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Abstract –Oxidation and reduction (redox) reactions are very important in drinking water.
Oxidation-reduction potential (ORP) measurements reflect the redox state of water. Redox
measurements are not widely made by drinking water utilities in part because they are not well
understood. The objective of this study was to determine the effect of oxidant type and
concentration on the ORP of carbonate buffered water as a function of pH.  Oxidants that were
studied included: chlorine, monochloramine, potassium permanganate, chlorine dioxide, and
oxygen. ORP decreased with increasing pH, regardless of the oxidant type or concentration.
ORP increased rapidly with increasing oxidant dosage, particularly at lower concentrations.
Differences in the redox potentials of different oxidant systems were also observed. Waters that
contained chlorine and chlorine dioxide had the highest ORPs.   Tests also revealed that there
were inconsistencies with redox electrode measurements.  In the standard Zobell reference
solution, two identical redox electrodes had nearly the same reading, but in test waters the
readings sometimes showed a variation as great as 217.7 mV.
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1.0 BACKGROUND
1.1 Redox Theory

Oxidation-reduction (redox) reactions describe the transfer of electrons between atoms,
molecules, or ions.  Oxidation and reduction reactions occur simultaneously and together make
up an electrochemical couple. The oxidation reaction takes place at the anode of an
electrochemical cell [1,2,3] and involves the species that loses electrons (referred to as the
reductant). In drinking water, examples of reductants include As3+, Fe2+, and Mn2+. In a drinking
water distribution pipe (e.g., iron, lead and copper), oxidation (or corrosion) of the base metal
takes place at the anode. Reduction takes place at the cathode of an electrochemical cell [1,2,3]
and describes the species that accepts electrons (referred to as the oxidant). Chlorine, oxygen,
monochloramine, and ozone are examples of oxidants found in drinking waters.

The oxidation–reduction potential (ORP) or redox potential indicates the availability of
free electrons and the oxidizing or reducing tendency of a water [1].  The ORP of water is
measured in millivolts [mV] using an ORP electrode. Platinum electrodes are most commonly
used and typically preferred due to their high current exchange density. The exchange current, Io,
is a fundamental characteristic of electrode behavior, which is defined as the rate of oxidation or
reduction at an equilibrium electrode in terms of current (amps). The larger the current exchange,
the more stable the electrode response [4].  This current is dependent on the redox species, the
concentration of the species in water, and the material of the electrode [7]. Other important
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characteristics of oxidation-reduction potential electrodes include the measuring range, accuracy,
and response time [4].  Measured ORP values are often normalized with respect to a standard
hydrogen electrode (SHE), EH [8, 4].  Converting ORP measurements to EH depends on the type
of ORP electrode and can be calculated, although electrode manufacturers typically provide
conversion factors as a function of temperature (Table 1).

TABLE  1.  Example of manufacturer supplied SHE conversation table.  Conversion potentials,
C, developed by the reference electrode portion relative to the SHE at various temperatures

[Thermo Orion Model 9678BN, Platinum–Ag/AgCl combination electrode].

Temperature oC Electrode potential in mV (C) 900001
solution

10 251
20 244
25 241
30 238

Reference—Thermo Orion Manual for Model # 9678BN

The conversion from the electrode mV readings to EH (respect to the SHE) using the
example in Table 1 can be calculated according to:

CEE measuredH +=                  [1]

where EH  is the oxidation-reduction potential of the sample relative to the SHE in mV, Emeasured is
the potential measured by the electrode (i.e., platinum-Ag/AgCl), and C is the potential developed
by the reference electrode portion relative to the SHE.

The theoretical ORP of a balanced oxidation-reduction reaction [Equation 2]

dDcCbBaA +→+                                                 [2]

can be calculated based on theoretical considerations according to the Nernst Equation:
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and EH is the redox potential (mV), Eo is the standard potential (mV), R is the universal gas
constant (8.314 X 10-3 kJ/mol-K), T is the temperature (°K), n is the number of moles of electrons
transferred in the reaction, and F is Faraday’s constant (96,490 C-mol-1) [1].

 ORP measurements in drinking water can be easily performed in the field, in either batch
or continuous mode, making it a possible process control tool and indicator of distribution system
contamination.  Although the Nernst equation expresses the thermodynamic relationship of the
redox potential and the solution composition at equilibrium [4], the chemistry of natural waters is
complex and redox equilibrium is rarely achieved. Because of this limitation, performing accurate
ORP measurements in natural waters can be complex and sometimes impossible due to slow
kinetics, mixed potentials, and electrode failure [5,6,9].  Therefore, ORP measurements are
largely misused, misunderstood, and rarely used by the drinking water community.

1.2 Importance of ORP Measurements in Water and Wastewater Treatment

Oxidation-reduction reactions are extremely important in many drinking water and
wastewater processes and applications.  For example, the corrosion of distribution system
materials, precipitation of iron and manganese compounds, nitrification, and microbial
disinfection are all described or dependent on oxidation-reduction reactions. Redox conditions in
drinking water systems can widely vary in range from anoxic (e.g., natural source ground water)
to disinfected finished water.  Therefore a variety of redox-dependent species can exist in
drinking water systems.

ORP measurements have been used in various pilot studies and full-scale wastewater
treatment plants to monitor disinfection and dechlorination processes. Kim et al. performed ORP
testing at a wastewater treatment facility in Simi Valley, California [10, 11]. Since chlorine and
other types of oxidants’ reactivity in water greatly depend on redox conditions, ORP
measurements, in theory, could be used to monitor disinfection success. ORP equipment was
established in the plant and correlations from ORP, pH, residual chlorine measurements, and
coliform counts were determined. This study showed that the ORP measurements had a higher
correlation than the residual chlorine measurements, in terms of coliform inactivation [10, 11]. By
using ORP monitoring, the plant saved considerably on chemical supplies (chlorine by 47% by
cost). This potential application has sparked a need for further investigation of ORP
measurements as a method of water quality control.

1.3 Research Objective

The objective of this work was to examine the effects of pH, and oxidant type and
concentration (mg/L) on the ORP of carbonate buffered water. Oxidants evaluated include free
chlorine [Cl2], oxygen [O2], chlorine dioxide [ClO2], monochloramine [MCA], and potassium
permanganate [KMnO4].  Measurement consistency issues and ORP electrodes operational
concerns were also addressed.
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2.0 EXPERIMENTAL DESIGN

2.1 Glassware and Sampling Materials

All glassware used during these experiments was thoroughly rinsed in deionized (DI)
water using a Milli-Q Plus© cartridge deionized water system (Millipore Corp., Bedford, MA)
having a resistivity of �18.2 M Ù-cm.   All plastic used was disposed of after one use (pipette tips,
micropipettes, and syringes).

2.2 Chemical Reagents

            Unless otherwise specified, all chemicals used in this study were Analytical Reagent (AR)
grade. Dilute 0.6 M HCl (Mallinckrodt, Inc., Paris, KY) and 0.5 N NaOH (Fisher Scientific,
Fairlawn, NJ) were used to adjust the pH.  Sodium bicarbonate (A.C.S. grade, Fisher Scientific,
Fairlawn, NJ) was used to buffer the test water. The oxidant stock solutions were made using the
following chemicals: chlorine (37 % AR select HOCl, Mallinckrodt, Inc., Paris, KY), potassium
permanganate (technical grade, Carus Chemical, Peru, Illinois), and oxygen (air). The chloride
dioxide was prepared from sodium chlorite (Spectrum Chemical Mfg. Corp, Gardena, CT) and
concentrated H2SO4 (95-98% purity, Fisher Scientific, Fairlawn, NJ) according to standard
method 4500-ClO2. The monochloramine stock solution was made using a Cl2 stock solution (37
% AR select HOCl, Mallinckrodt, Inc., Paris, KY) and ammonium sulfate ((NH4)2SO4, Fisher
Scientific, Fairlawn, NJ) to create a 3:1 ratio of Cl2 to NH4.  The pH of the Cl2 solution was
adjusted to 9 before adding to the (NH4)2SO4 solution. To combine the two solutions, the
volumetric flask was placed into an ice bath. The (NH4)2SO4 was placed into the volumetric and
Cl2 was slowly added under mixing conditions. The chlorine dioxide was made using standard
method 4500-ClO2.  The Zobell Solution was prepared by adding 1.41 grams of potassium
ferrocyanide (K4Fe(CN)6•3H2O, Fisher Scientific, Fairlawn, NJ), 1.01 grams of potassium
ferriccyanide (K3Fe(CN)6, Spectrum Chemical Mfg. Corp, Gardena, CT), and 7.46 grams of
potassium chloride (KCl, A.C.S grade, Fisher Scientific, Fairlawn, NJ) into 1 liter of DI water.

2.3 Analytical methods

             The pH of the test water was measured with a Hach Company (Loveland, CO) EC40
bench top pH/ISE meter (model 50125) and a Hach Company (Loveland, CO) combination pH
electrode (Model 48600) with temperature corrections.  The instrument was standardized daily
using a two-point calibration with pH 7 and 10 standard solutions (Whatman, Hillsboro, OR).
Dissolved oxygen (DO) was measured with a Hach Company (Loveland, CO) Model DO175
dissolved oxygen meter and a Model 50180 dissolved oxygen probe. Redox potential was
measured with a Model 450 Corning pH/ion meter (Corning, NY), with Thermo-Orion platinum
combination redox electrodes (Model 9678BN, Buerly, MA).  The solid chemicals were weighed
on an analytical balance (Ainsworth, Denver Instruments).

Concentration measurements for free chlorine and total chlorine were measured using a
HACH DR/2010 Portable Datalogging Spectrophotometer (Loveland, CO).  The chlorine dioxide
was measured using a Palintest Micro 1000 Chlodioxmeter (Palintest Micro 1000, England) using
10 mL glass cuvettes (Palintest, England). Free and total chlorine were measured with a Hach
DR/2000 spectrophotometer (Loveland, CO), using the DPD method (standard method 4500-Cl
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G, Hach Company 1990). MCA and ammonia concentrations were measured using a HACH
pocket colorimeter (as mg Cl2/L or NH4 –N mg/L, Loveland, CO). The concentrations of KMnO4

were not measured. The ORP electrodes were stored in Zobell reference solution when not in use.
The ORP electrodes were rinsed thoroughly with DI water before each use.  Additional
cleanings/applications performed when needed and in accordance with the manufacturer’s
instructions.

   2.4 ORP Measurement Experiments

To obtain the ORP data, simple bench-scale tests were performed in a 1-L glass reactor
(Ace Glass, Vineland, NJ) with a plexiglass paddle (one 0.75-inch radius blade) continuously
stirring the test solutions at 20 RPM (G=3.5 sec-1).  The tests were conducted in a weak carbonate
buffered (DIC = 5 mg C/L) in double deionized (DDI) water which was prepared by passing
distilled water through a Milli-Q Plus© cartridge deionized water system (Millipore Corp.,
Bedford, MA), having a resistivity ∃ 18.2 MΣ. cm.  The pH was regulated and maintained at 7, 8,
or 9 by a computerized acid and base titration system using Multi_T version 2.0 software (Jensen
systems, Germany). The pH was adjusted using 0.6 N HCl and 0.5 N NaOH.  The ORP of free
chlorine, monochloramine, potassium permanganate, chlorine dioxide, and oxygen solutions were
determined at each pH value.  Two platinum-Ag/AgCl ORP electrodes were used to measure the
ORP. These measurements were recorded every 100 seconds.  In addition, at every 200 seconds a
small increment [ranging from 0.1 mL and 2 mL at a time] of oxidant was added to the water
until electrodes were stabilized.  For the experiments using oxygen, the test water was purged of
oxygen and then stirred until the water was saturated with air (DO ≈ 8 mg/L). Each test was run
until the ORP stabilized.  All ORP measurements were made in duplicate (two electrodes) to
examine measurement reliability and reproducibility issues. All ORP measurements were
reported in units of volts to standard hydrogen potential values (EH).

3.0 RESULTS AND DISCUSSION

3.1 Dissolved Oxygen

The impact of dissolved oxygen concentration on the EH (calculated from the measured
ORP) of carbonate buffered water (DIC = 5 mg C/L, 23°C) was determined in duplicate at pH 7,
8, and 9.  The initial EH of the pH 7 water was approximately  0.421 V (0.46 mg O2/L) and
increased steadily with increasing dissolved oxygen concentration to 0.582 V (Table 2) as the
dissolved oxygen concentration reached saturation (approximately 8 mg/L).  Similar EH trends
with increasing dissolved oxygen concentration were observed in pH 8 and 9 waters however the
magnitude decreased with increasing pH.  Final EH values were 0.551 V (7.83 mg O2/L) and
0.508 V (8.07 mg O2/L) for pH 8 and 9, respectively.

Large variations in ORP measurements were observed between the two electrodes at all
pH values.  The degree of variation decreased with increasing pH from an average of 0.059 V at
pH 7 to 0.024 V at pH 8 (Table 3).  The maximum variability was observed at low dissolved
oxygen levels (<1 mg/L) and maximum differences were 0.094, 0.048, and 0.033 V at pH 7, 8,
and 9, respectively.
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TABLE 2.  Maximum EH values (Volts) as a function of pH and oxidant type
(DIC = 5 mg C/L, 23oC).

Oxidant pH 7 pH 8 pH 9
Oxygen 0.582 0.552 0.508

Monochloramine 0.806 0.716 0.660
Potassium permanganate 0.812 0.795 0.672

Chlorine dioxide 0.980 0.943 0.912
Chlorine 1.020 0.922 0.769

3.2 Monochloramine

The effect of monochloramine (MCA) concentration on ORP as a function of pH is
shown in Figure 1.  The initial EH of the pH 7 water was approximately 0.445 V before MCA was
added (close to saturated dissolved oxygen concentration).   EH increased rapidly with increasing
MCA dose up to approximately 1.5 mg Cl2/L.  Increasing the MCA concentration beyond 1.5 mg
Cl2/L had little additional impact on EH which approached a maximum value of approximately
0.806 V by a concentration of 3.5 mg/L (Table 2). The EH trends at pH 8 and 9 as a function of
MCA dose were nearly parallel to the pH 7 trend. The magnitude of the EH trends and ultimate
maximum stabilization values decreased with increasing pH to 0.716 V and 0.660 V at pH 8 and
9, respectively.

The average variability in replicate ORP measurements with separate increased with
increasing pH from 0.011 to 0.048, and 0.047 V at pH 7, 8, and 9, respectively.  The maximum
variation between the two electrode measurements increased to 0.018, 0.072, and 0.071 V at pH
7, 8, and 9.
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FIGURE 1. The effect of monochloramine concentration and pH on EH (5 mg C/L, 23oC).

3.3 Potassium Permanganate

 The effect of potassium permanganate concentration on EH was similar to MCA EH

trends in magnitude.  The initial EH of the pH 7 water was approximately 0.619 V before KMnO4

was added (close to saturated dissolved oxygen concentration).  EH increased rapidly with
increasing KMnO4 concentration up to approximately 0.6 mg KMnO4/L. Increasing KMnO4

concentration beyond 0.6 mg/L had little additional effect on EH (not shown).  The maximum EH

value reached approximately 0.812 V by a concentration of 3.2 mg KMnO4/L. The EH trends at
pH 8 and 9 as a function of KMnO4 concentration were nearly parallel to pH 7 trends. The
magnitude of the trends and ultimate stabilization values decreased with increasing pH to 0.795 V
at pH 8 and 0.672 at pH 9 (Table 2).

The average variability in replicate ORP measurements increased with increasing pH
from 0.068, 0.050, and 0.073 V at pH 7, 8, and 9, respectively (Table 3).  The maximum variation
between the two electrode measurements increased to 0.083, 0.081, and 0.121 V at pH 7, 8, and
9.
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3.4 Chlorine dioxide

The impact of chlorine dioxide dose on the EH of carbonate buffered water (DIC = 5 mg
C/L, 23°C) was determined in duplicate at pH 7, 8, and 9 (Figure 2).  The initial EH of the pH 7
water was approximately 0.445 V before chlorine dioxide was added (saturated dissolved oxygen
concentration).  EH increased rapidly with increasing chlorine dioxide concentration, up to
approximately 0.3 mg ClO2/L. Increasing chlorine concentration beyond 0.3 mg ClO2/L, had little
additional impact on EH.  The EH approached a maximum value of approximately 1.0 V by a
concentration of 0.6 mg ClO2/L. The EH trends at pH 8 and 9 as a function of chlorine dose were
nearly parallel to pH 7 trends. The magnitude of the trends and ultimate stabilization values
decreased with increasing pH to 0.943 V and 0.912 V at pH 8 and 9, respectively.

The average variability in replicate ORP measurements increased with increasing pH
from 0.050, 0.078, and 0.112 mV at pH 7, 8, and 9, respectively (Table 3).  The maximum
variation between the two electrode measurements increased to 0.079, 0.114, and 0.218 V at pH
7, 8, and 9.
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FIGURE 2. The effect of chlorine dioxide concentration and pH on EH (5 mg C/L, 23oC).

3.5 Chlorine

The chlorine dose impact on the EH (calculated from the measured ORP) of carbonate
buffered water (DIC = 5 mg C/L, 23°C) was determined in duplicate at pH 7, 8, and 9 (Figure 3).
The initial EH of the pH 7 water was approximately 0.445 V before chlorine was added (saturated
dissolved oxygen concentration).   EH increased rapidly with increasing chlorine concentration up
to approximately 0.6 mg Cl2/L.  Additional increase in EH beyond a concentration of 0.6 mg Cl2/L
was minimal and approached a maximum value of approximately 1.0 V by as concentration of
3.2 mg Cl2/L. The EH trends at pH 8 and 9 as a function of chlorine concentration were nearly
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parallel to pH 7 trends. The magnitude of the trends and ultimate stabilization values decreased
with increasing pH to 0.922 V and 0.769 V, respectively.

The average variability in replicate ORP measurements increased with increasing pH
from 0.025, 0.023, and 0.054 V at pH 7, 8, and 9, respectively (Table 3).  The maximum variation
between the two electrode measurements increased to 0.067, 0.072, and 0.094 V at pH 7, 8, and
9.
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FIGURE 3. The effect of chlorine concentration and pH on EH (5 mg C/L, 23oC).

3.7 Effect of Oxidant Type on ORP

The ORP of all oxidants in water as a function of concentration are graphically compared
at pH 8 in Figure 4. In general, the trends in EH with increasing oxidant concentration were
similar for all oxidants tested; steep EH increases were observed at low concentrations followed
by tendency to level off at higher concentrations. Final EH values of the oxidant solutions ranked
from highest to lowest as follows: ClO2 > Cl2 > KMnO4 > MCA > O2 (Table 2). Chlorine dioxide
and free chlorine had similar EH values (only differed by 0.21 V) while obvious differences
between other oxidants were observed.
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FIGURE 4. The effect of oxidant type on EH (5 mg C/L, 23oC, pH 8).

The relative strengths of the oxidants in water were the same at pH 9 (Table 2).  At pH 7, the
relative strengths were also the same with the exception that chlorine was higher than chlorine
dioxide (Table 2).

Increasing the pH caused the EH of all oxidant containing waters to decrease.  The degree
of decrease was dependent on oxidant type.  Chlorine dioxide was least impacted by changing pH
only decreasing by 0.068 V between pH 7 and 9. The decrease was similar to the drop in the
oxygen system which only dropped by 0.074 V.  MCA and permanganate were similar dropping
by 0.146 and 0.140 V, respectively between pH 7 and 9.  Chlorine was most greatly impacted by
pH dropping by 0.251 V between pH 7 and 9.

3.8 Measured Electrode Variability

Tables 3 and 4 show the variation between measurements of two electrodes reported as
the average variation (Equation 5) and percent difference (Equation 6) in EH measurements
between the two electrodes as a function of pH and oxidant type.

                   
ORP

ORPORP
V N
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A

∑ +
= 21

                                   [5]
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Av is the average variation in ORP readings for a given pH, AR is the average final ORP
reading at stabilization between the two electrodes, MORP1 and MORP2 are the ORP measurements
from electrode 1 and 2, NORP us the number of measurements taken for a given pH range, and %D
is the percent difference in ORP readings.

 Several trends were observed.  With the exception of oxygen and permanganate,
replicate electrode measurement variability increased with increasing pH or decreasing ORP.
The reverse trend was found in the oxygen system (variability decreased with increasing pH) and
the lowest variability in the permanganate system was at pH 8.  The greatest variability was
observed in the chlorine dioxide system.

 TABLE 3. Average variation, AV, in EH  (based on ORP measurements made with two
electrodes, (Equation 5) as a function of pH and oxidant type (DIC = 5 mg C/L, 23 oC).

Oxidant pH 7 pH 8 pH 9
Oxygen 0.059 0.038 0.0236

Monochloramine 0.011 0.048 0.047
Potassium permanganate 0.068 0.050 0.073

Chlorine dioxide 0.050 0.078 0.112
Chlorine 0.025 0.024 0.055

TABLE 4. The variation in EH  (ORP measurements made with two electrodes) expressed as a
percentage, % (Equation 6), as a function of pH and oxidant type (DIC = 5 mg C/L, 23 oC).

Oxidant pH 7 pH 8 pH 9
Oxygen 10.2 6.9 4.6

Monochloramine 1.3 6.7 7.1
Potassium permanganate 8.4 6.3 10.8

Chlorine dioxide 5.1 8.2 12.3
Chlorine 2.5 2.6 7.1

3.8 Electrode Reproducibility and Consistency/Electrode Maintenance

Electrode consistency is a very important aspect in obtaining accurate, reproducible and
comparable measurements.  During this study, both electrodes’ readings were within ± 0.0003 V
of each other when placed in the standard Zobell solution suggesting they responded in a similar
manner.  However, when taking readings during the experiments, the two electrodes often
differed significantly (as high as 217.7 mV).  The differences in readings could possibly be
explained by the redox chemistry of each system, slow kinetics, electrode condition, and other
limitations. In addition, redox electrodes cannot be calibrated over a large redox potential range.
Zobell solution acts as a measurement to ensure the probes are reading the same ORP values [3,
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4]. Additional maintenance and cleaning of the probes may be able to reduce the large variation
in the readings. Additionally, probe contamination or precipitation formation may have caused
variation in the measurements as well.

4.0 CONCLUSIONS

This research provides an initial step to understanding and interpreting ORP
measurements in drinking waters.  The results may eventually lead to greater realization of the
use of ORP as a tool to monitor drinking water processes such as disinfection effectiveness
monitoring or drinking water distribution system corrosion monitoring. Additional investigation
is needed to link the relationships of these ORP measurements to natural water systems.
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