

Air pollution abatement with green infrastructure : Reviews and Prospects

Rich Baldauf

U.S. Environmental Protection Agency Office of Research & Development Office of Transportation & Air Quality

Office of Research and Development National Risk Management Research Laboratory/Air Pollution Prevention and Control Division

Presentation Overview

Background

Near-road health concerns

- Roadside barrier air quality mitigation

Research on vegetation and air quality

- Impacts on near-road concentrations
- -Implications for human exposures
- Summary and Recommendations
- Resources
- Conclusions

Near-Road Health Concerns

People living, working and going to school near highways and large transportation facilities face increased health risks:

- Asthma and other respiratory diseases
- Cardiovascular effects
- Birth and developmental effects
- Premature mortality
- Cancer

2

Air pollution and exposures often highly elevated near these large transportation sources, especially within 200-300 meters

Large portion of the U.S. population exposed

- More than 50 million people estimated to live within 100 m of a large highway or other transportation facility (e.g. airport, rail yard)
- Over 4 million school children attend classes within 150 m of a major highway (1 in 11 schools; 1 in 5 new schools)

Near-Road Health Concerns

Mitigating these traffic emission exposures and health effects can be achieved by:

- Reducing emissions
- Reducing vehicle activity
- Creating development exclusion zones
- Using urban and transportation planning
 - Road location and configuration
 - Walk and bike options
 - Site design and layout
 - Roadside vegetation and noise barriers

Why study roadside barriers?

Public wants to know what can be done now when nearroad health concerns are raised for schools, daycares, etc.

Few other "short-term" mitigation options exist

- Emission standards can take long to implement
- Planning, zoning and large investments often needed for activity reduction programs
- Buffer/exclusion zones may not feasible in urban areas

Why study roadside barriers?

Roadside barriers have other positive attributes with air quality only one of many potential benefits.

- Noise barriers reduce noise and can improve aesthetics
- Roadside vegetation can:
 - Reduce stormwater runoff/flooding
 - Improve water quality
 - Increase carbon sequestration
 - Reduce urban heat island effects
 - Improve aesthetics/property values
 - Enhance community livability
 - Generally improve public health

"Exposure to green space has been associated with better physical and mental health"

PNAS | June 30, 2015 | vol. 112 | no. 26 | 2932-2943

Roadside Vegetation Research Summary

Roadside vegetation can alter the transport and dispersion of air pollution from roads and other ground-level sources

- Reduces downwind pollutant concentrations by lofting the emission plume up and over vegetation
- Removes particulates and select gases by deposition onto leaf and branch surfaces
- Slows and stagnates wind allowing pollutants to pass through gaps or around edges which can lead to higher downwind pollutant concentrations

Roadside Vegetation Research

- Particulate matter generally reduced downwind of a vegetation stand
- Higher reductions occurred closer to ground-level
- Variable winds altered effects

Roadside Vegetation Effects

- Smaller size PM have higher removal rates
- Removal increases at lower wind velocities
- Branch/leaf shape and size affects removal

Vegetation Effects

- For thin tree stands, variable results seen under changing wind conditions (e.g. parallel to road, low winds)
- Gaps/dead trees can lead to higher downwind concentrations

Roadside Vegetation Effects

Plant conditions affect downwind pollution

Environmental Protection

Agency

- Thick, tall and full coverage reduced pollution
- Gaps and porous vegetation led to higher levels

(Baldauf et al., in press)

Vegetation Model Algorithm

 CFD modeling highlights PM removal from vegetation, especially for smaller, ultrafine particles

Vegetation and Noise Barriers

Combinations of solid noise barriers and vegetation may provide greater reductions than either method alone

Vegetative Barrier Recommendations

EPA released recommendations for planting roadside vegetation

- Used to design planting projects in Oakland and Detroit
- Includes vegetation alone and combined with solid barriers
- Provides designs Intended to:
 - -Maximize the potential for near-road air pollution reduction
 - Avoid unintended consequences and designs that may increase downwind concentrations and exposures

A Vegetative Barrier Recommendations

Areas desired for reduced pollutant concentrations should avoid gaps and edge effects

- Complete coverage from the ground to the top of the canopy
- Thickness adequate to reduce porosity and avoid gaps

Pine/coniferous trees and thick bushes may be good choices

- No seasonal effects
- Complex, rough, waxy surfaces

Mix of species may increase coverage and robustness

Examples of full coverage, pine and bush barriers

Agency

Pollutants can meander around edges or through gaps

- No spaces between or under trees
- No gaps from dead or dying plants; maintenance important

Examples of inadequate barriers due to gaps

Agency

Combination of solid noise and vegetative barriers may have the most benefit

- Increases air pollutant dispersion and removal
- May be solid noise barrier with vegetation behind and/or in front
- Use of climbing vegetation on solid surfaces still uncertain

Examples of solid/vegetation barriers

Other Considerations

Vegetation characteristics:

- Species (e.g. native vs. non-native)
- Appropriateness for site
 - Drought/flood resistant
 - Road treatment tolerant (e.g. salt, sand)

Physical characteristics the barrier needs:

- Height, thickness, length and porosity
- Non-seasonal vegetation (conifers, bushes, etc.)
- Waxy leaf and branch surfaces for pollutant removal
- Low pollution/pollen emissions

Tools to help in the design process:

- USFS i-Tree model
- EPA EnviroAtlas

Additional Resources

The BBC reported on air quality benefits of roadside vegetation based on research by international partners following many of the recommendations outlined in the EPA report

http://www.bbc.com/news/science-environment-39943197

Conclusions

- Roadside vegetation can provide significant reductions in local air pollution under certain conditions and design characteristics
- Recommendations have been developed to help design and maintain roadside vegetation for air quality benefits

For More Information:

Rich Baldauf U.S. Environmental Protection Agency 919-541-4386 Baldauf.Richard@epa.gov

Acknowledgements

Academia/NGO

K. Max Zhang Akula Venkatram Andrey Khlystov Tom Cahill Ye Wu Tom Whitlow Doug Eisinger Kori Titus

California Gov't

Linda Wheaton Elizabeth Baca Earl Withycombe

EPA Vlad Isakov Sue Kimbrough **Gayle Hagler** Laura Jackson **David Heist Richard Shores** Nealson Watkins **Chad Bailey Rich Cook Steve Perry Bill Mitchell James Faircloth Richard Snow** Thomas Long

<u>FHWA</u> Victoria Martinez Kevin Black

Mark Ferroni Adam Alexander Cecilia Ho

<u>USFS</u> Greg McPherson David Nowak

<u>NOAA</u> Dennis Finn Kirk Clawson