Measurement and modeling of the contribution of ammonia to total nitrogen deposition from canopy to regional scale

John T. Walker¹, Donna Schwede², Gary Lear³, Jeff Collett⁴ Bret Schichtel⁵, Jesse Bash², Robin Dennis², Tom Butler⁶

¹U.S. EPA, ORD, National Risk Management Research Laboratory, Durham, NC 27711.
²U.S. EPA, ORD, National Exposure Research Laboratory, Durham, NC 27711.
³U.S. EPA, OAR, Clean Air Markets Division, Washington, DC 20460.
⁴Colorado State University, Department of Atmospheric Science, Fort Collins, CO 80523.
⁵National Park Service-Air Resource Division, Lakewood, CO 80523.
⁶Cary Institute of Ecosystem Studies, Millbrook, NY 12545.

College of Charleston
Department of Physics and Astronomy
March 3, 2016
Motivation

• As the most abundant reduced nitrogen compound in the atmosphere, ammonia (NH₃) plays an important role in aerosol formation and nitrogen deposition.

• The expansion of critical loads research has motivated efforts to develop quantitative speciated budgets of atmospheric nitrogen deposition.

• Relative to oxidized nitrogen, which is subject to regulatory control, much less is known regarding the contribution of NH₃ to the total pool of reactive nitrogen in the atmosphere and therefore in atmospheric deposition.

• While spatial and temporal patterns of NH₄⁺ wet deposition across the U.S. are relatively well characterized, the contribution of NH₃ dry deposition to total nitrogen deposition is much less certain.

• This presentation explores the state-of-the-science of NH₃ dry deposition and the role of NH₃ in atmospheric nitrogen deposition in the United States.
Outline

• Ammonia air-surface exchange processes
• Methods for determining ammonia air-surface fluxes
• Methods for constructing total N deposition budgets
• Case studies examining the contribution of NH$_3$ to total N deposition
• Recommendations for monitoring and process oriented research needed to improve site to regional scale estimates of NH$_3$ deposition
Ammonia may be emitted from or deposited to vegetation, soil, and water, depending on the ratio of the atmospheric NH$_3$ concentration to the “compensation point” of the underlying surface.

Ammonia air-surface exchange processes are “bi-directional”.

The compensation point (χ) is governed by the nitrogen status and acidity of the exchange surface.

Compensation point

$$\chi = \frac{161500}{T} \exp\left(-\frac{10380}{T}\right) \frac{[NH_4^+]}{[H^+]}$$

Emission potential

- Soil/litter
- Leaf apoplast
- Leaf surface water

Agricultural Ecosystems

Natural Ecosystems
Schematic of leaf NH$_3$ exchange processes (Flechard et al., 1999)

Cuticle
(waxy surface of leaf or needle)
NH$_3$ exchange depends on morphology, acidity and NH$_4^+$ concentrations in surface moisture layers

Stomatal opening
(where CO$_2$ and H$_2$O are exchanged)

Leaf interior
(apoplast solution)
stomatal NH$_3$ emission potential depends on apoplast concentrations of NH$_4^+$ and H$^+$ and temperature
Fertilized corn

- Canopy height
 - Early morning, $N = 5$
 - Late morning, $N = 11$
 - Afternoon, $N = 8$

Mixed hardwood forest

- NH$_3$ flux (ng m$^{-2}$ s$^{-1}$)
 - August 11, 2009
 - 900 - 1300
Deposition Velocity Concept

\[F = -v_d \ast c \]

\[v_d = \frac{1}{R_a + R_b + R_c} \]

- \(R_a \) - aerodynamic resistance
- \(R_b \) – boundary layer resistance
- \(R_c \) – canopy resistance

Atmosphere

- Turbulent layer
- Laminar boundary layer

Pine Needle

- Stomatal conductance
- Chemistry
- Surface morphology

Turbulent Mixing

Diffusion

Review of deposition velocities across land-use categories

Bidirectional Flux Concept

Resistances
- Aerodynamic (R_a)
- Boundary layer (R_b)
- In-canopy (R_{ac}, R_{bg})
- Stomatal (R_s)
- Cuticular (R_w)

Compensation points
- Canopy (χ_{zo})
- Stomatal (χ_s)
- Ground (χ_g)

Fluxes
- Net canopy-scale (F_t)
- Stomatal (F_s)
- Cuticular (F_w)
- Foliage (F_f)
- Ground (F_g)
Methods for Developing Total N Deposition Budgets

Flux measurements

Field-scale models

Gridded chemical transport model (CTM)

Hybrid (Combination of measurements and CTM)
• In-situ measurements and modeling: Total = 17 kg N ha\(^{-1}\) y\(^{-1}\)
 – NH\(_3\) = 9% of total N deposition
• CMAQ unidirectional: Total = 13 kg N ha\(^{-1}\) y\(^{-1}\)
 – NH\(_3\) = 3% of total N deposition

Combination of direct flux measurements and inferential modeling.
• Total N deposition is 3.64 kg N ha$^{-1}$ yr$^{-1}$

• NH$_3$ contributes 18% of total N deposition

• On an annual scale, the deposition budget is dominated by reduced N (NH$_x$ = 53% of total).

CMAQ results indicate that the budget is dominated by oxidized N while the in-situ approach indicates more equivalent contributions from oxidized and reduced nitrogen.

Community-Multiscale Air Quality Model (CMAQ)

Bidirectional NH₃ flux

Cumulative probability plot of fractional contribution of NH₃ dry deposition to total N deposition (CONUS)

Unidirectional NH₃ flux
Hybrid Total Deposition Approach (CMAQ + Monitoring Data)

Some differences due to incorporation of AMoN NH$_3$ monitoring data in Hybrid approach.
Summary

- Site-specific case studies represent range of deposition conditions:
 - ≈ 17 kg N ha$^{-1}$ yr$^{-1}$ (Duke Forest)
 - ≈ 10 kg N ha$^{-1}$ yr$^{-1}$ (Upper Susquehanna)
 - ≈ 3.5 kg N ha$^{-1}$ yr$^{-1}$ (Rocky Mountain Nat’l Park)

- The site most highly influenced by urban activities (Duke Forest) exhibits a N deposition budget dominated by oxidized compounds, while the budget at the most remote site (RMNP) is dominated by reduced N species.

- Across these sites, NH$_3$ dry deposition contributes between 3 and 22% of total N deposition.

- Regional-scale modeling indicates that, over 1/2 of the CONUS, NH$_3$ contributes at least 15% of the total N deposition. Over approximately 1/4 of the CONUS, NH$_3$ contributes 25% or more of total N deposition.
Contact Information

John T. Walker, Ph.D.
Senior Chemist

U.S. EPA Office of Research and Development
National Risk Management Research Laboratory
Air Pollution Prevention and Control Division

109 T.W. Alexander Dr.
Mail Drop E305-02
Durham, NC 27711

Walker.JohnT@epa.gov