

A computational framework for supporting Environmental-Climate-Energy decision-making

Dan Loughlin and Chris Nolte

U.S. EPA Office of Research and Development

Wenjing Shi and Yang Ou

Oak Ridge Institute for Science and Education (ORISE) fellows

Steven J. Smith and Catherine Ledna

Joint Global Change Research Institute, Pacific Northwest National Laboratory

Research Triangle Park, N.C. 7/28/2016

Foreword

• Objective

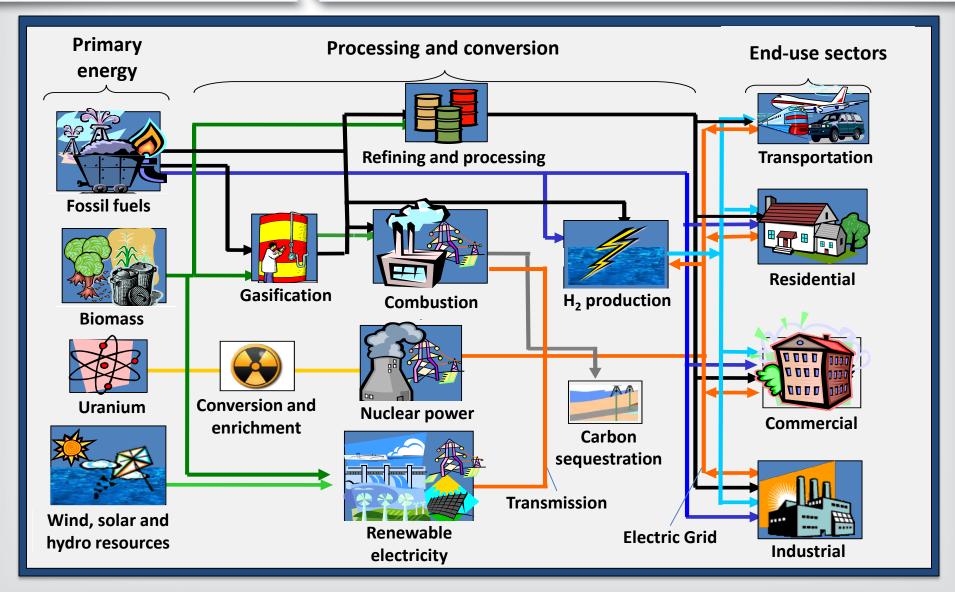
 Discuss an ongoing collaborative research project with linkages to air quality management in China

Intended audience

- Site visitors from the PowerChina Huadong Engineering Corp.

Additional contributors

 Samaneh Babaee, Colleen Baublitz, Raj Bhander, Barron Henderson, Daven Henze, Troy Hottle, Carol Lenox, Rob Pinder, Jason West


Disclaimer

 While this presentation has been cleared by the U.S. EPA Office of Research and Development, the material presented here reflects the views of the authors and does not necessarily reflect those of the U.S. EPA.

Energy and the environment

SEPA

The energy system

Energy and the environment

Environmental impacts of energy

Energy system contributions to U.S. environmental concerns:

Air quality

- Photochemical smog: 92% of nitrogen oxide (NOx) emissions*
- Acid rain: 86% of sulfur dioxide (SO₂) emissions*
- Toxics: 87% of mercury (Hg) emissions*

Climate change

- Greenhouse gas emissions: 97% of carbon dioxide (CO₂) emissions*
- Major source of short-lived climate pollutants (e.g., black carbon, methane)

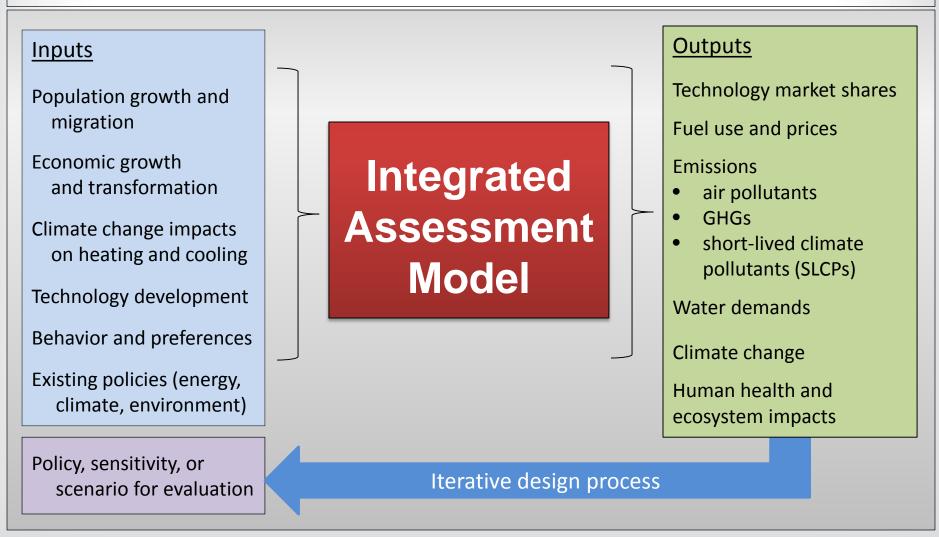
Water

- Demands: electricity production accounts for 51% of fresh water withdrawals
- Pollution:
 - wastewater from fuel extraction and processing, seepage from waste
 - eutrophication from N deposition, acidification from S deposition

Waste production

Mine tailings, combustion residues, agricultural wastes

* Percentage of U.S. anthropogenic emissions due to the energy system

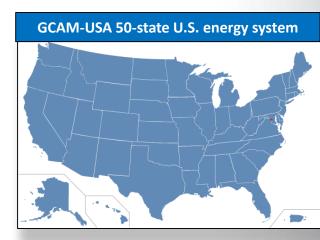

Science questions

- How can we simultaneously achieve environmental, climate change mitigation, and energy goals?
- What are the tradeoffs and synergies among these goals?
- Are there unintended consequences that may arise with various management strategies? Can we anticipate and prepare for these?
- What are the broader health, environmental and ecological impacts of different pathways for meeting society's energy needs?
 - Impacts under consideration include:
 - <u>air quality</u> and resulting <u>human health</u> effects,
 - damage to crops and timber, ecosystem impacts from N and S deposition,
 - <u>water use</u> by agricultural and energy sectors, and
 - resilience to drought and other climate change impacts.

The GLIMPSE project

GLIMPSE: a modeling framework for exploring the answers to these questions

EPA

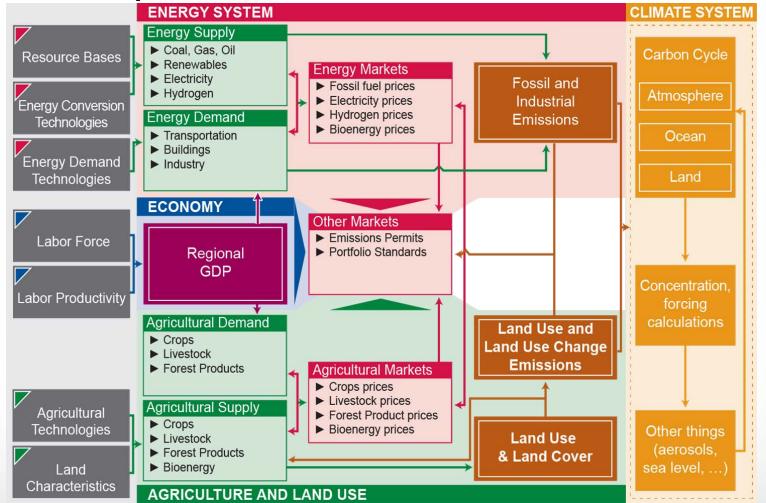


€PA

A component of GLIMPSE:

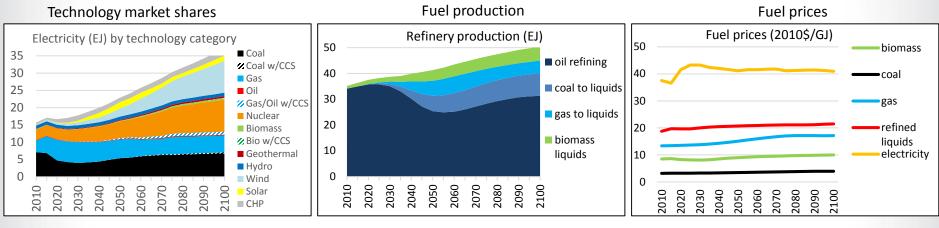
The Global Change Assessment Model (GCAM)

- Developed by Pacific Northwest National Laboratory
- Regions: 32 economic and energy; 283 agriculture and land use; 233 water basins
- 5-year time steps, extending from 2005 to 2100
- Technology-rich energy system detail
- Pollutant species
 - Climate forcers: CO₂, CH₄, SO₂, N₂O, BC, OC, HFCs
 - Air pollutants: NOx, SO₂, VOC, CO, NH₃, direct PM
- Open source and freely available, I hour runtime


283 agriculture and land use regions

GCAM sectoral coverage

GCAM Components


€PA

Source: JGCRI. PNNL

Example GCAM outputs

Example GCAM national-scale outputs for a hypothetical scenario

SEPA

Air pollutant emissions

⇔EPA

Additional GCAM outputs

- **Primary energy consumption**
- Final energy consumption
- Fuel use in electricity production
- Sectoral energy demand by service
- Sectoral fuel use and price by service
- **Technology stock by service**
- Industrial output (e.g., cement production)
- Land use by agro-ecological zone (AEZ)
- Agricultural production and prices
- Fertilizer use by crop
- Meat production and prices
- Feed production and prices
- **Biomass production and consumption**

- **GHG** emissions
- Air pollutant emissions
- CO₂ concentrations
- **Climate forcing**
- **Global mean temperature**
- **Policy costs**
- Regional CO₂ marginal abatement curve by period
- **Energy-related water demands**
- Also, through ongoing work:
- **PM** mortality health benefits
- **Ozone-related crop and timber impacts**
- **Deposition of N from NOx and NH₃**
- Life cycle impacts

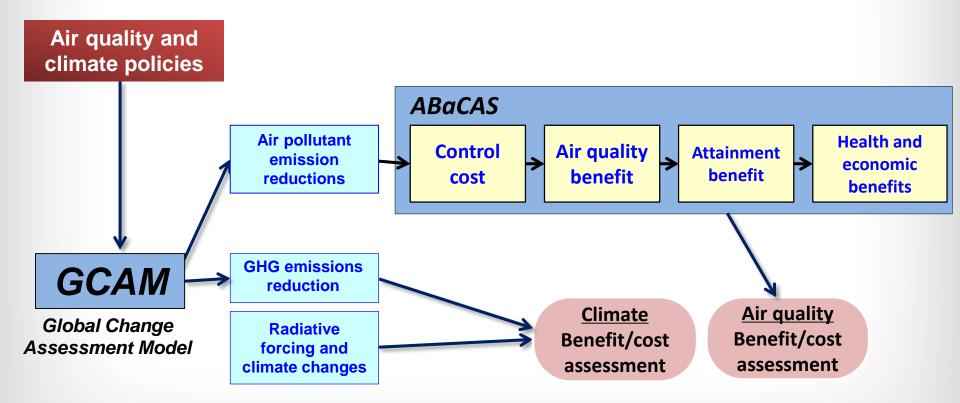
The GLIMPSE project

Tools for supporting decision making

We are developing a Scenario Builder to facilitate the construction of management strategies and running GCAM. We are also enhancing tools for exploring GCAM outputs.

Scenario Builder graphical interface

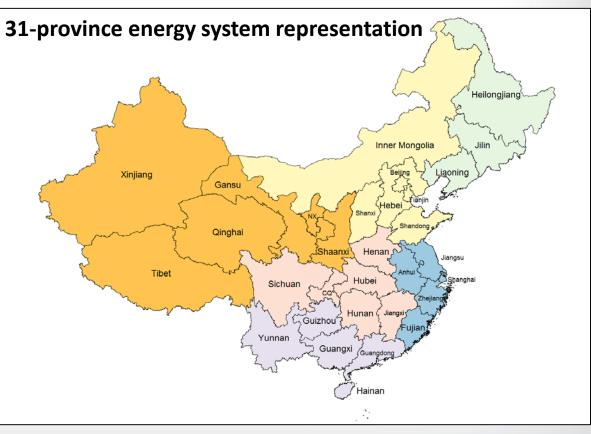
CAM-USA Scenario C	reator			
Candidate Scenario Com	iponents filter:		Construct or Edit	t Scenario
File Name	Address	Created	Components:	
CSAPRNOxCap-GA.txt	C:\Projects\GCAM-GUI\io\ScenarioComponen	Tue Dec 01 19:44:58 ^	Components:	File Name
CSAPRNOxCap-AL.txt	C:\Projects\GCAM-GUI\io\ScenarioComponen	Tue Dec 01 19:45:33		The Hume
CSAPRNOxCap-TN.txt	C:\Projects\GCAM-GUI\io\ScenarioComponen	Tue Dec 01 19:45:43		
CSAPRNOxCap-WV.txt	C:\Projects\GCAM-GUI\io\ScenarioComponen	Tue Dec 01 19:46:01		
CSAPRNOxCap-TX.txt	C:\Projects\GCAM-GUI\io\ScenarioComponen	Tue Dec 01 19:46:27	N	o content in table
CSAPRNOxCap-KY.txt	C:\Projects\GCAM-GUI\io\ScenarioComponen	Tue Dec 01 19:46:49		
CapCO2-USA.txt	C:\Projects\GCAM-GUI\io\ScenarioComponen	Tue Dec 01 20:54:45	Run	Create 🗶 🔻
Working Scenarios	filter:			
Run Name	Components	5	Run Date	Analyze
Reference	Reference.txt;		Mon Nov 16 08:01:19 EST 2015	Run Selected
CSAPR	CSAPRNOxCap-SC.txt; CSAPRNOxCap-	NY.txt; CSAPRNOxCap-N	Tue Dec 01 20:23:40 EST 2015	
				Delete Selected
				Options
<				Help


Exploratory data analysis tools

										_					
	Scenario				- 100	Regions				-	Queries				
		IT 10:58:46-04:00	1.1		Per	NY *					• Queries •				
TestNo05EFs Ref 2016-4-4712:12:08-04:00					100	16				19.1	Image Primary Energy Consumption (Average Possi Efficiency Conversion)				
ORD RDF 2016-22-6710-45-28-04:00						NO 0H						r Energy Consumption (Average Hossi Ethioency Conversion) / Energy Consumption (Direct Equivalent)			
ORD-POL 2016-22-6713:36:13-04:00					OX OX							renergy with CCS (Direct Equivalent)			
ORD POL_newMAC 2015-23-6709:28:22-04:00					OR OR							energy was uses (unect aduvation) ce production			
ORD-POL_nevMAC 2016-23-6712:59:27-04:00 ORD-POL_to2100 2016-28-6709:30:33-04:00				PA							al primary events costs				
0403-400_b2100_2016-28-6109-20-30-04-00 0402-404_b02100_2016-11-7708-09-33-04-00									101	Bectricity Bectricity generation by region (nd rooftop PV and CHP)					
									117.						
				80						- Electric	ity generation by region (central only)				
				TN					21 I I	E Technuty generation by aggregate technology					
				2					Cox	uid not generate list.					
			UT						Electric	ity generation by aggregate technology_dispatch					
					VT						Dectric	ity generation by technology (inc solar roofs)			
					VA	VA				- R	in Query	Update Single Queries Oreate Remove Edit.			
-										and providers					
Farmers	v neverative	by apprepate te	tenter 1												
scenario	region	technology	1990	2005	2010	2015	2020	2025	2030	2035	2040 20				
		Coal-Gas Dis	1990	2005			0.145	0.135	0.124			Same Scale			
RD-POL.d., RD-POL.d.,		Coal-Gas Dis a Coal	0.182	0.296	0.174	0.15	0.145	0.135	0.124	0.103		Doplay StackedBarChart Copy darts			
RD-POL.d.		a Coal w/CCS	0.182	0.296	0.094	0.131	0,105	0.098	0.116	0.001	0.088	L copy cara			
RD POL.d.		c Gas	0.001	0.012	0.033	0.037	0.032	0.031	0.033	0.001	0.001	Techt, peers 5 spipe and g			
RD-POL.d.		d Gas w/CCS	0.001	0.012	0.033	0.037	0,032	0.031	0.035	0.035	0.001	0.8			
RD-POL.d.		e Ol	0.001	0.002	0.002	0.002	0.001	0.001	0.001	0.001	0.001	0.35			
RD-POL.d.		fol = KCS	0.001	0.002	0.002	0.002	0.001	0.001	0.001	0.001	0.001	5 ⁰⁵ 5 ⁰³⁰			
RD POLd.		a Bomess	0	0.002	0.003		0	0	0.001	0.001		(j) 0.4 190.03 190.03			
RD-POL.d.		h Biomass w/	0	0	0	0	0	0	0	6	0	2 0.3			
60-POL.d.		Nuclear	0.099	0.149	0.152	0.166	0.162	0.159	0.167	0.199	0.218	201			
ED#OLd.	NC	k Hydro	0.023	0.017	0.017	0.017	0.017	0.017	0.027	0.017	0.017	° 0.2			
RD-POL.d.		3 Wind	0	0	0	0.001	0.001	0.002	0.005	0.011	0.021	9.1			
AD POL d.	NC	in Solar	0	0	0	0.001	0.001	0.001	0.003	0.006	0.011				
PDPOLd.	NC	nOP	0.038	0.011	0.011	0.011	0.023	0.033	0.04	0.043	0.044				
RD-POL.d.	.VA	Coal-Gas Dis	0	0	0.079	0.073	0.066	0.062	0.056	0.047	0.036	ちちにうちちちちちちちちち ちちちちちちちちち			
RD-POL.d.	.VA	a Coal	0.086	0.137	0.022	0.046	0.039	0.04	0.048	0.047	0.044	Year Year			
10 POL.d.		b Coal m/CCS	0	0	0	Ó	Û	0	0	0	0.001				
RD-POL.d.		c Gas	0.003	0.029	0.065	0.078	0.07	0.071	0.077	0.077		Dente pener ti grafe stratig Dente (pener ti grafer stratig			
RD-POL,d.		d Gas w/CCS	0	. 0	.0	0	0	. 0	0.001	0.001	0.002	0.8			
#D40L.d.		e Ol	0.005	0.017	0.006	0.005	0.004	0.004	0.005	0.004	0.004				
RD POL,d.		FOI =/CCS	0	Ó	0	0	Ô	0	0.001	0.001	0.001	0.6			
RD-POL,d		g Domass	0.002	0.004	0.004	0.003	0	0.001	0.002	0.001	0.001				
RD-POL.d.		h Biomass w/	0	Ó	0	0	0	0	0	0	0				
RD FOL,d		Nuclear	0.091	0.104	0.099	0.108	0.105	0.103	0.109	0,123	0.139	ê			
RD-POL,d.		kHydro	0.004	0.005	0.005	0.005	0.005	0.005	0.005	0.005					
ep-pol.d.		Wind	0	0	0		0.001	0.001	0.003	0.007	0.013	0.2			
		m Solar	0	0	0	0	0	0	0.001	0.003	0.005	0.1			
PDPOLd.		nOIP	0.017	0.013	0.011	0.01	0.021	0.032	0.038	0.041	0.041				
RD POL.d.		Coal-Gas Dis	0	0	0.174	0.16	0.153	0.142	0.127	0.558	0.087	がみっこうううううちょうががめ がみこうううちょうちょう			
RD POL.d. RD POL.d. RD RD d.								0.166	0.186	0.306	0.232				
40 40L,d. 90 40L,d. 90 48F,d. 90 48F,d.	.NC	a Coal	0.582	0.286											
RD POL.d. RD POL.d. RD RD d.	NC NC	e Coel c Gas e Ol	0.582 0.001 0.001	0.286	0.033	0.036	0.039	0.041	0.044	0.046	0.049	Year Year			

Illustrative results

GCAM can also be integrated with the Air Benefit and Cost Assessment System (ABaCAS).



GCAM-China

GCAM-China is being developed in collaboration between researchers at Tsinghua University and PNNL (at the Joint Global Change Research Institute)

Potential applications of GCAM-China include analysis of national emission reduction targets, projection of air pollution emissions, and assessment of sectoral policies.

Summary

- GLIMPSE has the potential to support long-term, coordinated environmental, climate and energy planning
- A component of GLIMPSE, the GCAM Integrated Assessment Model, is being customized to have additional country-level resolution
 - GCAM-USA: State-level for the U.S.
 - GCAM-China: Province-level for China

Questions? Comments? Thank you! 谢谢!