Innovative Approach to Validation of Ultraviolet (UV) Reactors for Disinfection in Drinking Water Systems

Jeffrey Adams
U.S. Environmental Protection Agency
ORD, NRMRL, WSWRD, WQMB
Cincinnati, Ohio, 45268
Project Collaborators

PIs: Jeffrey Adams (adams.jeff@epa.gov); Sam Hayes (hayes.sam@epa.gov) TL: Sally Gutierrez (Gutierrez.Sally@epa.gov)

EPA: (OW) Mike Finn, Derek Losh, Greg Carroll; (ORD) Laura Boczek, Hodon Ryu, Eric Rhodes, Jennifer Cashdollar, Jill Hoelle, Jonathan Popovicci, Emma Huff, Mark Rodgers, Ann Grimm, Tom Speth

External: (Carollo) Harold Wright, Mark Heath, Traci Brooks; Linda Hills (Cadmus); Karl Linden (U of Colorado), Tom Hargy (Corona); GAP-Microbial Services; Corona Environmental Consulting; Jim Malley (UNH); Trojan; Wedeco

Disclaimer

The U.S. Environmental Protection Agency, through its Office of Research and Development, funded and managed, or partially funded or collaborated in, the research describe herein. It has been subjected to the Agency’s peer and administrative review and has been approved for external publication. Any opinions expressed in this paper are those of the author(s) and do not necessarily reflect the views of the Agency, therefore, no official endorsement should be inferred. Any mention of trade names or commercial products does not constitute endorsement or recommendation for use.
Background: Evolving Use of UV for Drinking Water Disinfection in U.S.

- State credited UV systems are third-party validated for Dose-Inactivation operating range, consistent with source water, and require continuous monitoring

- 2006-UVDGM is ‘Guidance’ on recommended approach for UV Validation, installation, & monitoring but alternative approaches may be acceptable to States

- EPA not planning formal update of UVDGM or UV dose tables in near future, but issues persist with interpretation of UVDGM by State permitting agencies

- Since 2006, UV research and commercial validation experiences have provided significant lessons-learned, modified validation practices, and identified new implementation challenges

<table>
<thead>
<tr>
<th></th>
<th>UV Dose (mJ/cm²) Required for a Log Inactivation of:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0</td>
</tr>
<tr>
<td>Crypto</td>
<td>1.6 2.5 3.9 5.8 8.5 12 15 22</td>
</tr>
<tr>
<td>Giardia</td>
<td>1.5 2.1 3.0 5.2 7.7 11 15 22</td>
</tr>
<tr>
<td>Virus</td>
<td>39 58 79 100 121 143 163 186</td>
</tr>
</tbody>
</table>
Evaluation Objectives of EPA Study

- Practical approach for validating LP and MP UV reactors for Adenovirus & Cryptosporidium inactivation using various test microbes, i.e., MS2, B. pumilus, AD2, T1
- Apply UV dose algorithms based on theory vs empirical that predict log-I and RED as a function of the UV sensitivity of the microbe (combined variable criteria), flow, lamp-sensor output, DL, w/wo UVT
- Assess capabilities of test microbe for predicting target pathogen, assess credibility with second test microbe vs bracketing
- Evaluate UV lamp sensor technology that accounts for germicidal contributions of low-and high-wavelength UV light within MP reactors
Evaluation Objectives of EPA Study

- Address approaches for propagating and assaying \textit{AD2}, \textit{B. pumilus}, \textit{MS2}, and methods for determining low and high wavelength ASCFs using collimated beam LP & MP UV lamps
- Determine & apply low and high wavelength ASCFs to predict \textit{Cryptosporidium} and \textit{Adenovirus} credit using \textit{MS2}, \textit{B. pumilus}, or \textit{T1} test data
- Simplify Validation-Factor (VF) analysis of uncertainties/biases
- Develop recommendations document from recent lessons learned applicable to GWR / SWTR describing alternative approaches for UV validation and implementation, and changes needed from previous UVDGM
• LPHO UV Reactor:
 ➢ 60 test conditions, MS2, Adenovirus, Bacillus pumilus
 ➢ 25-700gpm flows; UVTs 70, 80, 90, 98; Lamp power 60-100 %

• MP UV Reactor:
 ➢ 103 test conditions, MS2, AD2, B. pumilus
 ➢ 17-400gpm flows; UVTs 70, 80, 90, 98; Lamp power 0.9-2KW
 ➢ Synthetic & type 219 quartz sleeves, superhume-LSA
 ➢ Sensors: low wave 200-240nm; ONORM high wave 240-300nm
UV Dose-Response of MS2 and B. Pumilus Brackets Adenovirus
UV Dose-Response *B. pumilus*

Figure 4a UV Dose Response of *B. pumilus* spores (lab: GAP)

Figure 4b UV Dose Response of *B. pumilus* spores (lab: EPA)
UV Dose-Response Adenovirus AD2

Figure 5a UV Dose Response of adenovirus (lab: EPA)

Figure 5b UV Dose Response of adenovirus (lab: Corona)
New UV Dose Algorithm

\[
\log I = 10^A \times UVA_{254}^{B \times UVA} \times \left(\frac{S_H}{S_{0H}} \times ASCF_H \right) + 10^F \times UVA_{220}^{G \times UVA} \times \left(\frac{S_L}{S_{0L}} \times ASCF_L \right)
\]

Low wavelength UV dose monitoring component uses low wavelength UV sensor and UVT at 220 nm
At a fixed UVT, log inactivation of any microbes occurs at a similar value of $S/S_0/Q/D_L$.

Figure 4: Relationship between Measured log Inactivation and $S/S_0/Q/D_L$
LP UV: Relationship between Measured log Inactivation and $S/S_0/Q/D_L$

Figure 25: Measured log inactivation as a function of $S/S_0/Q/D_L$
LP UV: algorithm calibrated with $T1$
Predicts $MS2$, $T7$, and $A. Brasilienis$

Predictions Limited to Validated Range of $S/S_0/Q/D_L$ defined by $T1$
LP UV: Measured vs. Predicted log I
Calibrated Using MS2

\[
\log i = 10^A \times UVA^{B \times UVA} \times \left(\frac{S}{S_0} \right) \left(\frac{C + D \times UVA + E \times UVA^2}{Q \times D_L} \right)
\]

\[
y = 1.0266x \\
R^2 = 0.942
\]
LP UV: Algorithm Fit to MS2 & B. Pumilus Data Predicts Adenovirus No Better Than MS2 Alone
MP Predictive Algorithm w/ high & low wavelength sensor and UVA measurements maps MS2 data well

\[y = 0.9953x \]
\[R^2 = 0.9935 \]

- Synthetic Quartz
- Type 219 Quartz

\[\log i_{\text{measured}} \]
\[\log i_{\text{predicted}} \]
MP UV: MS2 Log I vs. $S_H/S_{0H}/Q/D_L$

Synthetic

- **70%-MS2**
 - $y = 276.65x^{0.6365}$
 - $R^2 = 0.9919$
- **80%-MS2**
 - $y = 673.35x^{0.6749}$
 - $R^2 = 0.9813$
- **90%-MS2**
 - $y = 1237.4x^{0.7006}$
 - $R^2 = 0.9932$
- **95%-MS2**
 - $y = 15192x^{0.9511}$
 - $R^2 = 0.9978$
- **98%-MS2**
 - $y = 20149x^{0.9761}$
 - $R^2 = 0.9981$

Type 219

- **70%-MS2**
 - $y = 391.75x^{0.6655}$
 - $R^2 = 0.9464$
- **80%-MS2**
 - $y = 53.087x^{0.3886}$
 - $R^2 = 0.9979$
- **90%-MS2**
 - $y = 1550.3x^{0.7976}$
 - $R^2 = 0.9974$
- **95%-MS2**
 - $y = 3984.9x^{0.888}$
 - $R^2 = 0.9944$
- **98%-MS2**
 - $y = 8805.4x^{0.9596}$
 - $R^2 = 0.998$
MP UV: Measured vs. Predicted log I

Calibrated Using **MS2**

- **y = 1.0022x**
 \[R^2 = 0.993 \]

- **y = 0.9576x**
 \[R^2 = 0.8956 \]

- **y = 0.974x**
 \[R^2 = 0.668 \]

Table: ASCF Values

<table>
<thead>
<tr>
<th></th>
<th>ASCF<sub>L</sub></th>
<th>ASCF<sub>H</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>MS2</td>
<td>1.00</td>
<td>1.05</td>
</tr>
<tr>
<td>B. Pum</td>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>Adeno</td>
<td>0.211</td>
<td>0.870</td>
</tr>
</tbody>
</table>
MP UV:

B. pumilus Predicts Adenovirus
Lessons-Learned To-Date

- Use of *Adenovirus* microbes in conventional validation is impractical; if used the dataset should be large to assess high point-to-point variability/uncertainty.

- In both LP & MP analyses, *MS2* microbes alone provided good correlations and conservative predictions of *AD2* inactivation, better than *B. pumilus* alone or combined with *MS2*.

- Low-wavelength sensor paired with typical ONORM sensor can be effective for monitoring UV full germicidal range.
Lessons-Learned To-Date

- The UV industry will need to develop verification & calibration standards for low-wave sensors.

- Credit for low-wave UV contributions results show 2-3X lower REDs than LP AD2 RED=186 (4-log kill) so benefits of MP vs LP demonstrated in UV reactor scenarios.

- Combined Variable S/Q/DL algorithm variants & ASCFs, map UV reactor-validation datasets well, useful for predicting Crypto & AD2 scenarios with test microbes, and simplifies uncertainty/bias factors for VF.
Questions & Discussion

Jeffrey Adams
Environmental Engineer
USEPA, ORD, NRMRL, WSWRD, WQMB
adams.jeff@epa.gov