:

1. Defne the control action

2. Defne the control or rule using the control action

3. Add the control or rule to the network

These steps are defned below. Examples use the “Net3.inp” EPANET INP fle to generate the water network
model object, called wn.

7.1 Control actions

Control actions tell the simulator what to do when a condition becomes “true.” Control actions are created using
the ControlAction class. A control action is defned by a target link, the property to change, and the value to
change it to. The following example creates a control action that opens pipe 330:

>>> import wntr.network.controls as controls
>>> l1 = wn.get_link('330')
>>> act1 = controls.ControlAction(l1, 'status', 1)
>>> print(act1)
set Pipe('330').status to Open

7.2 Simple controls

Control objects that emulate EPANET’s [CONTROLS] section are defned in two classes:
ConditionalControl and TimeControl. When generating a water network model from an EPANET INP
fle, a ConditionalControl or TimeControl will be created for each control.

Conditional controls: ConditionalControl objects defne tank level and junction pressure based controls.
Conditional controls require a source, operation, threshold, and a control action. The source is defned as tuple
where the frst value is a water network model component and the second value is the attribute of the object. The
operation is defned using NumPy functions such as np.greater and np.less. The threshold is the value that triggers
the condition to be true. The control action is defned above.

In the following example, a conditional control is defned that opens pipe 330 if the level of tank 1 goes above
46.0248 m. The source is the tank level and is defned as a tuple with the node object n1 and the attribute level. To
specify that the condition should be true when the level is greater than the threshold, the operation is set to
np.greater and the threshold is set to 46.0248. The control action act1 from above is used in the conditional control:

>>> n1 = wn.get_node('1')
>>> thresh1 = 46.0248
>>> ctrl1 = controls.ConditionalControl((n1, 'level'), np.greater, thresh1, act1)
>>> ctrl1
<ConditionalControl: <Tank '1'>, 'level'), <ufunc 'greater'>, 46.0248,
→˓<ControlAction: <Pipe '330'>, 'status', 'Open'>>

To get an EPANET-like description of this control, use the print function:

>>> print(ctrl1)
LINK 330 Open IF NODE 1 Above 46.0248

13

http:level.To

Time-based controls: TimeControl objects defne time-based controls. Time-based controls require a water
network model object, a time to start the condition, a control action, and additional fags to specify the time
reference point and recurrence. The time fag is either SIM_TIME or SHIFTED_TIME; these indicate simulation or
clock time, respectively. The daily fag is either True or False and indicates if the control should be repeated every
24 hours.

In the following example, a time-based control is defned that opens Pump 10 at hour 121. The time fag is set to
SIM_TIME and the daily fag is set to False. A new control action is defned that opens the pump:

>>> time2 = 121 60 60* *
>>> timeflag2 = 'SIM_TIME'
>>> dailyflag2 = False
>>> pump2 = wn.get_link('10')
>>> act2 = controls.ControlAction(pump2, 'status', 1)
>>> ctrl2 = controls.TimeControl(wn, time2, timeflag2, dailyflag2, act2)
>>> print(ctrl2)
LINK 10 Open AT TIME 121:00:00

Note that the EpanetSimulator is limited to use the following pairs: time_fag=’SIM_TIME’ with daily_fag=False,
and time_fag=’SHIFTED_TIME’ with daily_fag=True. The WNTRSimulator can use any combination of time
fag and daily fag.

7.3 Complex rules

Control objects that emulate EPANET’s [RULES] section are defned in the IfThenElseControl class. When
generating a water network model from an EPANET INP fle, an IfThenElseControl will be created for each rule.
An IfThenElseControl is defned using a ControlCondition object and a ControlAction object.
Condition classes are listed in Table 8.

Table 8: Condition Classes
Condition class Description
TimeOfDayCondition Time-of-day or “clocktime” based condition statement
SimTimeCondition Condition based on time since start of the simulation
ValueCondition Compare a network element attribute to a set value
RelativeCondition Compare attributes of two different objects (e.g., levels from tanks 1 and 2)
OrCondition Combine two WNTR Conditions with an OR
AndCondition Combine two WNTR Conditions with an AND

All of the above conditions are valid EPANET conditions except RelativeCondition.

In the following example, the previous simple controls are recreated using the IfThenElseControl:

>>> cond1 = controls.ValueCondition(n1, 'level', '>', 46.0248)
>>> print(cond1)
Tank('1').level > 46.0248

>>> rule1 = controls.IfThenElseControl(cond1, [act1], name='control1')
>>> print(rule1)
Rule control1 := if Tank('1').level > 46.0248 then set Pipe('330').status to Open

>>> cond2 = controls.SimTimeCondition(wn, '=', '121:00:00')
>>> print(cond2)
sim_time = 435600 sec

>>> rule2 = controls.IfThenElseControl(cond2, [act2], name='control2')
>>> print(rule2)
Rule control2 := if sim_time = 435600 sec then set Pump('10').status to Open

More complex rules can be written using one of the Boolean logic condition classes. The following example
creates a new rule that will open pipe 330 if both conditions are true, and otherwise it will open pipe 10. This rule
will behave very differently from the rules above:

14

>>> cond3 = controls.AndCondition(cond1, cond2)
>>> print(cond3)
(Tank('1').level > 46.0248 && sim_time = 435600 sec)

>>> rule3 = controls.IfThenElseControl(cond3, [act1], [act2], priority=3, name=
→˓'weird')
>>> print(rule3)
Rule weird := if (Tank('1').level > 46.0248 && sim_time = 435600 sec) then set
→˓Pipe('330').status to Open else set Pump('10').status to Open with priority 3

Actions can also be combined, as shown in the following example:

>>> cond4 = controls.OrCondition(cond1, cond2)
>>> rule4 = controls.IfThenElseControl(cond4, [act1, act2])
>>> print(rule4)
Rule := if (Tank('1').level > 46.0248 || sim_time = 435600 sec) then set Pipe('330
→˓').status to Open and set Pump('10').status to Open

The fexibility of the IfThenElseControl combined with the different ControlCondition classes and ControlActions
provides an extremely powerful tool for defning complex network operations.

7.4 Adding controls to a network

Once a control is created, they can be added to the network. This is accomplished using the add_control
method of the water network model object. The control should be named so that it can be retrieved and modifed if
desired:

>>> wn.add_control('NewTimeControl', ctrl2)
>>> wn.get_control('NewTimeControl')
<TimeControl: model, 435600, 'SIM_TIME', False, <ControlAction: <Pump '10'>, 'status
→˓', 'Open'>>

15

8 NetworkX graph

WNTR uses NetworkX data objects to store network connectivity as a graph. A graph is a collection of nodes that
are connected by links. For water networks, nodes represent junctions, tanks, and reservoirs while links represent
pipes, pumps, and valves.

Water networks are stored as directed multigraphs. A directed multigraph is a graph with direction associated
with links and the graph can have multiple links with the same start and end node. A simple example is shown in
Figure 5. For water networks, the link direction is from the start node to the end node. The link direction is used as
a reference to track fow direction in the network. For example, positive fow indicates that the fow direction is
from the start node to the end node while negative fow indicates that the fow direction is from the end node to the
start node. Multiple links with the same start and end node can be used to represent redundant pipes or backup
pumps. In WNTR, the graph stores the start and end node of each link, node coordinates, and node and link types
(i.e., tank, reservoir, valve). WNTR updates the graph as elements are added and removed from the water network
model.

Figure 5: Example directed multigraph.

NetworkX includes numerous methods to analyze the structure of complex networks. For more information on
NetworkX, see https://networkx.github.io/. WNTR includes a custom Graph Class, WntrMultiDiGraph. This
class inherits from NetworkX MultiDigraph and includes additional methods that are specifc to WNTR. The
example networkx_graph.py can be used to generate a graph from a water network model.

A copy of the graph can an be obtained using the following function:

G = wn.get_graph_deep_copy()

The graph is stored as a nested dictionary. The nodes and links (note that links are called edges in NetworkX) can
be accessed using the following:

node_name = '123'
print(G.node[node_name])
print(G.edge[node_name])

The graph can be used to access NetworkX methods, for example:

import networkx as nx
node_degree = G.degree()
bet_cen = nx.betweenness_centrality(G)
wntr.graphics.plot_network(wn, node_attribute=bet_cen, node_size=30,

title='Betweenness Centrality')

Some methods in NetworkX require that networks are undirected. An undirected graph is a graph with no
direction associated with links. The following NetworkX method can be used to convert a directed graph to an
undirected graph:

uG = G.to_undirected()

Some methods in NetworkX require that networks are connected. A connected graph is a graph where a path
exists between every node in the network (i.e., no node is disconnected). The following NetworkX method can be
used to check if a graph is connected:

16

https://networkx.github.io/
http:networkx_graph.py

print(nx.is_connected(uG))

Some methods in NetworkX can use weighted graphs. A weighted graph is a graph in which each link is given a
weight. The WNTR method weight_graph can be used to weight the graph by any attribute. In the following
example, the graph is weighted by length. This graph can then be used to compute path lengths:

length = wn.query_link_attribute('length')
G.weight_graph(link_attribute = length)

17

9 Hydraulic simulation

WNTR contains two simulators: the WNTRSimulator and the EpanetSimulator. See Software framework and
limitations for more information on features and limitations of these simulators.

The EpanetSimulator can be used to run demand-driven hydraulic simulations using the EPANET 2 Programmer’s
Toolkit. The simulator can also be used to run water quality simulations, as described in Water quality simulation.
A hydraulic simulation using the EpanetSimulator is run using the following code:

epanet_sim = wntr.sim.EpanetSimulator(wn)
epanet_sim_results = epanet_sim.run_sim()

The WNTRSimulator is a pure Python hydraulics simulation engine based on the same equations as EPANET. The
WNTRSimulator does not include equations to run water quality simulations. The WNTRSimulator includes the
option to simulate leaks, and run hydraulic simulations in either demand-driven or pressure dependent demand
mode. A hydraulic simulation using the WNTRSimulator is run using the following code:

wntr_sim = wntr.sim.WNTRSimulator(wn)
wntr_sim_results = wntr_sim.run_sim()

The example hydraulic_simulation.py can be used to run both simulators.

More information on the simulators can be found in the API documentation, under EpanetSimulator and
WNTRSimulator.

9.1 Options

Hydraulic simulation options are defned in the WaterNetworkOptions class. These options include duration,
hydraulic timestep, rule timestep, pattern timestep, pattern start, default pattern, report timestep, report start, start
clocktime, headloss, trials, accuracy, unbalanced, demand multiplier, and emitter exponent. All options are used
with the EpanetSimulator. Options that are not used with the WNTRSimulator are described in Limitations.

9.2 Mass balance at nodes

Both simulators use the mass balance equations from EPANET [13]: ∑
��,� − ���� = 0 ∀� ∈ ��

�∈��

where �� is the set of pipes connected to node �, ��,� is the fow rate of water into node � from pipe � (m3/s),
���� is the actual demand out of node � (m3/s), and � is the set of all nodes. If water is fowing out of node � and�
into pipe �, then ��,� is negative. Otherwise, it is positive.

9.3 Headloss in pipes

Both simulators use the Hazen-Williams headloss formula from EPANET [13]:

��� − ��� = ℎ� = 10.667�−1.852�−4.871��1.852

where ℎ� is the headloss in the pipe (m), � is the Hazen-Williams roughness coeffcient (unitless), � is the pipe
diameter (m), � is the pipe length (m), � is the fow rate of water in the pipe (m3/s), ��� is the head at the starting
node (m), and ��� is the head at the ending node (m).

The fow rate in a pipe is positive if water is fowing from the starting node to the ending node and negative if water
is fowing from the ending node to the starting node.

The WNTRSimulator solves for pressures and fows throughout the network as a set of linear equations. However,
the Hazen-Williams headloss formula is not valid for negative fow rates. Therefore, the WNTRSimulator uses a
reformulation of this constraint.

18

For � < 0:

= −10.667�−1.852�−4.871�|�|1.852ℎ�

For � ≥ 0:

ℎ� = 10.667�−1.852�−4.871�|�|1.852

These equations are symmetric across the origin and valid for any �. Thus, this equation can be used for fow in
either direction. However, the derivative with respect to � at � = 0 is 0. In certain scenarios, this can cause the
Jacobian of the set of hydraulic equations to become singular (when � = 0). To overcome this limitation, the
WNTRSimulator splits the domain of � into six segments to create a piecewise smooth function.

9.4 Demand-driven simulation

In demand-driven simulation, the pressure in the system depends on the node demands. The mass balance and
headloss equations described above are solved assuming that node demands are known and satisfed. This
assumption is reasonable under normal operating conditions and for use in network design. Both simulators can
run hydraulics using demand-driven simulation.

9.5 Pressure dependent demand simulation

In situations that lead to low pressure conditions (i.e., fre fghting, power outages, pipe leaks), consumers do not
always receive their requested demand and a pressure dependent demand simulation is recommended. In a pressure
dependent demand simulation, the delivered demand depends on the pressure. The mass balance and headloss
equations described above are solved by simultaneously determining demand along with the network pressures and
fow rates.

The WNTRSimulator can run hydraulics using a pressure dependent demand simulation according to the following
pressure-demand relationship [20]:

� =

⎧ ⎪⎨ ⎪⎩

0 � ≤ �0

�� (
�−�0) 2

1
�0 ≤ � ≤ ���� −�0

�� � ≥ ��

where � is the actual demand (m3/s), �� is the desired demand (m3/s), � is the pressure (Pa), �� is the pressure
above which the consumer should receive the desired demand (Pa), and �0 is the pressure below which the
consumer cannot receive any water (Pa). The set of nonlinear equations comprising the hydraulic model and the
pressure-demand relationship is solved directly using a Newton-Raphson algorithm.

Figure 6 illustrates the pressure-demand relationship using both the demand-driven and pressure dependent
demand simulations. In the example, �� is 0.0025 m3/s (39.6 GPM), �� is 30 psi, and �0 is 5 psi. Using the
demand-driven simulation, the demand is equal to �� regardless of pressure. Using the pressure dependent demand
simulation, the demand starts to decrease when the pressure is below �� and goes to 0 when pressure is below �0.

9.6 Leak model

The WNTRSimulator includes the ability to add leaks to the network. The leak is modeled with a general form of
the equation proposed by Crowl and Louvar [4] where the mass fow rate of fuid through the hole is expressed as: √

����� = ����� 2
�

where ����� is the leak demand (m3/s), �� is the discharge coeffcient (unitless), � is the area of the hole (m2), � is
the gauge pressure inside the pipe (Pa), � is the discharge coeffcient, and � is the density of the fuid. The default
discharge coeffcient is 0.75 (assuming turbulent fow), but the user can specify other values if needed. The value
of � is set to 0.5 (assuming large leaks out of steel pipes). Leaks can be added to junctions and tanks. A pipe break
is modeled using a leak area large enough to drain the pipe. WNTR includes methods to add leaks to any location
along a pipe by splitting the pipe into two sections and adding a node.

Figure 7 illustrates leak demand. In the example, the diameter of the leak is set to 0.5 cm, 1.0 cm, and 1.5 cm.

19

Figure 6: Example relationship between pressure (p) and demand (d) using both the demand-driven and pressure
dependent demand simulations.

Figure 7: Example relationship between leak demand (d) and pressure (p).

20

9.7 Pause and restart

The WNTRSimulator includes the ability to

• Reset initial values and re-simulate using the same water network model. Initial values include tank head,
reservoir head, pipe status, pump status, and valve status.

• Pause a hydraulic simulation, change network operations, and then restart the simulation

• Save the water network model and results to fles and reload for future analysis

These features are helpful when evaluating various response action plans or when simulating long periods of time
where the time resolution might vary. The fle hydraulic_simulation.py includes examples of these features.

21

10 Water quality simulation

Water quality simulations can only be run using the EpanetSimulator. As listed in the Software framework and
limitations section, this means that the hydraulic simulation must use demand-driven simulation. Note that the
WNTRSimulator can be used to compute demands under pressure dependent demand conditions and those
demands can be used in the EpanetSimulator. The following code illustrates how to reset demands in a water
network model using a pressure dependent demand simulation:

sim = wntr.sim.WNTRSimulator(wn)
results = sim.run_sim()
wn.reset_demand(results.node['demand'], 'PDD')
sim = wntr.sim.EpanetSimulator(wn)
results_withPDdemands = sim.run_sim()

After defning water quality options and sources (described in the Options and Sources sections below), a hydraulic
and water quality simulation using the EpanetSimualtor is run using the following code:

sim = wntr.sim.EpanetSimulator(wn)
results = sim.run_sim()

The example water_quality_simulation.py can be used to run water quality simulations and plot results.

10.1 Options

Water quality simulation options are defned in the WaterNetworkOptions class. Three types of water quality
analysis are supported. These options include water age, tracer, and chemical concentration.

• Water age: Water quality simulation can be used to compute water age at every node. To compute water
age, set the ‘quality’ option as follows:

wn.options.quality = 'AGE'

• Tracer: Water quality simulation can be used to compute the percent of fow originating from a specifc
location. The results include tracer percent values at each node. For example, to track a tracer from node
‘111’, set the ‘quality’ and ‘tracer_node’ options as follows:

wn.options.quality = 'TRACE'
wn.options.quality_value = '111'

• Chemical concentration: Water quality simulation can be used to compute chemical concentration given a
set of source injections. The results include chemical concentration values at each node. To compute
chemical concentration, defne sources (described in the Sources section below) and set the ‘quality’ options
as follows:

wn.options.quality = 'CHEMICAL'

• To skip the water quality simulation, set the ‘quality’ options as follows:

wn.options.quality = 'NONE'

Additional water quality options include viscosity, diffusivity, specifc gravity, tolerance, bulk reaction order, wall
reaction order, tank reaction order, bulk reaction coeffcient, wall reaction coeffcient, limiting potential, and
roughness correlation. These parameters are defned in the WaterNetworkOptions API documentation.

When creating a water network model from an EPANET INP fle, water quality options are populated from the
[OPTIONS] and [REACTIONS] sections of EPANET INP fle. All of these options can be modifed in WNTR and
then written to an EPANET INP fle.

22

http:water_quality_simulation.py

10.2 Sources

Sources are required for CHEMICAL water quality analysis. Sources can still be defned, but will not be used if
AGE, TRACE, or NONE water quality analysis is selected. Sources are added to the water network model using
the add_source method. Sources include the following information:

• Source name: A unique source name used to reference the source in the water network model.

• Node name: The injection node.

• Source type: Options include ‘CONCEN,’ ‘MASS,’ ‘FLOWPACED,’ or ‘SETPOINT.’

– CONCEN source represents injection of a specifc concentration.

– MASS source represents a booster source with a fxed mass fow rate.

– FLOWPACED source represents a booster source with a fxed concentration at the infow of the node.

– SETPOINT source represents a booster source with a fxed concentration at the outfow of the node.

• Strength: Baseline source strength (in mass/time for MASS and mass/volume for CONCEN,
FLOWPACED, and SETPOINT).

• Pattern: The pattern name associated with the injection.

For example, the following code can be used to add a source, and associated pattern, to the water network model:

wn.add_pattern('SourcePattern', start_time=2*3600, end_time=15*3600)
wn.add_source('Source1', '121', 'SETPOINT', 1000, 'SourcePattern')

In the above example, the pattern is given a value of 1 between 2 and 15 hours, and 0 otherwise. The method
remove_source can be used to remove sources from the water network model.

When creating a water network model from an EPANET INP fle, the sources that are defned in the [SOURCES]
section are added to the water network model. These sources are given the name ‘INP#’ where # is an integer
related to the number of sources in the INP fle.

23

11 Simulation results

WNTR uses Pandas data objects to store simulation results. The use of Pandas facilitates a comprehensive set of
time series analysis options that can be used to evaluate results. For more information on Pandas, see
http://pandas.pydata.org/.

Results are stored in Pandas Panels. A Panel is a 3-dimensional database. One Panel is used to store nodes results
and one Panel is used to store link results. The Panels are indexed by:

• Node or link attribute

• Time in seconds from the start of the simulation

• Node or link name

Conceptually, Panels can be visualized as blocks of data with 3 axis, as shown in Figure 8.

Figure 8: Conceptual representation of Panels used to store simulation results.

Node attributes include:

• Demand

• Expected demand

• Leak demand (only when the WNTRSimulator is used)

• Pressure

• Head

• Quality (only when the EpanetSimulator is used for a water quality simulation. Water age, tracer percent, or
chemical concentration is stored, depending on the type of water quality analysis)

• Type (junction, tank, or reservoir)

Link attributes include:

• Velocity

• Flowrate

• Status (0 indicates closed, 1 indicates open)

• Type (pipe, pump, or valve)

The example simulation_results.py demonstrates use cases of simulation results. Node and link results are
accessed using:

print(results.node)
print(results.link)

24

http://pandas.pydata.org/
http:simulation_results.py

The indices can be used to extract specifc information from the Panels. For example, to access the pressure and
demand at node ‘123’ at 1 hour:

print(results.node.loc[['pressure', 'demand'], 3600, '123'])

To access the pressure for all nodes and times (the “:” notation returns all variables along the specifed axis):

print(results.node.loc['pressure', :, :])

Attributes can be plotted as a time-series, as shown in Figure 9:

pressure_at_node123 = results.node.loc['pressure', :, '123']
pressure_at_node123.plot()

Figure 9: Example time-series graphic.

Attributes can be plotted on the water network model, as shown in Figure 10. In this fgure, the node pressure at 1
hr and link fowrate at 1 hour are plotted on the network. A colorbar is included for both node and link attributes:

pressure_at_1hr = results.node.loc['pressure', 3600, :]
flowrate_at_1hr = results.link.loc['flowrate', 3600, :]
wntr.graphics.plot_network(wn, node_attribute=pressure_at_1hr,

link_attribute=flowrate_at_1hr)

Network and time-series graphics can be customized to add titles, legends, axis labels, etc.

Panels can be saved to Excel fles using:

results.node.to_excel('node_results.xls')
results.link.to_excel('link_results.xls')

25

Figure 10: Example network graphic.

26

12 Disaster scenarios

Drinking water utilities might be interested in examining many different disaster scenarios. They could be acute
incidents like power outages and earthquakes or they could be long term issues like persistent pipe leaks,
population fuctuation, and changes to supply and demand. The following section describes disaster scenarios that
can be modeled in WNTR. The example disaster_scenarios.py demonstrates methods to defne disaster scenarios.

12.1 Earthquake

Earthquakes can be some of the most sudden and impactful disasters that a water systems experiences. An
earthquake can cause lasting damage to the system that could take weeks, if not months, to fully repair.
Earthquakes can cause damage to pipes, tanks, pumps, and other infrastructure. Additionally, earthquakes can
cause power outages and fres.

WNTR includes methods to add leaks to pipes and tanks, shut off power to pumps, and change demands for fre
conditions, as described in the sections below. The Earthquake class includes methods to compute peak ground
acceleration, peak ground velocity, and repair rate based on the earthquake location and magnitude. Alternatively,
external earthquake models or databases (e.g., ShakeMap [21]) can be used to compute earthquake properties and
those properties can be loaded into Python for analysis in WNTR.

When simulating the effects of an earthquake, fragility curves are commonly used to defne the probability that a
component is damaged with respect to peak ground acceleration, peak ground velocity, or repair rate. The
American Lifelines Alliance report [1] includes seismic fragility curves for water system components. See
Stochastic simulation for more information on fragility curves.

Since properties like peak ground acceleration, peak ground velocity, and repair rate are a function of the distance
to the epicenter, node coordinates in the water network model must be in units of meters. Since some network
models use other units for node coordinates, WNTR includes a method to change the coordinate scale. To change
the node coordinate scale by a factor of 1000, for example, use the following code:

wn.scale_node_coordinates(1000)

The following code can be used to compute peak ground acceleration, peak ground velocity, and repair rate:

epicenter = (32000,15000) # x,y location
magnitude = 6.5 # Richter scale
depth = 10000 # m, shallow depth
earthquake = wntr.scenario.Earthquake(epicenter, magnitude, depth)
distance = earthquake.distance_to_epicenter(wn, element_type=wntr.network.Pipe)
pga = earthquake.pga_attenuation_model(distance)
pgv = earthquake.pgv_attenuation_model(distance)
repair_rate = earthquake.repair_rate_model(pgv)

12.2 Pipe breaks or leaks

Pipes are susceptible to leaks. Leaks can be caused by aging infrastructure, the freeze/thaw process, increased
demand, or pressure changes. This type of damage is especially common in older cities where distribution systems
were constructed from outdated materials like cast iron and even wood.

WNTR includes methods to add leaks to junctions and tanks. Leaks can be added to a pipe by splitting the pipe and
adding a junction. To add a leak to a specifc pipe:

Define a leak at pipe '123'
wn.split_pipe_with_junction('123', '123_A', '123_B', '123_leak_node')
leak_node = wn.get_node('123_leak_node')

The method add_leak adds time controls to a junction which includes the start and stop time for the leak.

27

http:disaster_scenarios.py

12.3 Power outage

Power outages can be small and brief, or they can also span over several days and effect whole regions as seen in
the 2003 Northeast Blackout. While the Northeast Blackout was an extreme case, a 2012 Lawrence Berkeley
National Laboratory study [5] showed the frequency and duration of power outages are increasing by a rate of two
percent annually. In water distribution systems, a power outage can cause pump stations to shut down and result in
reduced water pressure. This can lead to shortages in some areas of the system. Typically, no lasting damage in the
system is associated with power outages.

WNTR can be used to simulate power outages by changing the pump status from ON to OFF and defning the
duration of the outage. To model the impact of a power outage on a specifc pump:

Define a power outage at pump '335'

The method add_pump_outage adds time controls to a pump to start and stop a power outage. When
simulating power outages, consider placing check bypasses around pumps and check valves next to reservoirs.

12.4 Fires

WNTR can be used to simulate damage caused to system components due to fre and/or to simulate water usage
due to fghting fres. To fght fres, additional water is drawn from the system. Fire codes vary by state. Minimum
required fre fow and duration are generally based on building area and purpose. While small residential fres
might require 1500 gallons/minute for 2 hours, large commercial spaces might require 8000 gallons/minute for 4
hours [8]. This additional demand can have a large impact on water pressure in the system.

WNTR can be used to simulate fre fghting conditions in the system. WNTR simulates fre fghting conditions by
specifying the demand, time, and duration of fre fghting. Pressure dependent demand simulation is recommended
in cases where fre fghting might impact expected demand. To model the impact of fre conditions at a specifc
node:

Define fire conditions at node '197'
fire_flow_demand = 0.252 # 4000 gal/min = 0.252 m3/s
time_of_fire = 10
duration_of_fire = 4
remainder = int(wn.options.duration/3600-time_of_fire-duration_of_fire)
fire_flow_pattern = [0]*time_of_fire + [1]*duration_of_fire + [0]*remainder
wn.add_pattern('fire_flow', fire_flow_pattern)
node = wn.get_node('197')
original_base_demand = node.base_demand
original_demand_pattern_name = node.demand_pattern_name
node.base_demand = original_base_demand+fire_flow_demand

12.5 Environmental change

Environmental change is a long term problem for water distribution systems. Changes in the environment could
lead to reduced water availability, damage from weather incidents, or even damage from subsidence. For example,
severe drought in California has forced lawmakers to reduce the state’s water usage by 25 percent. Environmental
change also leads to sea level rise which can inundate distribution systems. This is especially prevalent in cities
built on unstable soils like New Orleans and Washington, DC which are experiencing land subsidence.

WNTR can be used to simulate the effects of environmental change on the water distribution system by changing
supply and demand, adding disruptive conditions (i.e., power outages, pipe leaks) caused by severe weather, or by
adding pipe leaks caused by subsidence. Power outages and pipe leaks are described above. Changes to supply and
demand can be simple (i.e., changing all nodes by a certain percent), or complex (i.e., using external data or
correlated statistical methods). To model simple changes in supply and demand:

Reduce supply, imcrease demand
for reservoir_name, reservoir in wn.reservoirs():

reservoir.base_head = reservoir.base_head*0.9
for junction_name, junction in wn.junctions():

28

http:methods).To
http:outage.To

12.6 Contamination

Water distribution systems are vulnerable to contamination by a variety of chemical, microbial, or radiological
substances. During disasters, contamination can enter the system through reservoirs, tanks, and at other access
points within the distribution system. Long term environmental change can lead to degradation of water sources.
Contamination can be diffcult to detect and is very expensive to clean up. Recent incidents, including the Elk River
chemical spill and Flint lead contamination, highlight the need to minimize human health and economic impacts.

WNTR simulates contamination incidents by introducing contaminants into the distribution system and allowing
them to propagate through the system. The example water_quality_simulation.py includes steps to defne and
simulate contamination incidents.

Future versions of WNTR will be able to simulate changes in source water quality due to disruptions.

12.7 Other disaster scenarios

Drinking water systems are also susceptible to other natural disasters including foods, droughts, hurricanes,
tornadoes, extreme winter storms, and wind events. WNTR can be used to simulate these events by combining the
disaster models already described above. For example, tornadoes might cause power outages, pipe breaks, other
damage to infrastructure, and fres. Floods might cause power outages, changes to source water (because of
treatment failures), and pipe breaks.

29

http:water_quality_simulation.py

13 Resilience metrics

Resilience of water distribution systems refers to the design, maintenance, and operations of that system. All these
aspects must work together to limit the effects of disasters and enable rapid return to normal delivery of safe water
to customers. Numerous resilience metrics have been suggested [17]. These metrics generally fall into fve
categories: topographic, hydraulic, water quality, water security, and economic. When quantifying resilience, it is
important to understand which metric best defnes resilience for a particular scenario. WNTR includes many
metrics to help users compare resilience using different methods.

The following sections outline metrics that can be computed using WNTR, including:

• Topographic metrics (Table 9)

• Hydraulic metrics (Table 10)

• Water quality metrics (Table 11)

• Water security metrics (Table 12)

• Economic metrics (Table 13)

While some metrics defne resilience as a single system-wide quantity, other metrics defne quantities that are a
function of time, space, or both. For this reason, state transition plots [3] and network graphics are useful ways to
visualize resilience and compare metrics, as shown in Figure 11. In the state transition plot, the x-axis represents
time (before, during, and after a disruptive incident). The y-axis represents performance. This can be any time
varying resilience metric that responds to the disruptive state. State transition plots are often generated to show
time varying performance of the system, but they can also represent the time varying performance of individual
components, like tanks or pipes. Network graphics are useful to visualize resilience metrics that vary with respect
to location. For metrics that vary with respect to time and space, network animation can be used to illustrate
resilience.

Figure 11: Example state transition plot and network graphic used to visualize resilience.

The example resilience_metrics.py demonstrates how to compute these metrics.

13.1 Topographic metrics

Topographic metrics, based on graph theory, can be used to assess the connectivity of water distribution networks.
These metrics rely on the physical layout of the network components and can be used to understand how the
underlying structure and connectivity constrains resilience. For example, a regular lattice, where each node has the
same number of edges, is considered to be the most reliable graph structure. On the other hand, a random lattice
has nodes and edges that are placed according to a random process. A real world water distribution system
probably lies somewhere in between a regular lattice and a random lattice in terms of structure and reliability.

NetworkX includes a wide range of topographic metrics that can be computed using the WntrMultiDiGraph.
WNTR includes additional methods/metrics to help compute resilience. These methods are in the
WntrMultiDiGraph class. Commonly used topographic metrics are listed in Table 9. Information on additional
topographic metrics supported by NetworkX can be found at https://networkx.github.io/.

30

https://networkx.github.io/
http:resilience_metrics.py

Table 9: Topographic Resilience Metrics
Metric Description
Node degree Node degree is the number of links adjacent to a node. Node degree is a measure

of the number of branches in a network. A node with degree 0 is not connected to
the network. Terminal nodes have degree 1. A node connected to every node
(including itself) has a degree equal to the number of nodes in the network. The
average node degree is a system wide metric used to describe the number of
connected links in a network. Node degree can be computed using the NetworkX
method degree. Terminal nodes can be found using the method
terminal_nodes.

Link density Link density is the ratio between the total number of links and the maximum
number of links in the network. If links are allowed to connect a node to itself, then
the maximum number of links is �2, where � is the number of nodes. Otherwise,
the maximum number of nodes is �(� − 1). Link density is 0 for a graph without
edges and 1 for a dense graph. The density of multigraphs can be higher than 1.
Link density can be computed using the NetworkX method density.

Eccentricity and diameter Eccentricity is the maximum number of links between a node and all other nodes
in the graph. Eccentricity is a value between 0 and the number of links in the
network. Diameter is the maximum eccentricity in the network. Eccentricity and
diameter can only be computed using undirected, connected networks. Network X
includes a method to convert directed graphs to undirected graphs,
to_undirected, and to check if graphs are connected, is_connected.
Eccentricity and diameter can be computed using the NetworkX methods
eccentricity and diameter.

Simple paths A simple path is a path between two nodes that does not repeat any nodes.
NetworkX includes a method, all_simple_paths, to compute all simple
paths between two nodes. The method links_in_simple_paths can be used
to extract all links in a simple path along with the number of times each link was
used in the paths. Paths can be time dependent, if related to simulated fow
direction. The method weight_graph can be used to weight the graph by a
specifed attribute.

Shortest path lengths Shortest path lengths is the minimum number of links between a source node and
all other nodes in the network. Shortest path length is a value between 0 and the
number of links in the network. The average shortest path length is a system wide
metric used to describe the number of links between a node and all other nodes.
Shortest path lengths and average shortest path lengths can be computed using the
following NetworkX methods shortest_path_length and
average_shortest_path_length.

Betweenness centrality Betweenness centrality is the fraction of shortest paths that pass through each node.
Betweenness coeffcient is a value between 0 and 1. Central point dominance is the
average difference in betweenness centrality of the most central point (having the
maximum betweenness centrality) and all other nodes. These metrics can be
computed using the NetworkX methods betweenness_centrality and the
method central_point_dominance

Closeness centrality Closeness centrality is the inverse of the sum of shortest path from one node to all
other nodes. Closeness centrality can be computed using the NetworkX method
closeness_centrality.

Articulation points A node is considered an articulation point if the removal of that node (along with
all its incident edges) increases the number of connected components of a network.
Density of articulation points is the ratio of the number of articulation points and
the total number of nodes. Density of articulation points is a value between 0 and
1. Articulation points can be computed using the NetworkX method
articulation_points.

Bridges A link is considered a bridge if the removal of that link increases the number of
connected components in the network. The ratio of the number of bridges and the
total number of links in the network is the bridge density. Bridge density is a value
between 0 and 1. The method bridges can be used to fnd bridges in a network.

31

13.2 Hydraulic metrics

Hydraulic metrics are based upon variable fows and/or pressure. The calculation of these metrics requires
simulation of network hydraulics that refect how the system operates under normal or abnormal conditions.
Hydraulic metrics included in WNTR are listed in Table 10.

Table 10: Hydraulic Resilience Metrics
Metric Description
Pressure To determine the number of node-time pairs above or below a specifed

pressure threshold, use the query method on results.node[‘pressure’].
Todini index The Todini index [16] is related to the capability of a system to overcome

failures while still meeting demands and pressures at the nodes. The Todini
index defnes resilience at a specifc time as a measure of surplus power at each
node and measures relative energy redundancy. The Todini index can be
computed using the todini method.

Entropy Entropy [2] is a measure of uncertainty in a random variable. In a water
distribution network model, the random variable is fow in the pipes and
entropy can be used to measure alternate fow paths when a network
component fails. A network that carries maximum entropy fow is considered
reliable with multiple alternate paths. Connectivity will change at each time
step, depending on the fow direction. The method weight_graph method
can be used to weight the graph by a specifed attribute. Entropy can be
computed using the entropy method.

Fraction of delivered volume Fraction of delivered volume is the ratio of total volume delivered to the total
volume requested [12]. This metric can be computed as a function of time or
space using the fdv method.

Fraction of delivered demand Fraction of delivered demand is the fraction of time periods where demand is
met [12]. This metric can be computed as a function of time or space using the
fdd method.

Population impacted Population that is impacted by a specifc quantity can be computed using the
population_impacted method. For example, this method can be used to
compute the population impacted by pressure below a specifed threshold.

13.3 Water quality metrics

Water quality metrics are based on the concentration or water age. The calculation of these metrics require a water
quality simulation. Water quality metrics included in WNTR are listed in Table 11.

Table 11: Water Quality Resilience Metrics
Metric Description
Water age To determine the number of node-time pairs above or below a specifed water

age threshold, use the query method on results.node[‘quality’] after a
simulation using AGE.

Concentration To determine the number of node-time pairs above or below a specifed
concentration threshold, use the query method on results.node[‘quality’] after
a simulation using CHEM or TRACE.

Fraction of delivered quality Fraction of delivered quality is the fraction of time periods where water quality
standards are met [12]. This metric can be computed as a function of time or
space using the fdq method

Average water consumed Average water consumed is computed at each node, based on node demand and
demand patterns [18]. The metric can be computed using the
average_water_consumed method.

Population impacted As stated above, population that is impacted by a specifc quantity can be
computed using the population_impacted method. This can be applied to
water quality metrics.

32

13.4 Water security metrics

Water security metrics quantify potential consequences of contamination scenarios. These metrics are documented
in [18]. Water security metrics included in WNTR are listed in Table 12.

Table 12: Water Security Resilience Metrics
Metric Description
Mass consumed Mass consumed is the mass of a contaminant that exits the network via node

demand at each node-time pair [18]. The metric can be computed using the
mass_contaminant_consumed method.

Volume consumed Volume consumed is the volume of a contaminant that exits the network via node
demand at each node-time pair [18]. A detection limit can be specifed. The metric
can be computed using the volume_contaminant_consumed method.

Extent of contamination Extent of contamination is the length of contaminated pipe at each node-time pair
[18]. A detection limit can be specifed. The metric can be computed using the
extent_contaminant method.

Population impacted As stated above, population that is impacted by a specifc quantity can be computed
using the population_impacted method. This can be applied to water security
metrics.

13.5 Economic metrics

Economic metrics include network cost and greenhouse gas emissions. Economic metrics included in WNTR are
listed in Table 13.

Table 13: Economic Resilience Metrics
Metric Description
Network cost Network cost is the annual maintenance and operations cost of tanks, pipes,

vales, and pumps based on the equations from the Battle of Water Networks
II [14]. Default values can be included in the calculation. Network cost can
be computed using the cost method.

Greenhouse gas emissions Greenhouse gas emissions is the annual emissions associated with pipes
based on equations from the Battle of Water Networks II [14]. Default
values can be included in the calculation. Greenhouse gas emissions can be
computed using the ghg_emissions method.

Pump operating energy and cost The energy and cost required to operate a pump can be computed using the
pump_energy method. This uses the fowrates and pressures from
simulation results to compute pump energy and cost.

33

14 Stochastic simulation

Stochastic simulations can be used to evaluate an ensemble of hydraulic and/or water quality scenarios. For
disaster scenarios, the location, duration, and severity of different types of incidents can be drawn from
distributions and included in the simulation. Distributions can be a function of component properties (i.e., age,
material) or based on engineering standards. The Python packages Numpy and Scipy include statistical
distributions and random selection methods that can be used for stochastic simulations.

For example, the following code can be used to select N unique pipes based on the failure probability of each pipe:

N = 2
failure_probability = {'pipe1': 0.10, 'pipe2': 0.20, 'pipe3': 0.25, 'pipe4': 0.15,

'pipe5': 0.30}
pipes_to_fail = np.random.choice(failure_probability.keys(), N, replace=False,

p=failure_probability.values())

The example stochastic_simulation.py runs multiple realizations of a pipe leak scenario where the location and
duration are drawn from probability distributions.

14.1 Fragility curves

Fragility curves are commonly used in disaster models to defne the probability of exceeding a given damage state
as a function environmental change. Fragility curves are closely related to survival curves, which are used to defne
the probability of component failure due to age. To estimate earthquake damage, fragility curves are defned as a
function of peak ground acceleration, peak ground velocity, or repair rate. The American Lifelines Alliance report
[1] includes seismic fragility curves for water network components. Fragility curves can also be defned as a
function of food stage, wind speed, and temperature for other types of disasters.

Fragility curves can have multiple damage states. Each state should correspond to specifc changes to the network
model that represent damage, for example, a major or minor leak. Each state is defned with a name (i.e., ‘Major,’
‘Minor’), priority (i.e., 1, 2, where higher numbers = higher priority), and distribution (using the Scipy Python
package). The distribution can be defned for all elements using the keyword ‘Default,’ or can be defned for
individual components. Each fragility curve includes a ‘No damage’ state with priority 0 (lowest priority).

The example fragility_curves.py uses fragility curves to determine probability of failure:

from scipy.stats import lognorm
FC = wntr.scenario.FragilityCurve()
FC.add_state('Minor', 1, {'Default': lognorm(0.5,scale=0.3)})
FC.add_state('Major', 2, {'Default': lognorm(0.5,scale=0.7)})

Figure 12 illustrates a fragility curve based on peak ground acceleration with two damage states: Minor damage
and Major damage. For example, if the peak ground acceleration is 0.5 at a specifc junction, the probability of
exceeding a Major damage state 0.25 and the probability of exceeding the Minor damage state is 0.85. For each
stochastic simulation, a random number is drawn between 0 and 1. If the random number is between 0 and 0.25,
the junction is assigned Minor damage. If the random number is between 0.25 and 0.85, then the junction is
assigned Major damage. If the random number is between 0.85 and 1, then the junction is assigned No damage.
After selecting a damage state for the junction, the network should be changed to refect the associated damage.
For example, if the junction has Major damage, a large leak might be defned at that location.

34

http:between0and0.25
http:fragility_curves.py
http:probabilityofcomponentfailureduetoage.To
http:stochastic_simulation.py

Figure 12: Example fragility curve.

35

15 Copyright and license

The WNTR Python package is copyright through Sandia National Laboratories. The software is distributed under
the Revised BSD License. WNTR also leverages a variety of third-party software packages, which have separate
licensing policies.

15.1 Copyright

Copyright 2015-2017 Sandia Corporation.
Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
the U.S. Government retains certain rights in this software.

15.2 Revised BSD license

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

* Neither the name of Sandia National Laboratories, nor the names of
its contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

36

16 Software quality assurance

The following section includes information about the WNTR software repository, software tests, documentation,
examples, bug reports, feature requests, and ways to contribute.

16.1 GitHub repository

WNTR is maintained in a version controlled repository. WNTR is hosted on US EPA GitHub organization at
https://github.com/USEPA/WNTR.

16.2 Software tests

WNTR includes continuous integration software tests that are run using Travis CI. The tests are run each time
changes are made to the repository. The tests cover a wide range of unit and integration tests designed to ensure
that the code is performing as expected. New tests are developed each time new functionality is added to the code.
Testing status (passing/failed) and code coverage statistics are posted on the README section at
https://github.com/USEPA/WNTR.

Tests can also be run locally using the Python package nose. For more information on nose, see
http://nose.readthedocs.io/. nose comes with a command line software tool called nosetests. Tests can be run in the
WNTR directory using the following command:

nosetests -v --with-coverage --cover-package=wntr wntr

16.3 Documentation

WNTR includes a user manual that is built using the Read the Docs service. The user manual is automatically
rebuilt each time changes are made to the code. The documentation is publicly available at
http://wntr.readthedocs.io/. The user manual includes an overview, installation instructions, simple examples, and
information on the code structure and functions. WNTR includes documentation on the API for all public
functions, methods, and classes. New content is marked Draft.

16.4 Examples

WNTR includes examples to help new users get started. These examples are intended to demonstrate high level
features and use cases for WNTR. The examples are tested to ensure they stay current with the software project.

16.5 Bug reports and feature requests

Bug reports and feature requests can be submitted to https://github.com/USEPA/WNTR/issues. The core
development team will prioritize and assign bug reports and feature requests to team members.

16.6 Contributing

Software developers, within the core development team and external collaborators, are expected to follow standard
practices to document and test new code. Software developers interested in contributing to the project are
encouraged to create a Fork of the project and submit a Pull Request using GitHub. Pull requests will be reviewed
by the core development team.

Pull requests must meet the following minimum requirements to be included in WNTR:

• Code is expected to be documented using Read the Docs.

• Code is expected to be suffciently tested using Travis CI. Suffcient is judged by the strength of the test and
code coverage. 80% code coverage is recommended.

37

https://github.com/USEPA/WNTR
https://github.com/USEPA/WNTR
http://nose.readthedocs.io/
http://wntr.readthedocs.io/
https://github.com/USEPA/WNTR/issues

• Large fles (> 1Mb) will not be committed to the repository without prior approval.

• Network model fles will not be duplicated in the repository. Network fles are stored in examples/network
and wntr/tests/networks_for_testing only.

16.7 Development team

WNTR was developed as part of a collaboration between the United States Environmental Protection Agency
National Homeland Security Research Center, Sandia National Laboratories, and Purdue University. See
https://github.com/USEPA/WNTR/graphs/contributors for a list of contributors.

38

https://github.com/USEPA/WNTR/graphs/contributors

17 References

[1] American Lifelines Alliance. (2001). Seismic Fragility Formulations for Water Systems, Part 1 and 2.
Report for the American Lifelines Alliance, ASCE (Ed.) Reston, VA: American Society of Civil
Engineers. April 2001.

[2] Awumah, K., Goulter, I., and Bhatt, S.K. (1990). Assessment of reliability in water distribution
networks using entropy based measures. Stochastic Hydrology and Hydraulics, 4(4), 309-320.

[3] Barker, K., Ramirez-Marquez, J.E., and Rocco, C.M. (2013). Resilience-based network component
importance measures. Reliability Engineering and System Safety, 117, 89-97.

[4] Crowl, D.A., and Louvar, J.F. (2002). Chemical Process Safety: Fundamentals with Applications, 3
edition. Upper Saddle River, NJ: Prentice Hall, 720p.

[5] Eto, J.H., LaCommare, K.H., Larsen, P.H., Todd, A., and Fisher, E. (2012). An Examination of
Temporal Trends in Electricity Reliability Based on Reports from U.S. Electric Utilities. Lawrence
Berkeley National Laboratory Report Number 5268E. Berkeley, CA: Ernest Orlando Lawrence
Berkeley National Laboratory, 68p.

[6] Hagberg, A.A., Schult, D.A., and Swart P.J. (2008). Exploring network structure, dynamics, and
function using NetworkX. In Proceedings of the 7th Python in Science Conference (SciPy2008),
August 19-24, Pasadena, CA, USA.

[7] Hunter, J.D. (2007). Matplotlib: A 2D graphics environment. Computing in Science and Engineering,
9(3), 90-95.

[8] International Code Council. (2011). 2012 International Fire Code, Appendix B - Fire-Flow
Requirements for Buildings. Country Club Hills, IL: International Code Council, ISBN:
978-1-60983-046-5.

[9] Joyner, D., Certik, O., Meurer, A., and Granger, B.E. (2011). Open source computer algebra systems,
SymPy. ACM Communications in Computer Algebra, 45(4), 225-234.

[10] McKinney W. (2013). Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython.
Sebastopal, CA: O’Reilly Media, 1 edition, 466p.

[11] National Infrastructure Advisory Council (NIAC). (2009). Critical Infrastructure Resilience, Final
Report and Recommendations, U.S. Department of Homeland Security, Washington, D.C., Accessed
September 20, 2014.
http://www.dhs.gov/xlibrary/assets/niac/niac_critical_infrastructure_resilience.pdf.

[12] Ostfeld, A., Kogan, D., and Shamir, U. (2002). Reliability simulation of water distribution systems -
single and multiquality. Urban Water, 4(1), 53-61.

[13] Rossman, L.A. (2000). EPANET 2 Users Manual. Cincinnati, OH: U.S. Environmental Protection
Agency. U.S. Environmental Protection Agency Technical Report, EPA/600/R–00/057, 200p.

[14] Salomons, E., Ostfeld, A., Kapelan, Z., Zecchin, A., Marchi, A., and Simpson, A. (2012). The battle
of the water networks II - Problem description. Water Distribution Systems Analysis Conference
2012, September 24-27, Adelaide, South Australia, Australia. Retrieved on May 23, 2017 from
https://emps.exeter.ac.uk/media/universityofexeter/emps/research/cws/downloads/
WDSA2012-BWNII-ProblemDescription.pdf.

[15] Sievert, C., Parmer, C., Hocking, T., Chamberlain, S., Ram, K., Corvellec, M., and Despouy, P.
(2016). plotly: Create interactive web graphics via Plotly’s JavaScript graphing library [Software].

[16] Todini, E. (2000). Looped water distribution networks design using a resilience index based heuristic
approach. Urban Water, 2(2), 115-122.

[17] United States Environmental Protection Agency. (2014). Systems Measures of Water Distribution
System Resilience. Washington DC: U.S. Environmental Protection Agency. U.S. Environmental
Protection Agency Technical Report, EPA 600/R–14/383, 58p.

39

http://www.dhs.gov/xlibrary/assets/niac/niac_critical_infrastructure_resilience.pdf
https://emps.exeter.ac.uk/media/universityofexeter/emps/research/cws/downloads/WDSA2012-BWNII-ProblemDescription.pdf
https://emps.exeter.ac.uk/media/universityofexeter/emps/research/cws/downloads/WDSA2012-BWNII-ProblemDescription.pdf
http:2012).An

[18] United States Environmental Protection Agency. (2015). Water Security Toolkit User Manual.
Washington DC: U.S. Environmental Protection Agency. U.S. Environmental Protection Agency
Technical Report, EPA/600/R-14/338, 187p.

[19] van der Walt, S., Colbert, S.C., and Varoquaux, G. (2011). The NumPy array: A structure for effcient
numerical computation. Computing in Science and Engineering, 13, 22-30.

[20] Wagner, J.M., Shamir, U., and Marks, D.H. (1998). Water distribution reliability: Simulation
methods. Journal of Water Resources Planning and Management, 114(3), 276-294.

[21] Walk, D.J., Worden, B.C., Quitoriano, V., and Pankow, K.L. (2006). Shakemap manual, Technical
manual, users guide, and software guide. United States Geologic Survey, Retrieved on April 25, 2017
from http://pubs.usgs.gov/tm/2005/12A01/

[22] xlwt contributors. (2016, November 18). xlwt documentation. Retrieved on April 25, 2017 from
https://xlwt.readthedocs.io.

40

http://pubs.usgs.gov/tm/2005/12A01/
https://xlwt.readthedocs.io

Office of Research and Development (8101R)
Washington, DC 20460

Official Business
Penalty for Private Use
$300

PRESORTED STANDARD
POSTAGE & FEES PAID

EPA
PERMIT NO. G-35

	Overview
	Installation
	Software framework and limitations
	Units
	Getting started
	Water network model
	Water network controls
	NetworkX graph
	Hydraulic simulation
	Water quality simulation
	Simulation results
	Disaster scenarios
	Resilience metrics
	Stochastic simulation
	Copyright and license
	Software quality assurance
	References

