Long term ecological impacts from oil spills:

Comparison of *Exxon Valdez*, *Hebei Spirit*, and Deepwater Horizon

Mace G. Barron

U.S. EPA Gulf Ecology Division, Gulf Breeze, FL USA

The views expressed in this presentation are those of the authors and do not necessarily reflect the views or policies of the U.S. Environmental Protection Agency (EPA). Any mention of trade names, products, or services does not imply an endorsement by the U.S. Government or the EPA. Photos and graphics courtesy of U.S. and Korean copyright owner: NOAA, EPA, USGS, USCG, USDOD, KNPS)
Prior to the EVOS, impacts considered to be:
• Short-term direct effects
• Controlled by mono-aromatic and less persistent components of oil
• Narcosis-driven acute toxicity to fish
• effect concentrations in parts per million

Long term impacts of Exxon Valdez (EVOS), Hebei Spirit (HSOS), Deepwater Horizon (DWH):
• How EVOS discoveries informed HSOS and DWH
• Learned: spill dynamics, environment, response actions interact to determine impacts and recovery

Images source: NOAA, KPNS, USCG
Exxon Valdez Oil Spill (EVOS)

Image source: NOAA
• March 24, 1989, tanker spill into Prince William Sound, Alaska
• 42 million liters of Alaska North Slope crude oil
• Oiled 2000 km shoreline in cold pristine subarctic environment
• Killed: 300,000 birds, 3000 sea otters

Images source: NOAA
Population level impacts of EVOS

- **Glaucous-winged Gull**: R
- **Bald Eagle**: R
- **River Otter**: R
- **Marbled Murrelet**: NR
- **Pigeon Guillemot**: NR
- **Sea Otter**: R
- **Harlequin Duck**: R
- **Killer Whale**: NR

Adapted from: Esler et al. 2018. Deep-Sea Res 147:36-42
Sea Otters

Harlequin Ducks

Killer Whales (Orca)

Salmon and Herring

Pink salmon:
- part per billion PAHs delayed growth and reduced marine survival (Heintz et al. 2000. MEPS 208:205-216)

Pacific herring:
- developmental effects at <10 ppb
- syndrome of edema, malformations

Images source: NOAA
Herring population crash after EVOS

Adapted from: Esler et al. 2018
Deep-Sea Res 147:36-42
What we learned from EVOS

Oil persisted in rocky intertidal shorelines for decades
 • small pockets of residual oil continue to be observed
 • continued exposure to wildlife
 • ppb levels of PAHs cause a syndrome of embryo toxicity
 • salmon affected for two generations
 • unclear role in catastrophic reductions in herring populations
 • weathered crude oil can be more toxic than fresh
 • Long term population level impacts on seabirds, sea otters, orcas, subtidal communities (10+ years)
 • some orca pods going extinct

Images source: NOAA
Hebei Spirit Oil Spill (HSOS)

Image source: Korea National Park Service
• December 7, 2007, tanker spill in coastal western Korea
• 12 million liters of Middle Eastern crude oils
• Oiled >200 km shoreline of ecologically important environments
• Immediate impacts to fisheries, mariculture, beaches
• Extensive removal of stranded oil by 1 million volunteers

Images source: KNPS
Oil exposures declined within two years

Adapted from: Yim et al. 2017. AECT 73:47-54
Recovery of subtidal within 5 years

Adapted from: Yim et al. 2017. AECT 73:47-54
Recovery of intertidal within 10 years

Adapted from: Yim et al. 2017. AECT 73:47-54
What we learned from HSOS

Rapid removal of stranded oil limited exposure:
• hydrocarbons declined in most areas within first year
• some lingering oil in some areas

And limits long term ecological impacts:
• plankton: ≤ 1 year
• Fish: ≤ 2 years
• subtidal communities: ≤ 5 years
• intertidal benthos: lingering impacts on abundance and composition

Lab embryo toxicity similar to EVOS also observed for HSOS oil
sea bass, olive flounder (Yung et al. 2015. ES&T 49:13639)

Images source: KNPS
Deepwater Horizon (DWH)
• April 20, 2010: largest accidental spill in human history
• Deep ocean release into the Gulf of Mexico following rig collapse
• 507 million liters of light Louisiana crude oil over 4 months
• 7 million liters of chemical dispersants: surface, subsea injection
• Impacts to deep ocean, pelagic, and coastal ecosystems
• Oiled 2000 km shoreline of beaches and coastal wetlands
Maximum shoreline oiling

http://gomex.erca.noaa.gov/ermi.html
Shoreline oiling conditions: 3.5 years later
(Aug-Nov 2013 SCAT surveys)

http://gomex.erca.noaa.gov/erma.html; Nov 14, 2013 download
Reported Wildlife Oiling

Numbers Reported to UAC

- **Birds**:
 - Oiled Dead: 10
 - Oiled Live: 1
 - No oil Dead: 1

- **Turtles**:
 - Oiled Dead: 1
 - Oiled Live: 10
 - No oil Dead: 100

- **Mammals**:
 - Oiled Dead: 1
 - Oiled Live: 100
 - No oil Dead: 1000

Source: USDOJ www.fws.gov/home/dhoilspill/pdfs/ConsolidatedWildlifeTable042011.pdf; April 20, 2011 cumulative
Federal fishery closures (May 2-Oct 22, 2010)
20 million hectares; 37% of Gulf
EVOS embryotoxicity: demonstrated in 7 Gulf fish species

<table>
<thead>
<tr>
<th></th>
<th>control</th>
<th>oil-exposed</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Bluefin tuna</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Yellowfin</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Amberjack</td>
<td></td>
</tr>
</tbody>
</table>

D南方蓝鳍金枪鱼, 黄鳍金枪鱼, 黄尾 amberjack

- Edema
- Deformities
- Heart rate effects
- Threshold effects at 0.3 – 6 ppb

Mahi Mahi

- Reduced swim performance
- Effects at 1.2 ppb for 48 hours

Source: USDOJ

TREX-013333; TREX-013338

D-32618A
Offshore Impacts

• deep ocean coral
• deep sea bed organisms
• oceanic fishes with embryo-larvae at surface (bluefin, mahi)
• floating sea weed communities
• marine mammals, sea turtles
• sea birds

Phototoxicity validated in blue water of Gulf

Source: USCG USDOJ NOAA LDWF
Impacts to Coastal Systems

• **Oiled shoreline** (2113 km; 1300 miles): over the 87 day release
• **Oiled wetlands** (175 km; 108 miles): degraded health of coastal marsh vegetation/fauna; loss of nearshore oyster cover; increased marsh erosion
• **Oiling & response actions**: lost sand beach habitat; submerged vegetation
• **Loss of billions of oysters**: failed recruitment over several years
• **Affected ecosystem services**: primary production; resource abundance; storm/flood protection; nutrient cycling; water filtration
• **Continuing dolphin impacts**: poor health, stranding, mortality, reproduction

Source: USCG USDOJ NOAA LDWF
Near shore recovery times:
2 - > 10 years

<table>
<thead>
<tr>
<th>Model species/injury metric</th>
<th>Maximum % change relative to reference</th>
<th>Km (miles) of shoreline affected</th>
<th>Observed time period of injury</th>
<th>Expected recovery time (yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mainland herbaceous live above-ground biomass(^a)</td>
<td>45</td>
<td>>563 (>350)(^b)</td>
<td>2010–2013</td>
<td>2–8(^c)</td>
</tr>
<tr>
<td>Mainland herbaceous total live cover(^a)</td>
<td>44</td>
<td>>563 (>350)(^b)</td>
<td>2010–2013</td>
<td>2–8(^c)</td>
</tr>
<tr>
<td>Amphipod survival(^d)</td>
<td>95</td>
<td>249 (155)</td>
<td>2010–2013</td>
<td>>4</td>
</tr>
<tr>
<td>Periwinkle abundance(^e)</td>
<td>90</td>
<td>62 (39)(^d)</td>
<td>2011</td>
<td>>10</td>
</tr>
<tr>
<td>White shrimp growth (oil)(^d)</td>
<td>46</td>
<td>288 (179)</td>
<td>2011</td>
<td>>2</td>
</tr>
<tr>
<td>Brown shrimp growth (oil)(^d)</td>
<td>56</td>
<td>288 (179)</td>
<td>2011</td>
<td>>2</td>
</tr>
<tr>
<td>Fundulus hatch success(^d)</td>
<td>99</td>
<td>62 (39)</td>
<td>2010–2013</td>
<td>>4</td>
</tr>
<tr>
<td>Flounder growth(^d)</td>
<td>90</td>
<td>62 (39)</td>
<td>2011–2013</td>
<td>>3</td>
</tr>
<tr>
<td>Red drum growth(^d)</td>
<td>47</td>
<td>62 (39)</td>
<td>2010–2012</td>
<td>3</td>
</tr>
<tr>
<td>Fiddler crab burrow density(^f)</td>
<td>39</td>
<td>NC</td>
<td>2010–2014</td>
<td>>4</td>
</tr>
<tr>
<td>Nearshore oyster cover(^g)</td>
<td>99.5</td>
<td>250 (155)</td>
<td>2012–2013</td>
<td>No recovery</td>
</tr>
</tbody>
</table>

Adapted from: Baker et al. 2017. MEPS 576:219-234

Recovery: up to 20 years in highest impact near shore areas
Large scale persistent ecological impacts from DWH

- Deep ocean corals and vent communities
- Failed recruitment of oysters over multiple years
- Damage to coastal wetlands
- Reduced dolphin, sea turtle and sea bird populations

- Possible massive sea bird mortalities
- Cascading impacts on menhaden and other coastal species from disruption of predator-prey relationships

(Short et al. 2017. AECT 73:76-92)
Complex Ecological Interactions

What have we learned?

Oil spills will continue to happen:
• likely in new and complex environments such as the Arctic

New paradigms established in EVOS were validated in HSOS in DWH:
• new mechanisms of oil toxicity at ppb PAHs (embryo cardiotoxicity; phototoxicity)
• oil persistence and continuing exposure
• ecological cascades and long term consequences

Images source: NOAA, KPNS, USCG
Long term socio-cultural Impacts

- Disrupted livelihoods and patterns of daily living
- Exacerbated social and economic inequality
- Challenged individual and collective identity
- Fostered conflict and divisiveness
- Disempowered local governments and NGOs

Source: USDOJ
• Value of rapid, extensive clean up
• Power of the human spirit to overcome ecological catastrophe

Images source: KPNS
Questions?