THE EVALUATION OF VEHICLE MASS REDUCTION AND MATERIAL CHOICE IN LIFE CYCLE ASSESSMENTS

Troy Hottle, ORISE Postdoctoral Fellow, U.S. EPA

Overview

- The role of vehicle mass reduction (VMR) in improving fuel economy
- Life cycle assessment (LCA) as a tool to understand impacts of changing materials and designs
- Results of a literature review of LCAs of VMR
- Six key factors in LCAs for VMR
- Final thoughts for LCA moving forward

Based on work in review titled: "Critical factors affecting life cycle assessments of material choice for vehicle mass reduction"

Disclaimer: The opinions expressed in this presentation are those of the author and do not reflect official U.S. EPA policy.

Vehicle Mass Reduction in the Market

Ę

Fuel Economy and Weight Trends

Based on data from: Hula, A., A. Bunker, and J. Alson, *Light-Duty Automotive Technology, Carbon Dioxide Emissions, and Fuel Economy Trends: 1975 Through 2015.* 2015, United States Environmental Protection Agency.

Materials and Designs

Ē

Based on data from: Ducker Worldwide, Metallic Material Trends in North American Light Vehicle. 2015;

Bushi, L., T. Skszek, and D. Wagner, Comparative LCA Study of Lightweight Auto Parts of MMLV Mach-I Vehicle as Per ISO 14040/44 LCA Standards and CSA Group 2014 LCA Guidance Document for Auto Parts, in Engineering Solutions for Sustainability. 2015, John Wiley & Sons, Inc. p. 193-208.

Life Cycle Assessment

- Flexible methodology
- Guided by ISO-14040 and 14044
- Enables a comparison of different phases in the life cycle
- Can help identify tradeoffs and unintended consequences

Shifting Life Cycle Impacts

Ē

Based on data from: Keoleian, G.A. and J.L. Sullivan, *Materials challenges and opportunities for enhancing the sustainability of automobiles.* MRS Bulletin, 2012. **37**(04): p. 365-373.

- VMR is meant to improve use phase impacts
- High-tech nascent technologies may have increased production-phase impacts
- The EOL-phase is largely dependent upon the recyclability of a material
- Electric vehicles add more complexity and uncertainty to the use-phase

7

Reviewed Studies

Ref.	Author	Year	Publication	Country / Affiliation / Funding	Explicitly ISO compliant	Component Specific	Component(s)	Body-in- white	Steel	Al Mg	Composites
20	Simões	2016	Journal of Cleaner Production	EU / University & Bosch / Nat. & Bosch	V	n	_	explicit	v	v n	v
21	Steel Market Dev. Inst.	2016	Report	USA / Industry / -	n	n	-	n	y V	y n	n
8	Bushi	2015	SAE International	USA / Ford Magna / -	У	n	-	n	ý	ý y	y
22	Ding	2015	Journal of Industrial Ecology	China / Nat. / Nat.	y	у	various	n	y	y n	n
12	Kelly	2015	Environmental Science and Tech	USA / Nat. Lab / DOE	У	n	-	n	у	у у	У
23	Li	2015	Resources, Conservation, and Recycling	China / Nat. / Nat.	n	n	-	n	у	у у	n
24	Raugei	2015	Journal of Cleaner Production	UK / University / Research grant	У	n	-	n	у	у у	у
25	Das	2014	SAE International	USA / Nat. Lab / -	У	n	-	У	у	y n	n
26	Dhingra	2014	Journal of Cleaner Production	USA / University & Lab / -	n	у	engine	n	у	уу	n
27	Lewis	2014	Applied Energy	USA / University / CERC, DOE	n	n	-	у	у	y n	n
28	Ehrenberger	2013	Report	EU / Institute / -	У	у	steering wheel	n	n	у у	n
29	Koffler	2013	Int Journal of Life Cycle Assessment	USA / Consultant / -	У	у	step assist, front end bolster	n	у	n n	У
30	Baroth	2012	SAE International	India / GE & SABIC / -	У	у	fender	n	у	n n	У
31	Dubreuil	2012	SAE International	Global / Universities & Labs / -	У	у	front end	n	у	y y	n
32	Marretta	2012	Conference on LC Engineering	EU & USA / Universities & GM / -	n	у	fender, hood	у	у	y n	n
33	Mayyas	2012	Energy	USA / University / -	У	n	-	у	у	y y	У
34	PE International ^a	2012	Report	USA / Consultant / ACC	у	у	step assist	n	у	n n	у
35	PE International ^b	2012	Report	USA / Consultant / ACC	У	У	bolster	n	у	n n	У
36	Stasinopoulos	2012	Int Journal of Life Cycle Assessment	AU / University / Nat.	n	n	-	У	у	y n	n
37	Das	2011	Int Journal of LCA	USA / Nat. Lab / -	n	у	floor pan	n	у	n n	У
38	Tempelman	2011	Transportation Research Part D	EU / University / -	n	n	-	У	у	y n	у
39	Witik	2011	Composites: Part A	EU / University / Research Network	У	у	rear bulkhead	У	у	n y	У
40	Du ^a	2010	Journal of Cleaner Production	China / University / Ford & Shanghai	у	n	-	n	у	n y	n
41	Du ^b	2010	Energy	China / University / Ford & Shanghai	n	n		n	у	y n	n
42	Kim	2010	Journal of Industrial Ecology	USA / University / NSF Alcoa	n	n*	-	у	у	y n	n
43	Tharumarajah	2010	Resources, Conservation, and Recycling	AU / CSIRO / -	у	у	instrument panel	n	у	n y	у

Key Factors Used in LCAs

Critical factor	Phase(s) Influenced	Influence on results				
Secondary mass reduction	Use	 Reduction of impacts through production and use Magnifies use phase reductions Introduces additional uncertainty 				
Recycling allocation	Production & EOL	 Determines amount of material considered May favor different materials based on method 				
Powertrain reduction and fuel reduction values (FRVs)	Use	Reduction of impacts through use phase efficiency Magnifies use phase reductions Introduces additional uncertainty				
Material substitution rates	Production	Estimated values in lieu of actual component massesIntroduces additional uncertainty				
Lifetime vehicle travel distances	Use	 Can vary based on driving trends and vehicle durability Determines the magnitude of use phase reductions 				
Production location and grid mix	Production	 Impacts associated with energy use during production Industries may have different sources of energy Consequential impacts may alter energy sourcing 				

Secondary Mass Reduction

thedetroitbureau.com

- Not all studies include secondary mass reduction
- Materials with higher production impacts may need to reduce the vehicle mass enough to trigger systemic changes in weight dependent systems

Recycling Allocation

- Lower impacts associated with the EOL allocation approach, more so for materials with higher production impacts
- Recycled content approach is limited to the share of secondary material used in production, which may be limited by recyclability and/or availability

FRV and Powertrain Reductions

- Separate from secondary mass reduction estimates but reductions in the powertrain may contribute to mass reduction
- FRVs are used to estimate efficiency gains from mass reductions
- Downsizing of the powertrain (e.g., reducing cylinder displacement and/or cylinder count while maintaining performance) increases efficiency during use phase

laubenheimers.com

Materials with higher production impacts depend on meeting thresholds

Material Substitution Rates

Ē

- Used to calculate how much of one material must be used to replace another
- In lieu of component specific data where actual material masses are known
- Tend to be generic and lack application specific data

Graph from: Kelly, J.C., et al., *Impacts of Vehicle Weight Reduction via Material Substitution on Life-Cycle Greenhouse Gas Emissions.* Environ Sci Technol, 2015. **49**(20): p. 12535-42.

Vehicle Life

Production Location and Grid Mixes

- Location of material production is critical for energy intensive metallurgical processes
- Dictates upstream energy generation (e.g., hydroelectric vs coal) and the associated GHG emissions
- Changes in location or increases in quantities may have different impacts than existing inventories

Final Thoughts

- LCAs which compare complete vehicle redesigns help reduce uncertainty due to compounding assumptions
- Multimaterial designs are the reality and should be the focus in LCA to identify optimal material selections
- Consequential LCAs can help account for temporal factors required to understand larger shifts in major industries
- Iterative research with industry involvement
 - improving the temporal lag in LCAs
 - informed process improvements through LCA
 - improved data for vehicle mass reduction research

Thank you for your time

Troy Hottle hottle.troy@epa.gov

Paper Coauthors:

Cheryl Caffrey, EPA Office of Transportation and Air Quality Joe McDonald, EPA Office of Research and Development Rebecca Dodder, EPA Office of Research and Development