

Remote and Onsite Direct Measurements of Emissions from Oil and Natural Gas Production

Halley Brantley, Eben Thoma, Bill Squier, Adam Eisele

Office of Research and Development National Risk Management Research Lab, Atmospheric Pollution Prevention and Control Division

Background

- Emissions from upstream oil and gas production
 - Methane (CH₄), volatile organic compounds (VOCs), and hazardous air pollutants (HAPs)
 - Vary based on basin, age of the well, equipment design, etc.
 - Difficult to measure and model
- Can use cost-effective direct and remote measurement tools to facilitate leak detection and repair, inform inventories, and support compliance activities.

Outline

- Methane Measurements
 - Remote measurements and variability (EPA)
 - Comparison with onsite (Allen et al. 2013 and ERG 2011)
 - Comparison with production
- VOC and HAP Measurements
 - Difficulties with onsite measurements
 - Remote versus onsite
 - Comparison with modeled tank emissions

3

Methane Measurements

Remote

Onsite


OTM 33A was used to quantify CH_4 emissions remotely at 210 pads in TX, CO, and WY (2010-2013).

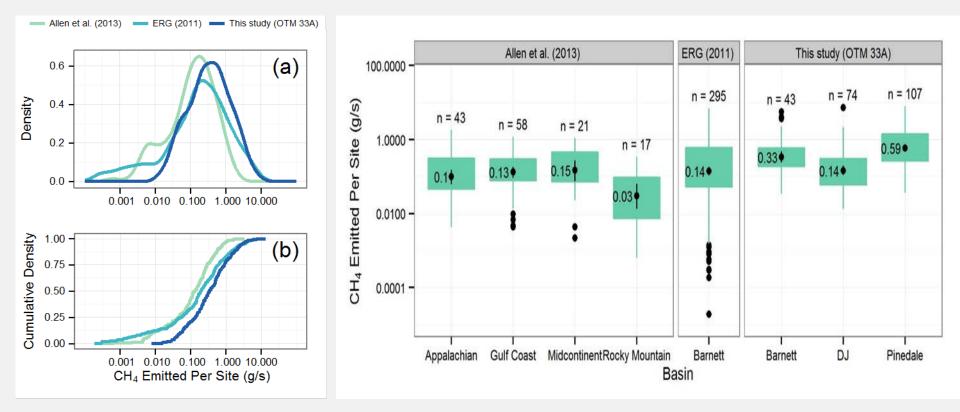
Allen et al. (2013) and ERG (2011) used Hi Flow Samplers to directly measure individual leaks at 150 and 388 pads, respectively.

Remote Methane Measurements

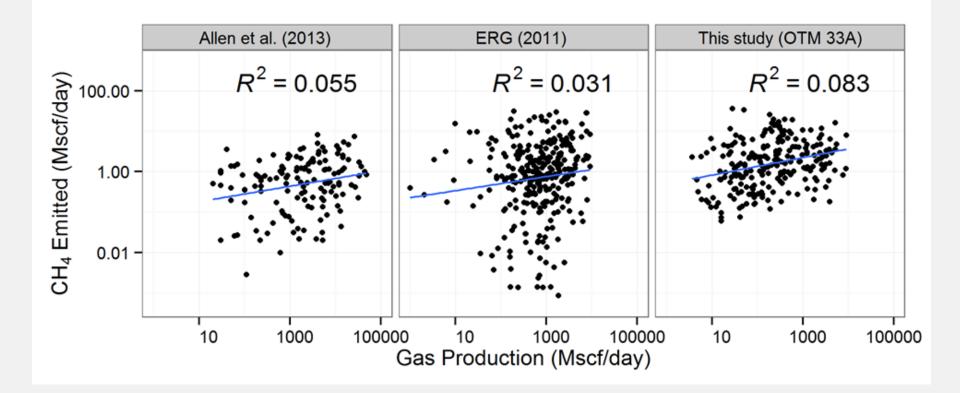
Temporal Variability in Emissions

20 min stationary measurements using a mobile platform (SUV) and inverse Gaussian plume dispersion model (OTM 33A)

Remote Methane Measurements


Open thief hatch on condensate tank

Methane Comparison with Onsite

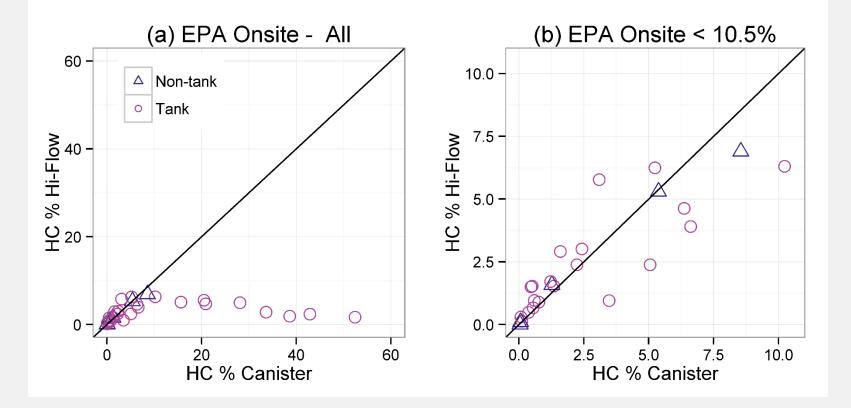

Heavy-tail Distributions (log-scale)

Different measurement techniques capture different aspects of the distribution. Remote measurements useful for locating high emitters.

Methane Comparison with Production

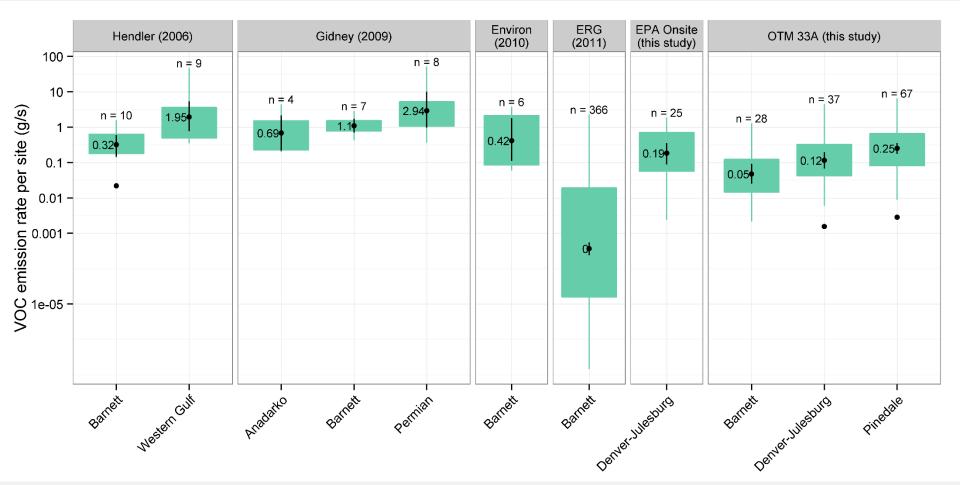
Very little of the variation in emissions is explained by production, most likely due to maintenance, engineering design, and fugitives.

VOC and HAP Measurements


	EPA Onsite	EPA OTM 33A	ERG (2011)	Hendler (2006)	Gidney (2009)	ENVIRON (2010)
Year of Measurements	2011	2010-2013	2010-2011	2006	2008	2010
Basins	Denver- Julesburg	Barnett, Denver- Julesburg, Pinedale	Barnett	Barnett, Western Gulf	Anadarko, Barnett, Permiar	Barnett n
Unique Well Pads (N)	23	Barnett: 26 Denver- Julesburg : 36 Pinedale: 61	380	Barnett: 10 Western Gulf: 9	Anadarko: 4 Barnett: 7 Permian:8	3
Average Condensate Production (bbl/day)	34.5	Barnett: 0.15 Denver-Julesburg: 6.7 Pinedale: 10.8	0.01 (6 pads with condensate production)	Barnett: 6.5 Western Gulf: 87.8	Anadarko:72.8 Barnett: 22.3 Permian: 510.3	20.9
Controls at time of measurement	ECD ¹ , VRU ² condensate tanks	Denver-Julesburg: ECD ¹ , VRU ² Barnett: minimal Pinedale: partial	Minimal	None	None	None
Measurement approach	OGI ³ , HVS ⁴ with GC-FID ⁵ canister analysis	OTM 33A for CH₄ with GC-FID ⁵ canister analysis	OGI ³ , HVS ⁴ with TO-15 canister analysis	Seal and measure with GPA Method 2286-95 ⁵	Seal and measure with GPA Method 2286-95 ⁵	Seal and measure with GPA Method 2286-95 ⁵
Measurement focus	Component (tank focus)	Integrated pad	Component (leak focus)	Condensate tank	Condensate tank	Condensate tank
Duration of measurement	minutes / point	20 min	minutes / point	24-hour	24-hour	24-hour

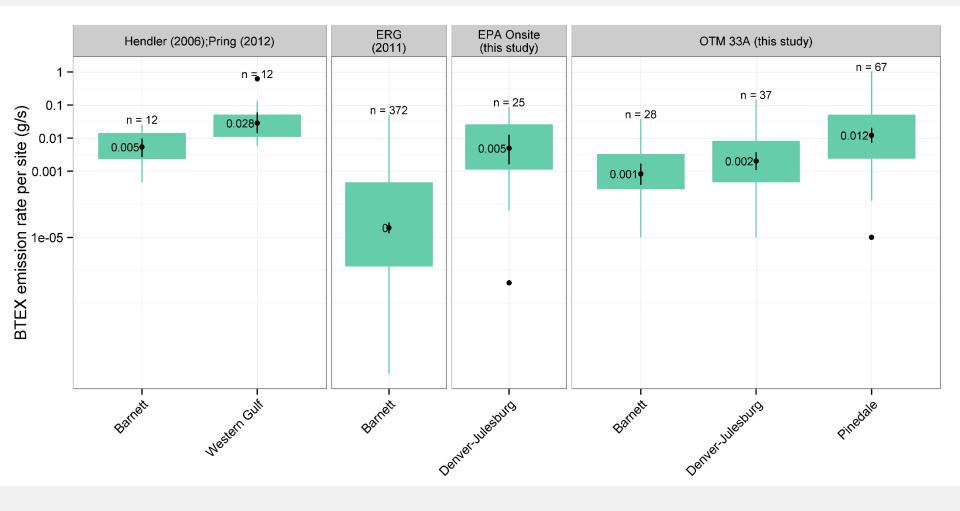
¹ Enclosed Combustor Device; ²Vapor Recovery Unit; ³Optical Gas Imaging; ⁴High Volume Sampler; ⁵Gas Processors Association Method 2286-95 (<u>GPA, 1999</u>) ⁵Gas Chromatography with Flame Ionization Detection as described in EPA/600-R-98/161 (<u>EPA, 1998</u>)

Difficulties with onsite measurements


Bacharach Hi Flow vs Cannister Results

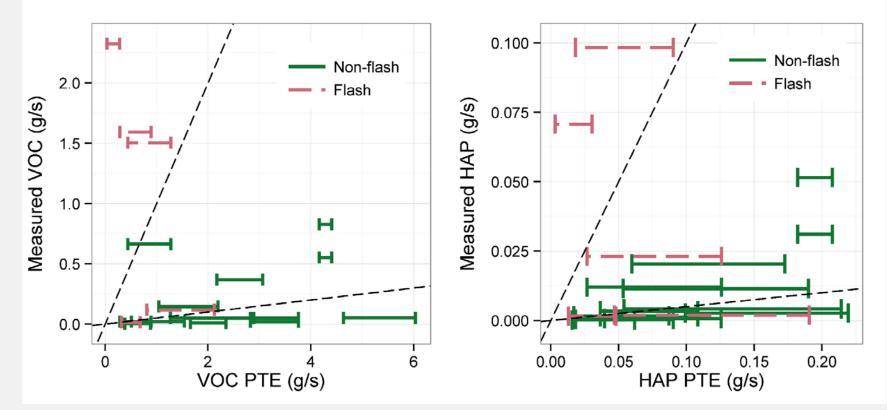
HVS severely underestimates emissions when the HC % is > 10.5

VOC remote versus onsite



Onsite EPA measurements were similar to remote measurements. ERG (2011) measurements are significantly lower, likely due to choice of compounds used in the canister analysis.

¹⁰ 5/11/2016 U.S. Environmental Protection Agency


BTEX (HAP) remote versus onsite

Comparison with modeled tank emissions

Comparison of VOC and HAP measurements with potential to emit values calculated using E&P TANKS v2.0^{*}

Range of ambient temperatures (73.3 to 101 F) and pressures (12.14 to 12.57 psia). Dashed lines represent y=x and y=0.05x.

*(API Publication 4697)

Take-Away (1/2)

Methane Measurements

- Well pad emissions were log-normally distributed (fat-tails)
- Onsite and remote measurements capture different aspects of the distribution.
- Production rates accounted for approximately 10% of the variation in emissions.

Take – Away (2/2)

VOC and HAP Measurements

- The Hi Flow can malfunction and underestimate emissions and may not be suitable for general use in upstream applications.
- Similar results from EPA onsite and remote measurements suggest that remote measurements can be used as an effective inspection technique.
- Significant VOC emissions from controlled systems can occur and are often a result of thief hatch leaks.

Acknowledgements

- Shahrooz Amin, Mark Modrak, and Frank Grainger with ARCADIS, Inc., for field and data analysis support for this project.
- EPA colleagues Bill Mitchell, Mike Miller, Jason DeWees, Robin Segall, and Ken Garing and his team for ongoing support in development of OTM 33.
- Eric Crosson, Chris Rella, and Tracy Tsai with Picarro for ongoing collaboration on mobile measurements.
- Many individuals at Enthalpy Analytical and Sage Environmental Consulting

References

- Allen, D. T.; Torres, V. M.; Thomas, J.; Sullivan, D. W.; Harrison, M.; Hendler, A.; Herndon, S. C.; Kolb, C. E.; Fraser, M. P.; Hill, A. D. Measurements of methane emissions at natural gas production sites in the United States. *Proc. Natl. Acad. Sci.* 2013, *110* (44), 17768-17773; DOI: 10.1073/pnas.1304880110.
- Brantley, H. L.; Thoma, E. D.; Squier, W. C.; Guven, B. B.; & Lyon, D. Assessment of Methane Emissions from Oil and Gas Production Pads using Mobile Measurements. *Environmental science & technology*, 2014, 48(24), 14508-14515.
- Brantley, H.L.; Thoma E. D.; Eisele A. P.; Assessment of VOC and HAP Emissions from Oil and Natural Gas Well Pads Using Mobile Remote and Onsite Direct Measurements. *Journal of Air and Waste Management*. Just Accepted.
- ERG City of Fort Worth Natural Gas Air Quality Study Final Report, Fort Worth, TX, 2011; http://fortworthtexas.gov/gaswells/?id=87074.
- Gidney, Butch, and Stephen Pena. 2009. Upstream Oil and Gas Storage Tank Project Flash Emissions Models Evaluation Final Report. Texas Commission on Environmental Quality http://www.bdlaw.com/assets/htmldocuments/TCEQ%20Final%20Report%20Oil%20Gas%20Storage%20Tank%20Project.pdf (accessed December 1, 2014).
- Hendler, A., J. Nunn, J. Lundeen, and R. McKaskle. 2006. VOC emissions from oil and condensate storage tanks. Houston Advanced Research Center <u>http://www.bdlaw.com/assets/htmldocuments/TCEQ%20Final%20Report%20Oil%20Gas%20Storage%20Tan</u> <u>k%20Project.pdf</u> (accessed November 26, 2014).
- Pring, M. . 2012. Condensate Tank Oil and Gas Activities. Prepared for Texas Commission on Environmental Quality by Eastern Research Group <u>https://www.tceq.texas.gov/assets/public/implementation/air/am/contracts/reports/ei/5821199776FY1211-</u> 20121031-ergi-condensate_tank.pdf (accessed December 1, 2014).
- ENVIRON. 2010. Upstream Oil and Gas Tank Emission Measurements. TCEQ Project 2010-39 <u>https://www.tceq.texas.gov/assets/public/implementation/air/am/contracts/reports/ei/5820784004FY1025-</u> 20100830-environ-Oil_Gas_Tank_Emission_Measurements.pdf (accessed November 26, 2014).