

1

APPLICATION OF SOFTWARE QUALITY ASSURANCE CONCEPTS
AND PROCEDURES TO ENVIRONMENTAL RESEARCH INVOLVING

SOFTWARE DEVELOPMENT

Robert S. Wright, Mail Code E343-03
U.S. Environmental Protection Agency

National Risk Management Research Laboratory
Air Pollution Prevention and Control Division

Research Triangle Park, NC 27711

As EPA’s environmental research expands into new areas that involve the development of
software, quality assurance concepts and procedures that were originally developed for
environmental data collection may not be appropriate. Fortunately, software quality
assurance is a well-developed technical field in software engineering and its concepts
and principles can be applied to software that is developed for environmental research.
There are significant parallels between the two types of quality assurance and it should
not be difficult to incorporate software quality assurance concepts and procedures into
the EPA Quality System. This paper compares these two types of quality assurance and
highlights their similarities and differences. Even readers who are not familiar with
software quality assurance can use the concepts and procedures described in this paper
to improve the quality of software developed for environmental research.

INTRODUCTION

EPA Order 5360.1 A2 establishes policy and program requirements for the mandatory Agency-
wide quality system. Its scope includes the collection, evaluation, and use of environmental data
as well as the design, construction, and operation of environmental technology. In the past,
EPA’s quality assurance activities have focused largely on environmental data collection.
Increasingly, the uses of environmental data in databases and other information systems have
become an area of concern. Quality assurance principles and procedures are needed for these
information systems. The concepts and procedures that have been developed for environmental
data collection do not apply well to information systems. Software quality assurance has
developed in parallel with EPA’s quality system and can be applied in those instances in which
environmental research includes the development of software. This paper describes software
quality assurance concepts and procedures that can be useful in those instances.

SYSTEMATIC PLANNING

The development of software begins with the systems analysis and design process, which is
analogous to the systematic project planning process (see Table 1). This process is a direct
application of the Shewhart cycle (plan-do-check-act). In broad terms, problems and solutions
are identified, goals are established, software quality criteria (metrics) are set to gauge
performance, software development is implemented, and progress is assessed during
development and at its completion. The software is documented during the analysis phase in

2

software requirements, which describe the purpose and desired functions of the software, and in
functional specifications, which are a formal description of the software and which is the
blueprint for developing the software. Based on these documents, the design phase establishes
the proposed structure of the software, which is documented in a high-level, architectural design
for the overall system structure and in a detailed design that includes the design of specific
program details. During this phase, testing procedures are developed to determine if quality
metrics are being attained. During the development phase, testing and corrective action occur as
needed. Additionally, the software is assessed in informal and formal reviews.

A software quality plan is prepared to document how quality assurance activities support the
development and to answer questions such as: what are the quality metrics?; what testing and
assessment will be done?; and how are uncovered problems corrected? The plan may contain
the following sections: purpose; reference documents; management; documentation; standards,
practices, conventions, and metrics; assessments; software configuration management; problem
reporting and corrective action; tools, techniques, and methodologies; code control; media
control; supplier control; records collection, maintenance, and retention; and testing methods.

THE GRADED APPROACH

Some software quality assurance procedures may not be appropriate for a specific software
development project. As is the case for environmental data collection projects, a graded
approach can be used to apply an appropriate level of software quality assurance for a project.
Argonne National Laboratory’s Decision and Information Sciences Division (ANL DISD) has
three quality levels for its software development projects (see Table 2). The quality assurance
procedures that must be followed at each level are dependent on factors such as criticality,
external impact, development effort, security impact, and cost of failure.

QUALITY METRICS

Quality metrics, such as reliability, usability, maintainability, and adaptability, are more
appropriate for software development projects than are the data quality indicators applicable to
environmental measurements, such as precision, bias, and representativeness (see Table 3).
Quality metrics can be divided into (1) process metrics which are used to improve the software
development and maintenance process, (2) product metrics which describe the characteristics of
the software itself, and (3) project metrics which describe the project and its execution (Ginac,
1998). There should be a correlation between the product metrics and the software requirements.

SOFTWARE TESTING

Software testing procedures fill the same role in software development projects as quality control
checks do in environmental data collection projects. Various manual and automated techniques
are available to test software inputs and outputs (black box testing) or to test the internal
structure of software (white box testing) at various stages of its development. One model of
software testing is a “V” in which software requirements, functional specifications, architectural

3

design, and detailed design move down the left side while unit testing, integration testing, system
testing, and acceptance testing move up the right side. The expected output or result of each
stage of the testing is defined in the documentation that is opposite it on the “V.” Testing should
not be done by the individual who prepared the software and, where feasible or necessary, an
organization should not test its own software (Myers et al., 2004).

Independent verification and validation of software is a quite formal testing process that reserved
for important, large, and complex projects, such as in the aerospace industry, for which it is
critical that the software perform successfully. It is performed by an organization not involved
in developing the software. The purpose of independent verification and validation is to ensure
that the software design, implementation, and documentation meet requirements. Verification
addresses “Am I building the product right?” and validation addresses “Am I building the right
product?” The expected benefits are increased objectivity, earlier detection of errors, reduced
effort and costs of removing detected errors, enhanced operational correctness, and a more
consistent testing. It establishes traceability between the software and the requirements.

SOFTWARE DOCUMENTATION

The documentation that is needed for a software development project should be defined in the
design phase. It may be embedded in the software itself or it may be in hard-copy or on-line
documents. The documentation requirements for ANL DISD projects include a software quality
assurance plan, a configuration management plan, a test plan, and test documentation/results (see
Table 4), which parallel EPA’s documentation requirements. In addition to development-related
documents, other documents that may be written for the software include code documentation,
user documentation, and guides for installation, operation, and maintenance.

SOFTWARE ASSESSMENT

The assessment function can be performed by peer reviews that are performed at various stages
of the development process and with various degrees of formality as follows (Wiegers, 2002):

• Inspection is the most systematic and rigorous of the assessments and it is the software
industry’s best practice. It has procedures that are similar to a technical systems audit. A
group of people, including a moderator and a recorder, conduct an inspection to review a
document, such as a functional specification or test plan. The goal is to find problems
with the document, not to fix them. A formal report of the inspection will be prepared.

• Team review is planned and structured, but less formal and rigorous than inspections
• Walkthrough is an informal review in which the software author describes the software to

a group of peers and solicits formal comments. The author takes the dominant role.
• Pair-programming is when two developers work on the same software simultaneously at

the same workstation. The synergy of two focused minds creates superior software.
• Peer-deskcheck is a detailed self-review of software by the programmer to find errors.
• Passaround is when a programmer solicits informal comments from peers about software.
• Ad hoc review is a spur-of-the-moment review within the software team.

4

REFERENCES

Argonne National Laboratory, 2003. Appendix B to Software Quality Assurance (Argonne

National Laboratory, Decision and Information Sciences Division)
R.H. Dunn, 1990. Software Quality Concepts and Plans (Prentice Hall)
R.H. Dunn and R.S. Ullman, 1994. TQM for Computer Software, Second Edition (McGraw-

Hill)
G.M. Gelston et al., 1998. An Approach to Ensuring Quality in Environmental Software (Pacific

Northwest National Laboratory Publication No. PNNL-11880)
T. Gilb and D. Graham, 1993. Software Inspection (Addison-Wesley)
F.P. Ginac, 1998. Customer Oriented Software Quality Assurance (Prentice Hall)
D. Ince, 1994. An Introduction to Software Quality Assurance and its Implementation

(McGraw-Hill)
W.E. Lewis, 2000. Software Testing and Continuous Quality Improvement (Auerbach, 2000)
M. Luna, Systems Analysis and Design I (York University)

(http://www.math.yorku.ca/Who/Guests/mluna/2010/ITEC-2010-2.html)
G.J. Myers et al., 2004. The Art of Software Testing, Second Edition (John Wiley & Sons)
J.W. Satzinger et al., 2004. Systems Analysis and Design in a Changing World, Third Edition

(Course Technology)
U.S. Environmental Protection Agency, 2000. Guidance for the Data Quality Objectives

Process- EPA QA/G-4 (EPA Publication No. EPA/600/R-96/055,)
U.S. Environmental Protection Agency, 2002. Guidance for Quality Assurance Project Plans-

EPA QA/G-5 (EPA Publication No. EPA/240/R-02/009)
K.E. Wiegers, 2002. Peer Reviews in Software (Addison-Wesley)

BIOGRAPHICAL INFORMATION

Mr. Wright is a chemist in US EPA=s Air Pollution Prevention and Control Division in Research
Triangle Park, North Carolina. He provides quality assurance support to the researchers there,
including document reviews and audits of technical and quality systems. He has 33 years'
environmental science experience in a wide variety of technical areas, including quality
assurance, environmental measurements, instrument evaluation, hazardous wastes, and
atmospheric chemistry. His experience in quality assurance ranges from preparing guidance
documents to conducting audits of gaseous calibration standards. Prior to coming to US EPA, he
was an environmental scientist at RTI International where he conducted contract research for
governmental and industrial clients. He was an engineering technician at the Ohio EPA where
he worked with ambient air quality monitors. Additionally, he was a Peace Corps volunteer in
Botswana where he taught science in a junior secondary school. Mr. Wright has a B.S. degree in
physics and a M.S. degree in environmental science and engineering.

5

Table 1. Comparison of Systematic Planning Process and Software Analysis Process

Systematic Planning Process
(after EPA, 2000)

 Software Analysis Process
(after Satzinger et al., 2004)

Step 1: identify project manager and staff Step 1: research and understand problem
Step 2: identify project schedule,

resources, milestones, and
requirements

 Step 2: verify that the benefits of solving
the problem outweigh the costs of
the solution

Step 3: describe the project goals and
objectives

 Step 3: define the requirements for
solving the problem

Step 4: identify the types of data needed Step 4: develop a set of possible solutions
(alternatives)

Step 5: identify constraints to data
collection

 Step 5: decide which solution is best and
make a recommendation

Step 6: determine the needed data quality Step 6: define details of chosen solution
Step 7: describe how, when, and where

the data will be obtained
 Step 7: implement the solution

Step 8: specify QA and QC activities to
assess the performance criteria

 Step 8: monitor to make sure that you
obtain the desired results

Step 9: describe methods for data analysis,
evaluation, and assessment against
the intended use of the data

Table 2. Argonne National Laboratory Graded Approach to Software Quality Assurance

Quality level Level C+ (low) Level B (medium) Level A (high)
Consequence of
failure

Negligible Moderate to severe Unacceptable, major
losses

External impact and
visibility

Few external users,
proof of concept

Limited distribution,
prototype or beta

Wide distribution and
visibility

Complexity and
technical risk

Few modules,
moderate complexity

Several modules and
libraries

Many complex
components

Development effort
(person-years)

Less than 1 1 to 2.5 More than 2.5

Customization Minimal Moderate Significant
Security impact and
proprietary impact

None Moderate Significant

Cost of failure Loss less than $100k Loss $100k to $1m Loss more than $1m

6

Table 3. Comparison of Quality Metrics for Data Collection and Software Development

Environmental Data Quality Indicators
(after EPA, 2002)

 Software Quality Metrics and Attributes
(after Dunn, 1990)

Bias Reliability (completeness, consistency and
precision, robustness, simplicity,
traceability)

Precision Usability (accuracy, conformity,
documentation accuracy/clarity,
completeness, efficiency, testability)

Accuracy Maintainability (documentation
accuracy/clarity, modularity, readability,
simplicity)

Representativeness Adaptability (modifiability, expandability,
portability)

Comparability
Completeness
Sensitivity

Table 4. Argonne National Laboratory Requirements for Software Documentation

Quality level Level C+ (low) Level B (medium) Level A (high)
Software QA plan X X X
Configuration plan X X X
Testing plan X X X
Testing records X X X
Requirements
document

 X X

Design document X X
Design reviews X
Code reviews X
Documentation X X
External reviews If more than 3 person-

years

