

Seminar at Virginia Commonwealth University February 5th, 2016

Next-generation air measurement technologies

Gayle Hagler, PhD EPA Office of Research and Development

Foreword

The goal of this presentation is to give information on the following topics:

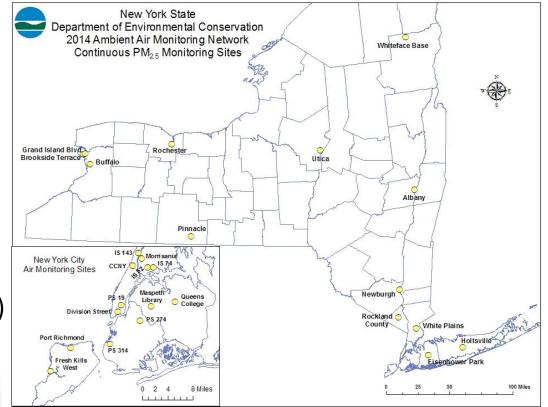
- Technical perspective on next-generation air monitoring technologies
- Potential application of sensors
- Sensor data communication (and concern)

This presentation is to the public and would be useful for a technical or nontechnical individual wanting to understand the state of science on air sensor technologies.

Disclaimer: This document has been reviewed in accordance with U.S. Environmental Protection Agency policy and approved for publication. Mention of trade names, products, or services does not convey, and should not be interpreted as conveying, official U.S. Environmental Protection Agency (EPA) approval, endorsement, or recommendation.

Measuring the air

In the United States, traditional paradigm for air quality monitoring:



EPA

Rigorous protocols and methods for regulatory applications

- Expensive instruments (>\$10K)
- Specialized training required
- Large physical footprint
- Large power draw

Example: Measuring fine particles in New York

Map from: dec.ny.gov

Particulate matter (PM)

Detecting particles: well-established methods

Particle filter samples

<u>Regulatory</u> Mass (gravimetric)

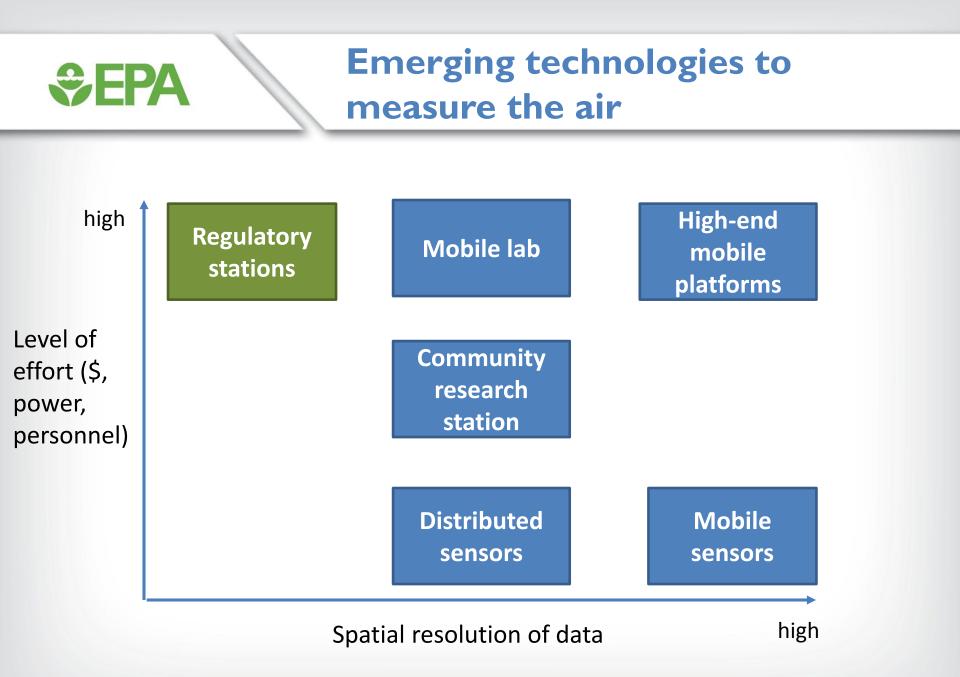
Additional useful measurements lons

Metals

Organic and elemental (aka "black") carbon Trace organics

Light absorption (transmissometry)

Real-time or near-real time detection of <u>components</u> – <u>most</u> fairly costly (>>10K), required specialized knowledge



Sepa

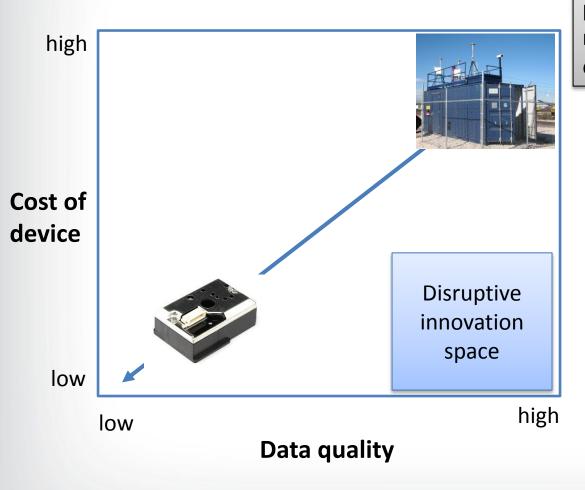
What do we mean by "next-generation air measurement technologies?"

Generally, traits of:

- Greater spatial coverage (mobile, distributed sensors)
- Greater temporal coverage (real-time measurement)
- Cost-effective

What is the difference?

What is the difference between regulatory instrument, traditional research instruments, and emerging sensors?


*€***EPA**

Trait	Federal equivalent method	Mid-tier cost research instrument	Low-cost, emerging air sensor
Cost	~10-20K	~5-10K	~0.02K (or ~\$20)
Isolates particles under 2.5 microns?	Yes – cyclone removes PM greater than 2.5	Yes – cyclone removes PM greater than 2.5	Νο
Active air flow?	Yes	Yes	No
True mass measurement?	Yes – e.g., beta- attenuation	No – light-scattering	No – light scattering
On-board humidity artifact correction?	Not needed	Yes	Νο
Data time resolution	Hourly (or longer)	Seconds to minutes	Seconds

Can math overcome what is sacrificed in the measurement?

EPA

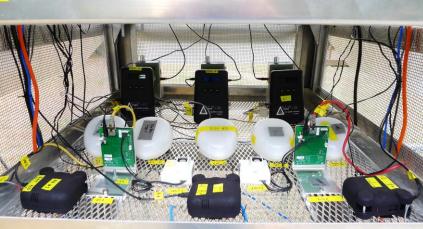
Researchers using advanced data processing strategies to get meaningful information from lowcost (~\$20) sensors:

"We're compensating for a bad sensor with machine learning..."

Illah Nourbakhsh, sensor developer at Carnegie Mellon University, during a recent interview

"...a separate model was selected for each sensor....Fifth order polynomial models that included relative humidity (RH %) and temperature (C) was found to best convert PUWP signals into PM_{2.5}..." - Gao et al., 2015, A distributed network of low-

 Gao et al., 2015, A distributed network of lowcost continuous reading sensors to measure spatiotemporal variations of PM_{2.5} in Xi'an China. Environmental Pollution


EPA activities

1. Testing air sensor performance in laboratory and field settings

• Atlanta, GA (2014-2015)

EPA

- Denver, CO (2015-2016)
- Research Triangle Park, NC (2014 2016)
- Emphasis on turn-key devices that are commercially available, measure regulated air pollutants (e.g., ozone, particulate matter), and <2K
- Sensor performance has varied widely – from very strong (r>0.9) to very poor performance (r=0)

Resource: http://www.epa.gov/airresearch/air-sensor-toolbox-citizenscientists

EPA activities

2. Exploratory research studies

EPA

- High-concentration environments near sources
 - Example: balloon-lofted sensors within wildfire emissions plume
 - Example: drop-in-place solar-powered volatile organic compounds (VOC) sensor near a source fenceline
- Urban-ambient environments
 - Development of single- or multi-pollutant systems supporting citizen science
 - Development of long-term, resilient community monitoring systems

Set EPA

EPA activities

3. Convening and communicating

- Air Sensor Toolbox: <u>http://www.epa.gov/heasd/airsensortoolbox/</u>
 - Test reports on sensor performance
 - Citizen science guidance
- Workshops
- Community Air Monitoring Training (summer 2015)

A few projects to discuss: Village Green Project RETIGO Upcoming sensor studies

Village Green Project

Village Green Project - Vision

EPA

To develop a non-regulatory air monitoring system that would support measurements in more locations and increase engagement with community members.

Key attributes:

- Transparent data collection
- Easier to deploy and lower cost
- Data useful for research purposes
- Engage with community members
- Sustainable

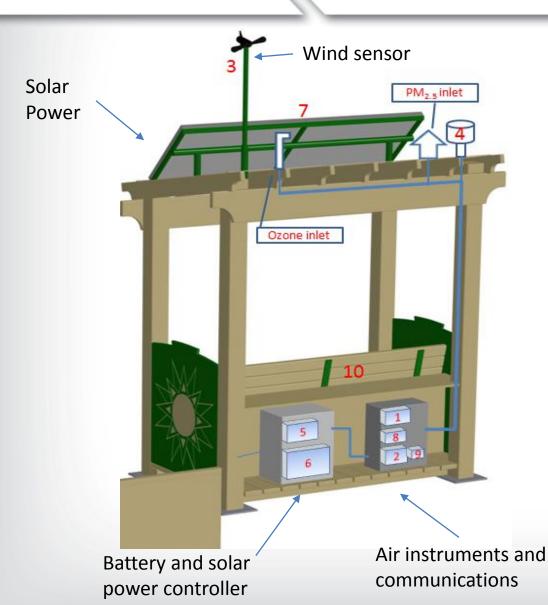
Village Green Project - Vision

EPA

To develop a non-regulatory air monitoring system that would support measurements in more locations and increase engagement with community members.

Key attributes:

- Transparent data collection
- Easier to deploy and lower cost
- Data useful for research purposes
- Engage with community members
- Sustainable



Village Green Project station

- Prototype located in North Carolina, USA outside of a public library.
- Measures two common air pollutants
 - ozone and fine particulate matter (PM_{2.5}, particle diameter ≤ 2.5 μm)
- Measures weather
 - wind speed and direction
 - temperature and humidity
- Sampling rate every minute
- Self-contained system incorporates
 - **power supply**: solar panels & battery
 - microprocessor
 - cellular modem

Village Green Project station

SEPA

- Data quality-checked using algorithms, new data values appear every minute on public website.
- Data values also appear on a sign next to the bench.

A gathering point for community outreach

Ribbon-cutting ceremony

EPA

- Library "Air Fair" and "Science Fair" events
- Tours with local students
- Community presentations
- And...just a place to sit and read.

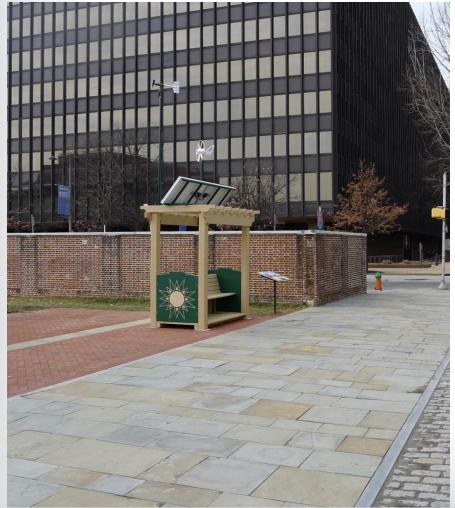
Prototype test results

- Long-term prototype test in North Carolina (initiated June 2013)
- Sufficient Power from solar panel
 - Power sufficient for ~95% operation time over the first 10 months evaluated (June 2013 – March 2014)
- Comparable results

EPA

- Instruments agreed within 10 20 % of reference monitors located nearby.
- Prototype design made available: <u>http://pubs.acs.org/doi/suppl/10.1021/acs.est.5</u> <u>b01245</u>

Result: EPA vision of expansion and enhancements


SEPA

Village Green Project pilot expansion

- USA expansion:
 - Partnership with state and local agencies
 - Competitive proposal opportunity (summer 2014): 22 proposals received, 5 selected for a new station.
 - Additional 1 more station through EPA Region research project.
- Significant improvements made to Village Green Project website and data management system, through the AirNow program.
- Continued technical development of the station:
 - Field-testing a variation of the station in a different range of air pollution through partnership between USEPA and Hong Kong Environmental Protection Department (HKEPD).
 - Testing addition of wind turbine and extra battery to increase system run-time in northern locations.
 - Testing addition of new pollutant sensors.

SEPA New stations in USA

Historic area of Philadelphia, PA (installed in spring 2015) Partners: City of Philadelphia, National Park Service

Press event in April, 2015

SEPA New stations in USA

National Zoo in Washington, DC, in the children's farm area (installed in spring 2015) Partners: Department of Energy and the Environment, Smithsonian Institute

New stations in USA

Outside a public library in Kansas City, KS (installed in spring 2015) Partners: State of Kansas, Wyandotte County, School District

SEPA

Station initiation included a ribbon-cutting event and community fair about air quality.

SEPA New stations in USA

Location: In the Oklahoma City Myriad Botanical Children's Garden Partners: State of Oklahoma, Myriad Botanical Gardens

SEPA New stations in USA

Location: Connecticut Science Center outdoor pavillion Partners: State of Connecticut, Connecticut Science Center

SEPA Outreach to the public

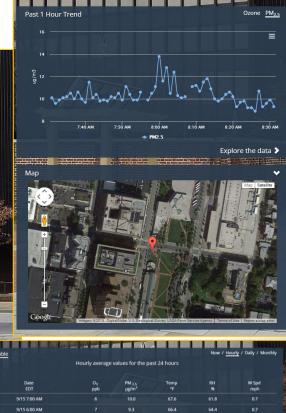
Data website: airnow.gov/villagegreen

Welcome to the Village Green Project

a research effort to discover new ways of measuring air quality and weather conditions in community environments.

Measuring and communicating on-the-spot air quality and weather conditions for research and awareness

Developing small and rugged data collection systems that can be powered by the wind and


Partnering with communities to pilot test the new technology in outdoor community spaces.

Outreach to the public

Data website: Interactive data exploration

SEPA

9.0

62.0

59.5

47.8

37.8

68.0

69.4

71.8

73.0

75.2

78.4

9/15 5:00 AM

9/15 4:00 AM

9/15 3:00 AM

9/15 2:00 AM

9/15 1:00 AM

9/15 12:00 AM

9/14 11:00 PM

9/14 9:00 PM

9/14 8:00 PM

9/14 7:00 PM

9/14 6:00 PM

9/14 5:00 1

Additional stations in USA

Coming soon

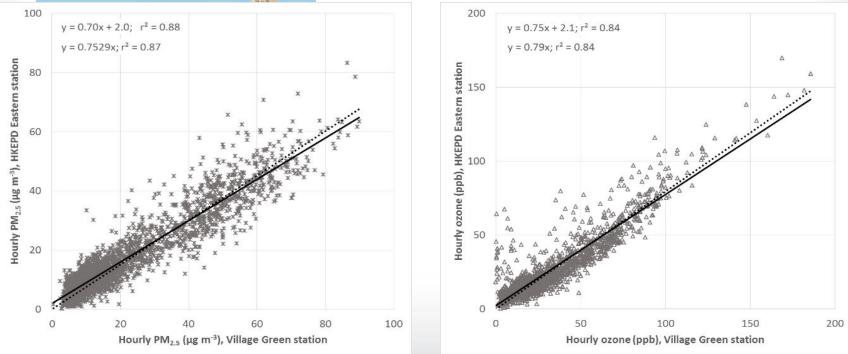
Chicago, Illinois: Station will be located at a public elementary school.


Houston, Texas: Station to be sited at a public school.

EPA Hong Kong station

Located on secondary school rooftop Partners: Hong Kong Environmental Protection Department, City University

- Same instrumentation in a compact form
- Primary goal: system performance evaluation


€PA

Are Village Green systems producing useful data?

Preliminary comparison of regulatory data and Village Green station data sets indicates linearity over observation range.

Concentration range ~2x that previously observed in Jiao et al. (2015) Durham, NC test

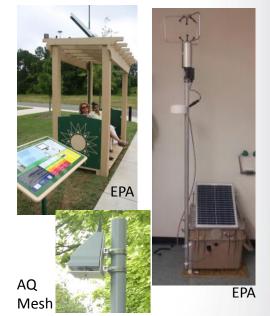
RETIGO Background

Emerging technologies have expanded the requirements of data analysis platforms

Vehicle platforms

- Sampling while driving
- Data rate: 1-10 s
- # variables reported: ~100
- Conducted by: professional researcher

Portable sensors



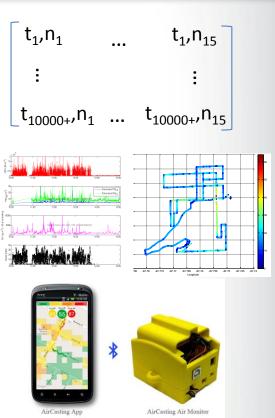
Environment Hamilton

- Sampling while walking/biking
- Data rate: 1-10 s
- # variables reported: ~2-5
- Conducted by: professional researchers and citizens

Distributed sensors

- Stationary sensors
- Data rate: 1 s several min
- # variables reported: ~2-10
- Conducted by: professional researchers and citizens

RETIGO Background


- Emerging data sets are increasingly complex and lack data standardization...
 - Data collection rates are becoming more and more rapid with time. Second-by-second data collection is a target for mobile platforms.
 - 3 hours of 1 second data = 10,800 rows of values
 - I second data at 35 mph = ~50 foot travel distance per second
 - Inconsistent timestamps, for example:
 - Sensor 1: time format is Excel serial format (cumulative days since 1/1/1900)
 - Sensor 2: time format is in hours:minutes:seconds, but does not provide a date
 - Sensor 3: time format is in cumulative seconds since 1/1/1899
 - Varying columns of data and units

RETIGO Background

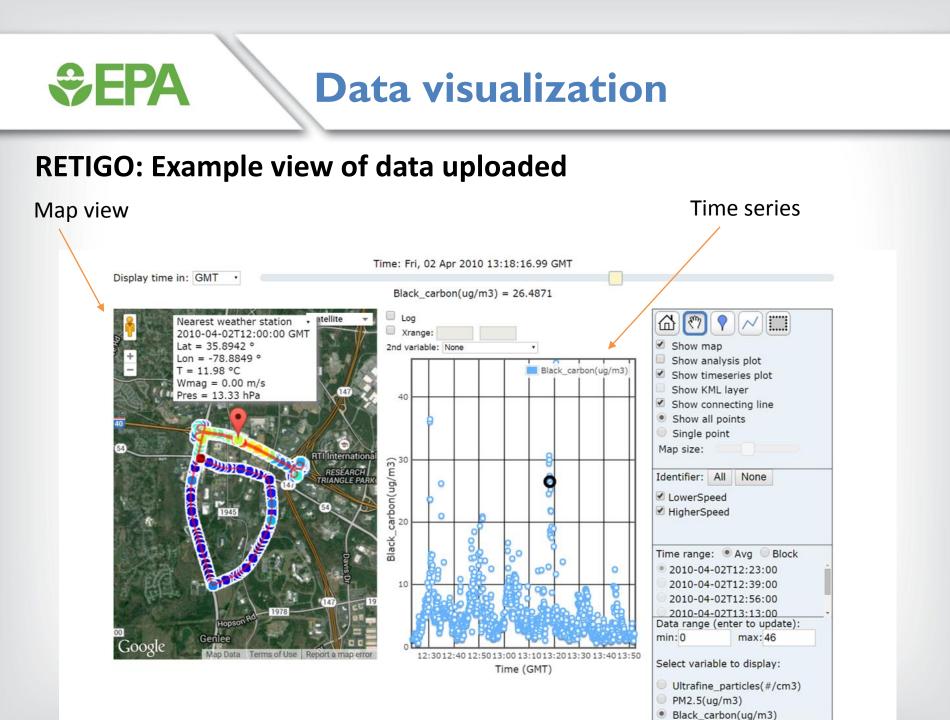
 These new measurement approaches provide much larger and more complex data sets to visualize.

EPA

- Researchers rely on programs such as MATLAB, IGOR, and R to process and visualize the large data sets using custom scripts
- Some new business ventures create custom visualization apps, but that usually has some limits on individual data exploration and is hardware-specific.

Result: Nonprogrammers, researchers and citizens alike, face a technical barrier to participate in exploratory data analysis.

 RETIGO Project Goal: Reduce technical barrier to participate in analyzing air quality field data, particularly from mobile data collection platforms.


Target attributes

- Non-hardware specific generic and flexible data input format.
- Comfortable to use for an individual with only intermediate-level experience in Excel.
- Provides interactive data visualization for geospatial air monitoring time series.
- Supports inclusion of complementary web-available data.

SEPA

RETIGO

- RETIGO end-user tool:
 - Javascript-based platform
 - Efficient at handling large data sets, creating custom graphics including temporal trends
 - Uses several existing APIs
 - Provides option to input time-matching, location-matching AirNow and World Meteorological Organization weather data
 - Sets a fairly simple standard data input format
 - International time format (ISO1801)
 - Flexible number of input columns
 - Can handle large number of rows (we've tested up to about 200,000 row data sets thus far)

Upcoming sensor studies

Several upcoming sensor studies

€PA

AirMapper:

- Developing portable sensor device for mapping particulate matter trends.
- Integrates an optical particle counter that quantifies particles into 16 size channels, estimates PM₁/PM_{2.5}/PM₁₀ with assumptions of particle density and spherical shape.
- Data output in RETIGO format for immediate ability to upload and explore trends.

CitySpace project:

- Upcoming research study to deploy up to 20 sensor nodes in Memphis, TN.
- Sensor nodes will include wind and PM sensors, designed for wireless data transmission and continuous operation on solar/battery power.

Current regulatory network

Several upcoming sensor studies

EPA

AirMapper:

- Developing portable sensor device for mapping particulate matter trends.
- Integrates an optical particle counter that quantifies particles into 16 size channels, estimates PM₁/PM_{2.5}/PM₁₀ with assumptions of particle density and spherical shape.
- Data output in RETIGO format for immediate ability to upload and explore trends.

CitySpace project:

- Upcoming research study to deploy up to 20 sensor nodes in Memphis, TN.
- Sensor nodes will include wind and PM sensors, designed for wireless data transmission and continuous operation on solar/battery power.

Current regulatory network

-ow-cost system

Regulatory

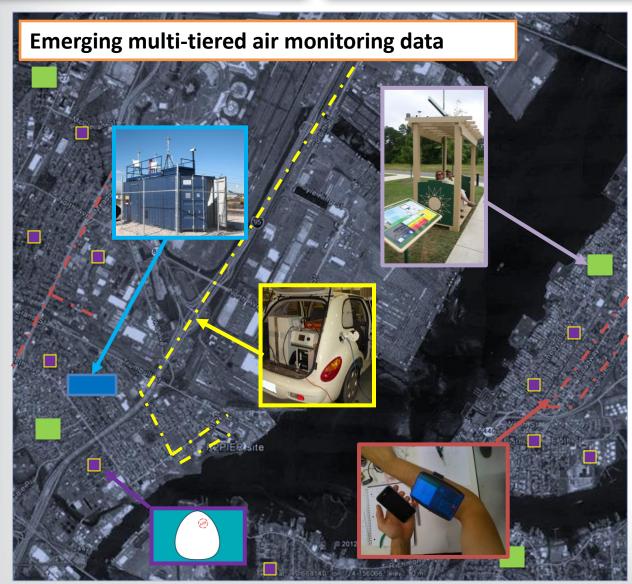
Summary: Emerging tiers of monitoring

- Reference grade instruments
- Stringent quality assurance
- Usually requires trained personnel
- Usually requires secure structure with air conditioning (\$)
- Requires stable land power (\$)

What you get:

Highest quality data – can be used for assessing compliance with regulations – e.g., holds up in court of law

Data agrees within about 10-20% of regulatory instruments (testing in USA) – considered suitable for research studies


Compact instruments

- Trained personnel needed, but hands-on time generally much less
- Monitoring instruments integrated into field-ready structure (\$)
- Uses solar and wind power; cellular r communication (\$)
- Miniaturized sensors
- Varying training levels required
- Systems may be field-ready or require significant time to build
- Usually operates on battery power

Data of widely varying quality; recommend R&D to evaluate against reference in field environment

€PA

Summary: Emerging tiers of monitoring

Opportunities:

- Unprecedented access to data on neighborhood-scale air quality
- Lower cost strategies to achieve air monitoring goals
- Engagement with communities, schools, industry

Challenges:

- Data quality
- Data interpretation and public messaging
- "Big data" analysis
- Support for do-ityourself/citizen science

♦ EPA

Summary

- EPA is providing leadership in next-generation air monitoring research and engagement with the air monitoring community.
- The research and educational outreach potential is significant, and this technology is developing quickly. Data quality is a major area of concern for EPA.

For more information:

Research:

Gayle Hagler: <u>hagler.gayle@epa.gov</u> Ron Williams: <u>williams.ronald@epa.gov</u>

Sensor data messaging:

Kristen Benedict: benedict.kristen@epa.gov