Soluble Ions with ICP-MS are Superior to Total Elements with XRF in Assessing Component-specific Cardiovascular Effects of Fine Particulate Matter (PM$_{2.5}$)

Neas LM1, Schneider A2, Kovačik KD3, Herbst MC4, Hinderliter A4, Case M1, Williams RW3, Cascio WE1, Peters A2, Devlin RB1

1Environmental Public Health Division, EPA, RTP, NC
2Helmholtz Zentrum München, Institute of Epidemiology II, Neuherberg, Germany
3Human Exposure and Atmospheric Sciences Division, EPA, RTP, NC
4University of North Carolina, School of Medicine, Chapel Hill, NC

Background: We previously reported that total fine particulate matter (PM$_{2.5}$) was associated with flow-mediated dilation (FMD), interleukin-6 (IL-6) and tumor-necrosis-factor-alpha (TNFα) in 22 individuals with type 2 diabetes.

Objectives: We now compare two laboratory methods of assessing PM$_{2.5}$ constituents.

Methods: We conducted a prospective panel study with four repeated measurements. Total elemental composition was analyzed by x-ray florescence (XRF). Water-soluble extractions were analyzed using inductively coupled plasma mass spectrometry (ICP-MS). Results from models with random patient effects are presented as %-changes [95%-confidence intervals] for a method-specific interquartile change.

Results: Moderate Pearson correlations between ICP-MS and XRF measurements were seen for copper (0.55), zinc (0.67), iron (0.61), and selenium (0.70). The association of copper and FMD (lag0) was much stronger with ICP-MS (-16.2% [-26.9 to -5.6] per 16.4μg/L) than with XRF (-12.7% [-27.6 to +2.2] per 1.9ng/m3). The association of selenium and FMD (lag0) was identical, but more precise, with ICP-MS (-11.9% [-22.3 to -1.6] per 19.7μg/L) than with XRF (-12.0% [-26.7 to +2.7] per 1.4ng/m3). The association of zinc and IL-6 (lag2) was stronger with ICP-MS (+21.3% [8.6 to 34.0] per 146.9μg/L) than with XRF (+10.9% [-3.7 to +25.6] per 6.6ng/m3). The association of iron and TNFα (lag2) was stronger with ICP-MS (+12.2% [6.1 to 18.2] per 275.8μg/L) than with XRF (+8.2% [3.3 to 13.2] per 44.1ng/m3).

Conclusions: Water-soluble components measured with ICP-MS are superior to total elements measured with XRF in assessing component-specific cardiovascular effects.

This abstract of a proposed presentation does not necessarily represent EPA policy.

Keywords: air pollution, diabetes, ICP-MS, XRF, sources, components

249 words