Multi-Season Monoterpene and Sesquiterpene Analysis of *Pinus taeda* Needle Tissue

Ryan Daly, Chris Geron

United States Environmental Protection Agency, National Risk Management Research Laboratory, Research Triangle Park, NC, USA 27711

Introduction:

Pinus taeda (Loblolly pine) is one of the worlds most important timber crop and accounts for a significant portion of the southeastern U.S. landcover. Biogenic voltile organic compound (BVOC) content was extracted from the tissue material of P. taeda needles and analyzed over a multi-year period from an experimental forest in North Carolina, USA. Seasonal patterns in needle monoterpene (MT), oxygenated MNT (MT_{oxy}), sesquiterpene (SQT), and oxygenated SQT (SQT_{oxy}) concentration and percent speciation by BVOC class are examined to increase our understanding of controls on the emission of these compounds into the atmosphere. Twenty six compounds were quantified. A possible CO₂ effect was detected for total SQT (suppression at elevated CO₂), and a difference in MT composition. This works seasonal MT and SQT concentration and composition data are compared with field emission studies conducted at the same site, including branch enclosure emission rate studies and REA Flux data.

Emission models such as the Model of Emissions of Gases and Aerosols from Nature (MEGAN) should include temporal production and storage effects of BVOC, in particular SQT, which interact with phenology and temperature. Only the latter is included in current emission models. CO2 effects and needle VOC production rate controlling factors, ie. exchange from needle tissue concentration to gas phase emission, should be further investigated with the goals of including these effects in emission models.

Figure 1: Google Earth view of the FACTS1 research site, Orange Country, NC. FACE CO_2 enrichment plots (orange) and control rings (large blue) and forest edge trees (small blue) are indicated.

Experimental Methods:

Loblolly pine (*Pinus taeda*) needles were collected at the C–H₂O Free Atmosphere Carbon Transfer Scheme (FACTS1) Research Site in Orange County, North Carolina (35.98°N, 79.09°W).

The site is a *P. taeda* plantation, with an understory of sweetgum (*Liquidambar styraciflua*), red maple (*Acer rubrum*), yellow poplar (*Liriodendron tulipifera*), and oak (*Quercus*) species.

FACTS1 site was composed of seven free-air CO₂ enrichment rings:

- Four (4) CO_2 enhanced (ambient + 200ppmv CO_2) forest canopy plots
- Three (3) ambient CO₂ forest canopy control plots
- Two (2) ambient CO_2 ground level sites at the forest edge

Seasonal Factor:

Figure 5: Aerial photograph of the FACTS1 research site, Orange Country, NC. FACE CO_2 enrichment and control plots are visible in the forest canopy.

Needle Cohort Age:

P. Taeda needles remain intact on the branch for approximately two years before senescence. The composition and concentration of BVOC housed within the needle tissue was found to change over a needles lifetime, likely a mechanism of BVOC production and storage (Figure 3 and Figure 4):

- MNT accumulate quickly, reaching a maximum concentration and full compound composition within weeks of needle expansion.
- SQT concentrations are low in young expanding needles, reaching a maximum by late summer. Beginning with β caryophyllene, SQT compound composition diversifies with needle age.
- MNT and SQT concentrations vary around a maximum value through the second growing season, showing a small decline near senescence.
- Oxygenated SQT (SQT_{oxv}) slowly accumulate with needle age, reaching a maximum by the second season of growth.

Needles where collected monthly from the same branch per sample plot throughout the year. BVOC were partitioned from needle sample tissue by extraction with the non-polar solvent hexane, followed by liquid injection GC-FID/MS analysis.

This work compares BVOC available in *P. taeda* needle tissue with the following BVOC emission studies:

- Geron and Arnts (2010) ~ **Branch enclosure emission rates**
- Helmig et al (2007) ~ Branch enclosure emission rates
- Arnts et al. (2013) ~ Forest canopy REA flux

CO₂ Effect?

Needle extract samples were tested for possible CO₂ enrichment effects; fumigated (ambient + 200ppmv CO_2) vs. control (no CO_2) added).

- Total MNT concentration not significantly different between fumigated and control plots.
- The MNT β -phellandrene and myrcene concentrations were statistically higher from fumigated rings than control rings at the P<0.0001 level (Figure 6).
- Total SQT was 17% lower from CO₂ fumigated rings than control, significant at the P=0.015 level, suppression of β caryophyllene and germacrene D.

	Summer								Winter							
-	Neelde Tissue concentration						Branch	REA	Neelde Tissue concentration						Branch	REA
	CO2 Enriched (mgC g ⁻¹)		<u>CO₂ Control</u> (mgC g ⁻¹)		<u>Edge</u>	<u>Trees</u>	<u>Enclosure ER</u> (μgC g ⁻¹ h ⁻¹)	<u>Flux</u> (μgC m ⁻² h ⁻¹)	<u>CO₂ Er</u>	CO ₂ Enriched (mgC g ⁻¹)		<u>CO₂ Control</u> (mgC g ⁻¹)		<u>Trees</u>	<u>Enclosure ER</u> (μgC g ⁻¹ h ⁻¹)	<u>Flux</u> (μgC m ⁻² h ⁻¹)
					(mg0	Cg ⁻¹)			(mg					Cg ⁻¹)		
	1 st yr	2 nd yr	1 st yr	2 nd yr	1 st yr	2 nd yr			1 st yr	2 nd yr	1 st yr	2 nd yr	1 st yr	2 nd yr		
Total MT	189	172	184	165	89	85	2.9	1004	151	139	180	150	95	97	7.6	387
α-pinene	59%	59%	81%	72%	87%	84%	48%	53%	57%	59%	73%	73%	82%	84%	48%	59%
β -phellandrene	25%	22%	2%	4%	3%	4%	9%	5%	33%	30%	4%	4%	5%	3%	7%	6%
β-pinene	12%	15%	14%	21%	7%	9%	22%	17%	5%	6%	20%	20%	9%	10%	27%	16%
camphene	1%	1%	1%	1%	1%	1%	2%	4%	1%	1%	1%	1%	1%	1%	2%	4%
myrcene	2%	2%	1%	1%	1%	1%	14%	7%	3%	2%	2%	1%	3%	1%	11%	5%
tricyclene	0%	0%	0%	0%	1%	1%	0%	1%	0%	0%	0%	0%	0%	1%	0%	1%
Total MT _{oxy}	0.8	3.8	1.3	6.9	1.3	3.9		58.4	1.7	2.5	10.4	6.2	2.4	3.2		8.2
Total SQT	13.1	35.0	20.9	38.3	7.5	16.8	0.3	68.9	19.0	28.8	43.6	34.9	11.2	18.9	0.5	0.7
β-caryophyllene	50%	27%	49%	31%	52%	30%	39%	48%	40%	30%	33%	33%	33%	28%	48%	157%
α-humulene	8%	6%	8%	6%	5%	6%	9%	8%	8%	7%	7%	6%	6%	6%	7%	171%
bicyclogermacrene	21%	40%	10%	29%	19%	36%			30%	37%	29%	29%	32%	34%		
α-cadinene	4%	7%	2%	6%	2%	6%	1%		6%	8%	5%	5%	7%	8%	0%	
γ-cadinene	4%	7%	2%	7%	2%	6%	5%	5%	5%	6%	6%	7%	4%	6%	9%	100%
germecrene A	12%	9%	27%	17%	20%	15%			7%	8%	18%	18%	15%	13%		
germecrene D	1%	4%	0%	3%	0%	1%			4%	5%	3%	2%	3%	4%		
lpha-bergamotene								19%								157%
Total SQT _{oxy}	3.3	17.9	2.6	18.8	1.4	9.6		11.7	7.3	12.7	15.5	13.8	5.1	8.6		-6.9

Figure 2: Clockwise from top left: a P. taeda branch displaying first and second year needles; solvent extraction process; GC-FID/MS analysis.

Table 1: A bi-seasonal comparison of P. taeda BVOC potential reported here using several kinds of measurement techniques: (1) Needle tissue concentration (mgC g⁻¹), (2) Branch Enclosure emission rate (µgC g⁻¹ h⁻¹), and (3) Relaxed Eddy Correlation (REA) flux measurements above the forest canopy (μ gC m⁻² h⁻¹). Needle tissue samples are broken into plot type categories and further into 1st and 2nd year needles. BVOC class total's are listed in bold. Compound speciation (% of BVOC class total) are listed for each measurement technique.

Figure 6: Averaged concentrations of MNT α -pinene and β -phellandrene from CO2 fumigated plots, control (no CO_2 added), and forest edge samples ('Field'). β -phellandrene was found to be significantly higher in fumigated plots (at P<0.0001 level) than control and forest edge samples. A possible CO_2 effect.

References:

Geron, C. D., and R. R. Arnts (2010), Seasonal monoterpene and sesquiterpene emissions from Pinus taeda and Pinus virginiana, Atmos. Environ., 44(34), 4240-4251.

Arnts, R. R., F. L. Mowry, and G. A. Hampton (2013), A high-frequency response relaxed eddy accumulation flux measurement system for sampling short-lived biogenic volatile organic compounds, J. Geophys. Res. Atmos., 118, 4860–4873. Helmig, D., J. Ortega, T. Duhl, D. Tanner, A. Guenther, P. Harley, C. Wiedinmyer, J. Milford, and T. Sakulyanontvittaya. 2007. Sesquiterpene emissions from pine trees - identification, emission rate and flux estimates for the contiguous United States. Environmental Science and Technology 41, (5): 1545-1553.

Acknowledgements:

The Duke Forest FACTS1 site was supported by the Office of Science(BER), U.S. Department of Energy, Grant No. DE-FG02-95ER62083.