Clean Water Act (CWA)
(33 U.S.C. 1251 et seq.)

Objective: “To restore and maintain the chemical, physical and biological integrity of the Nation’s waters”

Biological Integrity: The capacity of supporting and maintaining a balanced, integrated, adaptive community of organisms having a species composition, diversity, and functional organization comparable to that of the natural habitats within a region.

As modified from Karr and Dudley, 1981)
Designated Uses

Compatible Recreation

Fisheries Spawning Area

Aquatic Life and Habitat

Recreational Fishing

Scientific Investigations
Why Not Simply Use Chemical Criteria?

Biological indicators integrate chemistry, habitat, pathogens and other stressors & can detect impairment when chemical criteria do not.

Top - phosphorus values for USVI well below the criterion.

Bottom - Coral cover (gray bars) replaced by macroalgae (blue bars) at a reef in St. John (Waddell and Clarke 2008).
Why Biological Criteria?

- Biology integrates cumulative impacts of multiple stressors
- Biocriteria benchmark the desired biological condition (to support the designated uses)
- Biocriteria can be specifically tied to coral reef attributes
- Bioassessments can then be directly linked to regulatory action
- Regulatory responses are far-reaching and comprehensive (links waterbody and watershed)
The Biological Condition Gradient (BCG)

1. Natural structure & function of biotic community maintained
2. Minimal changes in structure & function
3. Evident changes in structure and minimal changes in function
4. Moderate changes in structure & minimal changes in function
5. Major changes in structure & moderate changes in function
6. Severe changes in structure & function

Biological Condition

Increasing Levels of Stressors
Attributes: Examples from Freshwater Streams

1. Historically documented, sensitive, long-lived, regionally endemic taxa
2. Sensitive, rare or specialist taxa
3. Sensitive, ubiquitous taxa
4. Taxa of intermediate tolerance
5. Tolerant taxa
6. Non-native taxa
7. Organism condition
8. Ecosystem function
9. Influence of spatial and temporal scale of disturbance on biological response and recovery potential
10. Ecosystem connectivity
Process to Develop Coral Reef BCG

1. Establish expert panel of coral reef scientists.
2. Workshops elicit information from expert panel. Use visual and electronic data to identify reference condition and determine which coral reef ecosystem attributes define classes of biological condition along a stressor gradient.
3. The condition classes will reflect the continuum of environmental quality from pristine (left photo) with intermediate quality (middle photo), to severely degraded (right photo).
4. The BCG serves to apply metrics for different coral reefs into a common framework to provide a consistent definition for each class by developing well-defined narratives and specific metric scores into discrete classes.
Workshop on Biological Integrity of Coral Reefs
August 21-22, 2012

- Participants were experts on Puerto Rican coral reefs.
- Identify key reef attributes that determine condition of shallow linear coral reefs.
- Use key reef attributes to recommend categorical condition rankings for establishing a BCG.
- Identify reference condition (a natural, fully-functioning system of reef organisms and communities) for coral reefs through expert consensus.
- Develop conceptual, narrative BCG model that describes how biological attributes of reefs change along a gradient of increasing anthropogenic stress.
<table>
<thead>
<tr>
<th>Improved condition</th>
<th>Attributes of good sites</th>
<th>Sub-attribute /measurements</th>
</tr>
</thead>
<tbody>
<tr>
<td>increase</td>
<td>3D structure</td>
<td>rugosity, cover</td>
</tr>
<tr>
<td>increase</td>
<td>Coral abundance</td>
<td>M. annularis complex, A. palmata, A. cervicornis, D. strigosa, lg stony corals</td>
</tr>
<tr>
<td>increase</td>
<td>Coral condition</td>
<td>% live tissue, absence of disease</td>
</tr>
<tr>
<td>increase</td>
<td>Coral diversity</td>
<td>large stony</td>
</tr>
<tr>
<td>increase</td>
<td>coral population structure</td>
<td>large colonies</td>
</tr>
<tr>
<td>increase</td>
<td>coral recruitment</td>
<td></td>
</tr>
<tr>
<td>decrease</td>
<td>dominance of tolerant species</td>
<td>C. natans, S. siderea, P. asteroides</td>
</tr>
<tr>
<td>increase</td>
<td>coralline algae</td>
<td></td>
</tr>
<tr>
<td>decrease</td>
<td>zooanthids</td>
<td>Palythoa species</td>
</tr>
<tr>
<td>absent</td>
<td>exotic species</td>
<td>exotic fish, corals</td>
</tr>
<tr>
<td>decrease</td>
<td>filter feeders</td>
<td>heterotrophic sponges</td>
</tr>
<tr>
<td>increase</td>
<td>fish abundance</td>
<td></td>
</tr>
<tr>
<td>balanced sizes</td>
<td>fish population structures</td>
<td></td>
</tr>
<tr>
<td>increase</td>
<td>fish biomass</td>
<td></td>
</tr>
<tr>
<td>balanced trophic</td>
<td>fish trophic structure</td>
<td></td>
</tr>
<tr>
<td>increase</td>
<td>fish diversity</td>
<td></td>
</tr>
<tr>
<td>decrease</td>
<td>fleshy algae</td>
<td></td>
</tr>
<tr>
<td>increase</td>
<td>gorgonian abundance</td>
<td></td>
</tr>
<tr>
<td>increase</td>
<td>gorgonian condition</td>
<td>% live tissue, absence of disease & predators (Cyphoma gibbosum)</td>
</tr>
<tr>
<td>increase</td>
<td>gorgonian diversity</td>
<td></td>
</tr>
<tr>
<td>increase</td>
<td>other invertebrates</td>
<td>anemones, Diadema antillarum, conch, lobsters, crabs</td>
</tr>
<tr>
<td>increase</td>
<td>sponge abundance</td>
<td>autotrophic sponges</td>
</tr>
<tr>
<td>decrease</td>
<td>sponge abundance</td>
<td>heterotrophic sponges</td>
</tr>
<tr>
<td>increase</td>
<td>sponge diversity</td>
<td></td>
</tr>
<tr>
<td>increase</td>
<td>substrate condition</td>
<td>clean, no fuzzy algae, open space recruitment</td>
</tr>
<tr>
<td>increase</td>
<td>water clarity</td>
<td></td>
</tr>
<tr>
<td>decrease</td>
<td>corallivores/bioeroders</td>
<td>bioeroders, Coralliophila, clionids</td>
</tr>
</tbody>
</table>
Preliminary Attributes of Very Good Sites

<table>
<thead>
<tr>
<th>Condition Level</th>
<th>Attributes</th>
</tr>
</thead>
</table>
| VERY GOOD – EXCELLENT *(Approximate BCG level 1)* | **Physical structure**: High rugosity or 3D structure, substantial reef built above bedrock, many irregular surfaces provide habitat for fish, very clear water, no sediment, flocs or films
Corals: High species diversity including rare species; large old colonies *(Montastraea)* with high tissue coverage; balanced population structure (old & middle-aged colonies, recruits); *Acropora* thickets present
Sponges: Large autotrophic & highly sensitive sponge species abundant
Gorgonians: Gorgonians present but subdominant to corals
Condition: Low prevalence disease, tumors, mostly live tissue on colonies
Fish: Populations have balanced species abundance, sizes & trophic interactions
Vertebrates: Large, long-lived species present & diverse (turtles, eels, sharks)
Other invertebrates: *Diadema*, lobster, small crustaceans & polychaetes abundant, some large sensitive anemone species
Algae/plants: Crustose coralline algae abundant, turf algae present but cropped & grazed by *Diadema* or other herbivores, low abundance fleshy algae |
<table>
<thead>
<tr>
<th>Condition Level</th>
<th>Attributes</th>
</tr>
</thead>
</table>
| FAIR (Approximate BCG level 4) | **Physical structure:** Low rugosity, limited reef built above bedrock, erosion of reef structure obvious, water turbid, more sediment accumulation, flocks & films; *Acropora* usually gone, present as rubble for recruitment substrate
Corals: Reduced coral diversity; emergence of tolerant species, few or no large old colonies (*Montastraea*) mostly dead; *Acropora* thickets gone, large remnants mostly dead with long uncropped turf algae
Sponges: Mostly heterotrophic sponges with tolerant species, clionids
Gorgonians: Gorgonians more abundant than in levels 1 & 3; replace sensitive corals and sponges species
Condition: High prevalence of diseased coral, sponges, gorgonians, evidence high mortality, usually less tissue than dead portions on colonies
Fish: absence of large reef fish with mostly damselfish present
Vertebrates: large, long-lived species locally extirpated (turtles, eels)
Other invertebrates: *Diadema* absent, *Palythoa* overgrowing corals, crustaceans, polychaetes, & sensitive anemones conspicuously absent
Algae/plants: Some coralline algae present but no crustose, turf is uncropped covered in sediment, lots of fleshy algae with high diversity (e.g. *Dictyota*) |
Preliminary Attributes of Poor Sites

<table>
<thead>
<tr>
<th>Condition Level</th>
<th>Attributes</th>
</tr>
</thead>
</table>
| **POOR** (Approximate BCG level 6) | **Physical structure:** Very low rugosity, no or low reef built above bedrock; no or low relief for fish habitat, very turbid water; thick sediment film and high flocs covering bottom, no substrate for recruits
Corals: Absence of colonies, those present are small, only highly tolerant species, little or no tissue
Sponges: Heterotrophic sponges buried deep in sediment, highly tolerant sponge species
Gorgonians: Small & sparse colonies, mostly small sea fans, often diseased
Condition: High prevalence of disease on small colonies of corals, sponges, & gorgonians, if present, low or no tissue coverage
Fish: No large fish, few tolerant species, lack of multiple trophic levels
Vertebrates: Usually devoid of other vertebrates
Other invertebrates: Few or no reef invertebrates, high abundance of sediment dwelling organisms as polychaetes, holothurians
Algae/plants: high cover of fleshy algae (*Dictyota*); possibly smothering sessile invertebrates; no turf or crustose coralline algae |

Next Steps

• Continue engage panelists through webinars
• Hold several more workshops in next 3 years
 – Reference Conditions
 – Develop Data Portal
 – Sensitivities of coral reef assemblages (taxa)
 – Develop Quantitative BCG
 – Calibrating BCG
Summary

Biological Condition Gradient

• A conceptually simple framework
 – Scale up or down to match sampling and assessment unit

• Organizes and prioritizes research needs
 – Uncovers gaps in knowledge
 – Uncovers discrepancies in assessment conclusions
 – Enables hypothesis testing

• Enhances communication
 – Independent of methods
 – Conceptually complete scale

• Biological integrity or condition is in discrete levels
 – framework for assessment, management, and regulatory decisions
Thanks to:

Workshop Participants

- Richard Appeldoorn, University of Puerto Rico (UPR), Caribbean Coral Reef Institute (CCRI)
- David Ballantine, UPR/CCRI
- Jorge Bauzá, San Juan Bay Estuary Program
- Miguel Canals, Puerto Rico Department of Environment and Natural Resources (DNER), Guánica Dry Forest
- David Cuevas, US EPA/ Region 2
- Ernesto Diaz, Puerto Rico DNER, CZM Program
- Aaron Hutchins, The Nature Conservancy, USVI
- Melanie McField, Smithsonian Institution, Belize
- Jeff Miller, National Park Service, Virgin Islands National Park
- Francisco Pagan, UPR/CCRI
- Antares Ramos Alvarez, NOAA Coral Reef Conservation Program
- Loretta Roberson, UPR Center for Environmental Neuroscience
- Hector Ruiz, UPR/CCRI
- Alberto Sabat, UPR, Department of Biology
- Tyler Smith, University of the Virgin Islands
- Alina Szmant, University of North Carolina, Wilmington
- Brandi Todd, US EPA/Region 6
- Vance Vincente, Vincente & Associates
- Ernesto Weil, UPR/CCRI
- Paul Yoshioka, UPR/CCRI

US EPA

- **Region 2**
 - Buddy LoBue

- **Office of Water**
 - Kennard Potts
 - OSV BOLD and Crew

- **EPA Divers**
 - Sherry Vickery
 - Becky Hemmer
 - Peggy Harris
 - Jed Campbell
 - Bob Quarles
 - Mel Parsons
 - Alan Humphries

- **NHEERL/GED**
 - Leah Oliver

- **Univ. of Puerto Rico, Isla de Magueyes for hosting workshop**