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Notice 
The U.S. Environmental Protection Agency (EPA) through its Office of Research and Development 
funded and managed the research described here. The research described herein was conducted at the 
Computational Exposure Division of the U.S. Environmental Protection Agency National Exposure 
Research Laboratory in Athens, GA. Any mention of trade names, products, or services does not imply 
an endorsement by the U.S. Government or the U.S. Environmental Protection Agency. The EPA does 
not endorse any commercial products, services, or enterprises. This document has been reviewed by the 
U.S. Environmental Protection Agency, Office of Research and Development, and approved for 
publication. 
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Abstract 

This report explores the types of precipitation data available for environmental modeling. 
Precipitation is the main driver in the hydrological cycle and modelers use this information to 
understand water quality and water availability. Models use observed precipitation information for 
modeling past or current conditions, while simulated data are used to predict future conditions as 
well as re-create historic conditions. Rain gauge-, radar-, and satellite-based measurements are 
categorized in the observed precipitation dataset. Calculated precipitation data from numerical 
weather predictors, stochastic models, and nonparametric models are part of the simulated data 
available for modeling. Temporal resolution, data availability, spatial resolution, and method of 
measuring precipitation are described for each dataset; global datasets and datasets of the contiguous 
United States are explained in this report. Our goal is to inform modelers of the various types, 
resolutions, and sources of precipitation data available for environmental modeling. We discuss only 
a few frequently cited datasets in detail due to the vast amounts of precipitation data available for 
modeling purposes.  
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Foreword 
The U.S. Environmental Protection Agency (EPA) is charged by Congress with protecting the Nation's 
land, air, and water resources. Under a mandate of national environmental laws, the Agency strives to 
formulate and implement actions leading to a compatible balance between human activities and the 
ability of natural systems to support and nurture life. To meet this mandate, EPA's research program is 
providing data and technical support for solving environmental problems today and building a science 
knowledge base necessary to manage our ecological resources wisely, understand how pollutants affect 
our health, and prevent or reduce environmental risks in the future. 

The National Exposure Research Laboratory (NERL) Computational Exposure Division (CED) 
develops and evaluates data, decision-support tools, and models to be applied to media-specific or 
receptor-specific problem areas. CED uses modeling-based approaches to characterize exposures, 
evaluate fate and transport, and support environmental diagnostics/forensics with input from multiple 
data sources. It also develops media- and receptor-specific models, process models, and decision support 
tools for use both within and outside of EPA.  

The goal of the Hydrologic Micro Services (HMS) project is to develop a collection of inter-operable 
water quantity and quality modeling components. Components can be integrated to rapidly compose 
work flows to address water quantity and quality related questions. Each component may have multiple 
implementations ranging from macro (coarse) to micro (detailed) levels of modeling the physical 
processes. The components leverage existing internet-based data sources and sensors. They can be 
integrated into a work flow in two ways: calling a web service or downloading component libraries. It is 
generally more efficient to call a web service for less computational intensive components, yet, local 
copies of components are needed if the component requires large amounts of input/output data. 

 

Elaine Hubal, Acting Division Director for CED 
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1. Introduction   

This report provides a survey of precipitation data sources and generation methods for 
environmental modeling. As a main component of the hydrological cycle and contaminant fate and 
transport, precipitation data are needed for hydrological modeling, erosion modeling, and water 
quality research. We compile descriptions of several precipitation datasets and data generation 
methods available globally and for the contiguous United States, specifically. The datasets and data 
generation methods included are publicly available online and often cited by the modeling 
community. Some of the datasets are purely observed and derived from rain gauges, radar, and 
satellites, while others are simulated datasets generated by mathematical equations to predict future 
weather conditions and recreate past events. Additionally, some precipitation data products are 
derived from a combination of observed data and model equations to generate weather estimates.  

Precipitation has great importance because it influences drinking water availability, supports 
agriculture, and maintains freshwater resources. It is a vital component in the global hydrological 
cycle due to its direct effect on the circulation of Earth’s latent heat (Ebert, 2007). Chahine (1992) 
states that “the hydrological cycle is the largest movement of any substance on Earth’s surface”. 
Most water movement occurs through precipitation and evaporation. Controlled by the sun’s 
radiation, water evaporates from the ocean and the land’s surface where it moves with winds in the 
atmosphere. It then condenses into clouds to fall back to Earth’s surface as precipitation flowing 
toward the oceans to complete the global hydrological cycle (Chahine, 1992). With the exception of 
arid climates, precipitation often exceeds evaporation over land and the excess drains to a reservoir 
or recharges groundwater (Fig. 1). Precipitation is highly variable and influences vegetation, 
droughts, floods, and the movement of minerals and chemicals. In agriculture and urban areas, 
precipitation drives contaminant and nutrient transport in water systems through runoff.  

 

Figure 1. A simplified diagram of the water cycle within a watershed. (Brewster, 2017; ESRI, 2015) 
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Precipitation data are integral inputs for many watershed, air, erosion and agricultural models 
as well as climate-predicting projects. It determines flood/drought conditions, hydrologic 
transportation of contaminants, best management practices, and regulations. Precipitation data are 
generated through direct observation and model simulation. Observed data are captured directly 
from rain gauge stations, or technologically observed from radar and satellites. Simulated 
precipitation data are mathematically generated through parameterizations, statistical probability, or 
historical trends. There are many types of precipitation datasets with different spatial and temporal 
resolutions available for project needs (Table 1). Each has strengths and weaknesses depending on 
its intended use. This report presents different types of available precipitation datasets with details 
including temporal and spatial resolution, potential errors in the dataset, and optimal performance 
scenarios. It also discusses the benefits and deficiencies of certain precipitation datasets. Focusing on 
a project’s purpose and understanding its questions, goals, and needs are vital for selecting input data 
since exploratory, planning, and regulatory purposes have different input criteria and uncertainty 
thresholds (Harmel et al., 2014). 

2. History of Precipitation Data 

Rain gauge records have been available for hundreds of years. The first scientific report on 
differences in measured precipitation using height from rain gauges was by William Heberden in 
1770 (Tapiador et al., 2012). As technology has advanced, rain gauge data has become more 
accurate in determining the amount of rainfall at a particular location. During World War II, radar 
operators searching for enemy ships and aircraft found that precipitation caused ‘false’ echoes on 
their screens (NOAA, 2017); thus began the development of precipitation detection radar. Radar-
based precipitation information overcame the lack of spatial resolution in rain gauge data (Hu et al., 
2014). As research in meteorology continued, there was a need to study macro-scale rainfall which 
then led to the use of satellites to monitor cloud cover and precipitation events around the world. 
Scientific advancements in spacecraft satellites and high-resolution sensors provide information to 
calculate precipitation amounts. Observed data gives a realistic view of precipitation in the past or in 
real time, but cannot predict future conditions. Using mathematical equations, simulated 
precipitation was therefore created to fill data gaps and predict future scenarios.  

With so many precipitation datasets being available, rain gauge data are universally 
considered the best source of reference data for precipitation observations (Tapiador et al., 2012). 
Some weaknesses of rain gauges include being able to observe precipitation at only one site in space 
and often underestimating rainfall amounts. Despite these limitations, many researchers use rain 
gauge data because it is assumed to represent the most accurate source of information at the exact 
location, and installing a rain gauge is easy and fairly inexpensive (Kim, 2014; Price et al., 2014). 
Rain gauge networks have been around for at least a century and, therefore, provide the longest 
precipitation record. Because rain gauge data are widely used and free of assumptions, research 
methodology involving rain gauge networks is well accepted. Research on climatology requires 
long-term datasets of precipitation, and only rain gauge data have enough historical information for 
this type of research. Other methods of observing precipitation do not have the necessary decadal 
time series although they do have better spatial resolution.  
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3. Differences in Observed and Simulated Precipitation Data 

Both observational and simulated precipitation datasets have strengths and weaknesses. 
Observed datasets give information about past or current rainfall events, but often have gaps in the 
time series due to lack of measurement. Observed data are also more localized spatially due to 
providing information at specific sites or over an area. Rain gauge data are observed at a single 
location in space and interpolation methods must be used to estimate precipitation across a broader 
spatial extent, or assumed to represent constant precipitation over a region. Precipitation simulations 
can provide past or future precipitation quantities in a seamless time series over a global extent, at 
different spatial discretizations. Generally, simulated data are best used for non-extreme weather 
patterns, mountainous regions, and colder weather; observed data performs best in warm weather 
and documents extreme events very well (Table 2) (Harmel et al., 2002). Satellite-derived data 
perform better than numerical models in warm seasons and over the tropics (Ebert, 2007; Hu et al., 
2014). Studies have shown that input precipitation data from observed and simulated datasets impact 
watershed model outputs (Golden et al., 2010; Tuo et al., 2016). Modeling projects that use more 
than one type of dataset may be more accurate in reproducing precipitation patterns than a single 
dataset, but the spatial and temporal resolutions of different datasets must be considered in 
calibration (Tuo et al., 2016). Observed and simulated data can generate outputs in different spatial 
scales and can be provided as accumulated precipitation per hour, day, or month. Simple algorithms 
fix time or measurement differences and find a common spatial resolution. 

 

Table 1. Comparison of the major types of precipitation datasets. 

Type Method  Spatial 
Extent 

Time Series Time Step Best 
Performance 

Observed Direct 
measurement or 
technologically 
observed  

Specific or 
range of 
area 

Includes gaps 
of past or 
current data 

Half-
hourly, 
hourly, 
daily, 
monthly, 
yearly 

Warm 
weather, 
extreme 
events 

Simulated Numerical 
calculations 
based on 
historical 
events 

Global, 
downscaled 
to regional 

Seamless, 
future 
predictions, 
past data 

Daily, 
monthly, 
yearly 

Cold weather, 
mountainous 
regions, non-
extreme 
events 



12 
 

Table 2. Description of Precipitation Datasets 

 
 Type/Name Precip 

Output 
Temporal 
Resolution 

Resolution 
(Degree Grid) 

Time 
Period 

Coverage Time lag Method Source 

Sa
te

lli
te

 

TRMM mm/hr 3 hourly 0.25x0.25 1998-2015 35N 35S to 
50NS 

n/a Microwave, Infrared TRMM 

GPM mm/hr 0.5 hourly 0.1x0.1 2014- 60N 60S 4-6 hours Microwave, Infrared, Satellite Precip 
Radar 

GPM 

CMORPH mm/hr 0.5, 3 hourly 0.07277x0.07277, 
0.25x0.25 

2002- 60N 60S 18 hours Morphing of Microwave and Infrared CMORPH 

PERSIANN 
CCS 

mm/hr Hourly 0.04x0.04 2003- 60N 60S 1-2 days Infrared, Cloud segmentation algorithm PERSIAN
N-CCS 

PERSIANN 
CDR 

mm/day Daily 0.25x0.25 1983-2015 60N 60S n/a Infrared, Artificial Neural Network PERSIAN
N CDS 

R
ad

ar
 NEXRAD mm/hr 1, 3 hour 1x1 N. America 1994- 160 sites in the 
US 

2-4 days Radar, Precipitation Processing System NEXRAD 

TDWR mm/hr Hourly 1x1 N. America 2001- 45 sites in US 4days Radar, Precipitation Processing System RADAR 

R
ai

n 
G

au
ge

 GPCC Full 
Data 

mm/mo Monthly 0.5x0.5 1901-2013 7000 US, 65000 
Worldwide  

n/a Weighted Method for grid GPCC  

NCDC inch Hourly By Station 1951- 72N -15S, -60E 
130W 

6 months Gathering of multiple stations GHCN, 
COOP, QCLCD 

NCDC 

Daymet mm/day Daily 0.0089x0.0089 1980-2015 N. America 1 year Spatial truncation of Gaussian weighting 
filters of ground station locations 

Daymet 

C
om

bi
ne

d 

NLDAS kg/m2/hr hourly 0.125x0.125  1979- N. America 4 days Integration of CMORPH and RADAR LDAS 

GLDAS kg/m2/hr 3 hourly 0.25x0.25 2000-Dec 
2016 

90N 60S 2 months Incorporation of satellites and ground-
based observations 

LDAS 

PRISM mm/mo Monthly, 
Yearly 

0.04x0.04 1981- CONUS 1 month Climatologically Aided Interpolation 
(CAI) of gauge stations with RADAR 

PRISM 

CMAP 
Pentad RT 

mm/day Daily 2.5x2.5 1979-Dec 
2016 

88N 88S 1 month Filling in gaps from gauge data with 
satellite (CMORPH) 

CMAP 

Si
m

ul
at

ed
 

WRF mm/hr Daily 0.03x0.03 User 
Specified  

Global n/a NWP Microphysics/Cumulus Schemes  WRF 

ECHAM mm/day  Daily 0.703125x0.7031
25 

User 
Specified 

Global n/a Numeric Weather Prediction and 
Parameterization 

ECHAM 

CESM-
CAM 

mm/day  Daily  0.35x0.35 User 
Specified 

Global n/a NWP and Non-parametric, CMIP5 CAM 

WGEN mm/day Daily HRU 1960-2100 Site Specific n/a Stochastic WGEN 

 

 

https://pmm.nasa.gov/data-access/downloads/trmm
https://pmm.nasa.gov/data-access/downloads/gpm
http://www.cpc.ncep.noaa.gov/products/janowiak/cmorph_description.html
http://chrsdata.eng.uci.edu/
http://chrsdata.eng.uci.edu/
https://www.ncdc.noaa.gov/cdr/atmospheric/precipitation-persiann-cdr
https://www.ncdc.noaa.gov/cdr/atmospheric/precipitation-persiann-cdr
https://www.ncdc.noaa.gov/nexradinv/
https://www.ncdc.noaa.gov/nexradinv/
https://climatedataguide.ucar.edu/climate-data/gpcc-global-precipitation-climatology-centre
https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets
https://daymet.ornl.gov/
https://disc.sci.gsfc.nasa.gov/hydrology/data-rods-time-series-data
https://disc.sci.gsfc.nasa.gov/hydrology/data-rods-time-series-data
http://www.prism.oregonstate.edu/explorer/
ftp://ftp.cpc.ncep.noaa.gov/precip/cmap/
http://www2.mmm.ucar.edu/wrf/users/download/get_source.html
http://www.mpimet.mpg.de/en/science/models/echam/
http://www.cesm.ucar.edu/models/atm-cam/docs/cam3.0/browser.html
http://www.goldsim.com/Downloads/Library/Models/Applications/Hydrology/WGEN.pdf
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3.1 Spatial Resolution 

The spatial resolution in purely observed datasets are not uniform due to random 
station locations or radar blocking. Gridded precipitation data, i.e., those that provide 
precipitation information at each point across an entire domain at a specified grid resolution, 
are useful in environmental modeling. To produce a gridded precipitation dataset, values at 
locations without observations are manipulated using many methods including, nearest 
neighbor, weighted average, geostatistics, mechanistic methods, etc. Such methods assume 
that points close to each other are better correlated (Tuo et al., 2016). Since rainfall is not 
distributed evenly, rainfall estimates are often misleading; interpolation of observed data is a 
significant limitation in accurately modeling responses to rainfall because data cannot be 
validated at every position. Globally-simulated datasets must be downscaled to reflect a 
study area. This can cause error because global generalizations may not represent local 
processes. The statistical relationships between large climatic parameters and local variables 
affecting precipitation (e.g., temperature and its effects on evaporation) are needed to 
downscale global outputs accurately (Wilks & Wilby, 1999). A major problem in scaling to a 
grid for observed and simulated data is that precipitation is not evenly distributed and values 
may differ within a grid. With all precipitation datasets, coarser spatial resolutions lead to 
more approximations about rainfall distribution, and interpolation introduces known biases to 
the results (Tapiador et al., 2012).  

3.2 Precipitation Data Limitations 

There is no way to determine the exact weather condition at every point in space, 
which means that all datasets have limitations. Observational data often have missing values 
due to station maintenance or equipment malfunction; error sources can be due to sampling 
errors, calibration uncertainty, or random errors. Instrument and calibration uncertainty also 
pose potential sources of bias. Due to the inability to accurately measure frozen precipitation 
in all observational techniques, observed datasets are most accurate during warm weather 
conditions. The length of recorded data also differs between datasets. Radar and satellite data 
do not yet have records old enough for climatology research, which requires at least 30 years 
of historical data. Simulated outputs from mathematical equations do not depict precipitation 
events with as much detail as observed datasets. Correctly simulating patterns, seasonal 
variations, and characteristics of precipitation with mathematical models is an area of active 
research (Eyring et al., 2016). Harmel et al. (2002) revealed that weather variability, 
especially in extreme events, is difficult to predict since the event does not fit common 
mathematical distributions. Model drift is a common problem among simulated precipitation 
datasets due to the probability distribution being skewed away from observed data; modelers 
often can compensate for this using a correction factor after simulation runs. The algorithm 
or parameterization scheme selected in a numerical weather prediction model influences 
model uncertainty since some schemes work better in certain locations. Combining different 
output datasets improves regional and global precipitation data results (Ebert, 2007; Huffman 
et al., 1995; NOAA, 2017). 
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4. Observed Data 

Observational data provide a historical record of past precipitation events using direct 
rainwater catchment in rain gauges or with technical instruments from a distance (e.g., 
sensors). A historical record of precipitation is helpful in looking at changes and trends in 
day-to-day climate. Observed precipitation data are specific to the sampling location and 
range of detection (Table 3), which often leaves gaps in the spatial and temporal resolution of 
the dataset. Observational systems give an accurate depiction of the amount of rain produced 
by an extreme event like hurricanes or monsoons. Rain gauge data can provide estimates of 
rain accumulation at exact locations; when using rain gauge data, an observed value 
represents uniform precipitation in the area around the gauge. If two or more rain gauges are 
used for a study area, a method for interpolating data across the region, such as the Thiessen 
Polygon Method, can be applied. Radar and satellite data have larger ranges of detection and 
can serve as a warning devices for current and near future precipitation events. Many studies 
have compared observational datasets and their ability to estimate precipitation amounts and 
their effect on model output. Gao et al. (2017) studied the impacts of three different 
precipitation sources (rain gauge, radar, and a combined reanalysis dataset) in SWAT 
streamflow simulations.  

Table 3. Summary of observed precipitation dataset characteristics. 

Observed Method Spatial 
Extent 

Spatial 
Resolution 

Temporal 
Resolution 

Years 
of 
data 

Precipitation 
Output 

Error 

Rain 
Gauge 

Physically 
collected on 
the ground 

Specific 
locations 

Lat.-Lon. of 
station, 
0.009x0.009 
or 0.5x0.5-
degree grid 
interpolation 

Hourly, 
Daily, 
Monthly, 
Yearly 

100 
years 

Underestimates 
heavy rainfall 
events 

Random 
error, 
mechanical 
issues, 
location 

Radar Technologicall
y collected on 
the ground 

Radial 
area 
around 
station 
(radius 
230km) 

1x1 degree 
grid, lat. and 
long of 
station 

Hourly, 3-
hourly,  

30-40 
years 

Overestimates 
heavy rainfall 
events, 
underestimates 
light rainfall 

Signal 
blockage, hail 
misreading 

Satellite Technologicall
y collected 
from space 

Latitude 
range 
(60°N, 
60°S) 

0.04x0.04-
degree grid 
0.1x0.1-
degree grid 
0.25x0.25-
degree grid 

Half-
Hourly, 
Hourly, 
Daily 

20 
years 
or 
less 

Underestimates 
rain from warm 
top clouds 

Frozen 
precipitation, 
multilayer 
clouds 

 

4.1 Rain Gauge 

Rain gauge precipitation data represent the direct capture and measurement of 
rainwater at a specific location. Inexpensive and easy to install rain gauges are found all over 
the world. There are many different methods for capturing direct rainfall varying in 
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complexity from measured cylinders to sophisticated weighing gauges. One of the most 
common methods for determining the amount of precipitation is the tipping bucket method, 
which records the time and a count of the number of times a premeasured bucket tips from 
overfilling with rainwater (Tapiador et al., 2012). The tipping bucket method becomes more 
inaccurate with increasing rainfall intensities due to catching and counting errors (Shedekar 
et al., 2016). Gauge data are the most accurate representation of precipitation at a precise 
location (Kim, 2014; Price et al., 2014) but limitations stem from mechanical issues or 
operational errors. Random errors in datasets can occur due to damage to the gauge from 
wildlife or humans, and gauge data often underestimates precipitation amount due to wind 
effects, frozen precipitation, and rain particles that evaporate before contact with the gauge 
(Kidd & Huffman, 2011; Tapiador et al., 2012). Despite these limitations, many studies use 
gauge stations in modeling total maximum daily loads for management purposes. Liu et al. 
(2008) used precipitation data from five stations to model nitrogen transportation in three 
models (WASP1, EFDC2, and HSPF3). Below is a short description of a few often cited rain 
gauge data sources and datasets that primarily use rain gauge data.  

 

 

Figure 2. Map of rain gauge stations in the United States showing precipitation detected on April, 12, 2016. Each dot represents 
one rain gauge at a specific location, colored by the amount of precipitation measured. Image from NOAA's website. 

4.1.1 NCDC / NCEI 

The National Climatic Data Center (NCDC), now named the National Center for 
Environmental Information (NCEI), provides precipitation data recorded at rain gauge 

                                                 
1 Water Quality Analysis Simulation Program epawasp.twool.com 
2 Environmental Fluid Dynamics Code https://www.epa.gov/exposure-assessment-models/efdc  
3 Hydrological Simulation Program Fortran https://www.epa.gov/exposure-assessment-models/hspf 

https://gis.ncdc.noaa.gov/maps/ncei/summaries/daily
https://www.epa.gov/exposure-assessment-models/efdc
https://www.epa.gov/exposure-assessment-models/hspf
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stations around the world. NCEI uses a network of volunteer centers to collect daily weather 
observations from local rain gauges. NCEI has access to about 53,000 stations worldwide 
some with data going as far back as 1901 (NOAA, 2017), these data can be accessed online 
and queried by location (Latitude, Longitude) of a gauge station. The spatial coverage of 
NCEI gauge stations in the United States is shown in Figure 2; the network of gauge stations 
and precipitation data can be accessed at NOAA's website.  

4.1.2 GPCC 

The Global Precipitation Climatology Centre (GPCC), another source for global 
precipitation data from rain gauge stations on the ground, is comprised of about 67,000 rain 
gauge stations worldwide. This dataset is available from 1901 to 2013 on a monthly time step 
and provides interpolated data on three grid sizes, with the finest resolution on a 0.5-degree 
grid (NOAA, 2017). A spherical adaptation of Shepard’s empirical weighting scheme is used 
to transpose gauge stations to a grid point (Becker, 2013). GPCC data are accessible at 
UCAR's website. 

4.1.3 Daymet 

Daymet is a daily dataset of rain gauge data interpolated and extrapolated by the 
Daymet algorithm. It uses ground station data from NCEI with its model algorithm to 
produce gridded estimates of daily weather parameters. Interpolation for the gridded 
resolution uses the spatial convolution of a truncated Gaussian filter from the local station 
density (Thornton, 2017). Daily rainfall is rounded to the nearest whole number. The 
interpolated spatial resolution is about a 0.009-degree grid, or approximately 1km resolution, 
over North America. Data are accessible since 1980, to the latest full year, due to 
interpolation at Daymet's website. 

4.2 RADAR 

Radio Detection and Ranging (RADAR), detects precipitation in the troposphere. 
Radar weather systems are mostly found on the ground, with a few on satellites. They send 
radio waves into the atmosphere in pulses and radio waves are sent back when the wave 
makes contact with a raindrop. The system calculates the distance and direction of the rain 
and uses the Doppler Effect to provide precipitation characteristics like reflectivity and 
droplet size (NOAA, 2017). A reflectivity-to-rainfall equation – the Precipitation Processing 
Subsystem (PPS) -- estimates rainfall amounts (Nelson et al., 2010). The relationship 
between reflectivity and rainfall amount varies for different forms of precipitation, resulting 
in uncertainty. An example of modified return values for different precipitation types is that 
interpretation of hail from radar can send a signal that resembles heavy rainfall. Radar data 
can make short-term forecasts and show intensity of a storm event as a warning to the public 
(NOAA, 2017). Because radar stations are very expensive, some countries cannot afford 
radar equipment. With its higher range of detection, radar data covers more area than rain 
gauge data. Radar technology can locate precipitation within a range of 230 km from the 

https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets
https://climatedataguide.ucar.edu/climate-data/gpcc-global-precipitation-climatology-centre
https://daymet.ornl.gov/
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station and reports data close to real time (NOAA, 2017). Although radar detects rainfall on a 
larger scale than rain gauges, ground-based radar cannot reach high altitude clouds and 
signals can be blocked by topographic effects. Bias in the radar dataset comes from signal 
blockage, bright band contaminations, range dependency, and radar calibration errors. 

4.2.1 NEXRAD 

Next Generation Weather Radar (NEXRAD) is the largest collection of forecasting 
radars accessible for research in North America. It is composed of 160 WSR-88D ground 
radars across the United States (see Figure 2). NEXRAD has two levels of output data, 
Level-II and Level-III. Level-II is raw meteorological data including reflectivity, radial 
velocity, and spectrum width. Level-III is a set of computer-processed products that include 
hourly precipitation and bias-corrected precipitation from rain gauges. NEXRAD 
observations are taken every hour and can be gridded on a one-degree grid two to four days 
after observations using a spatial weighting scheme. NEXRAD’s station network has been 
operational since 1994, which is not long enough for climatology research (Nelson et al., 
2010). Price et al. (2013) investigated whether NEXRAD data, corrected with rain gauge data 
by the Multisensor Precipitation Estimation (MPE) algorithm, would improve simulations in 
watershed models; they found that adjusted radar precipitation estimates using gauge data 
consistently performed better than non-adjusted radar data. NEXRAD data archive can be 
accessed at NOAA’s website.  

 

Figure 3. A map showing the NEXRAD site locations in the contiguous United States. Image from (NOAA, 2017) 

https://www.ncdc.noaa.gov/nexradinv/


18 
 

4.3 Satellite  

Satellite-based precipitation data are derived from infrared and microwave 
measurements taken from satellites in space. Infrared information gives cloud top 
temperature which can be used in an algorithm to produce rainfall amounts. The microwave 
measurement gives information about cloud depth and layer characteristics which is 
physically related to the formation of precipitation (Duan et al., 2016). Satellites are the only 
way to retrieve global homogeneous estimates of precipitation (Tapiador et al., 2012). They 
provide an estimate of precipitation in millimeters per hour at high resolutions over their span 
of orbits. Some datasets use a single satellite for specific coverage (TRMM), while others use 
an array of satellites like GPM for global coverage (Table 4). Combining diverse satellite 
observations lowers the potential to miss precipitation events. Missing data can be found in 
satellite-derived data due to instrument error or lack of spatial coverage. Satellite 
observations cannot detect frozen precipitation or snowfall accumulation very well due to the 
complexity of the radiative properties of snowflakes and ice crystals (Kidd & Huffman, 
2011). Satellite-derived precipitation data tends to underestimate rain from warm top clouds 
due to the infrared sensory tools used (Awange et al., 2016). Multilayer cloud systems also 
pose a threat to miscalculations because cloud layers can block the sensor’s ability to detect 
the precipitating layer (Tapiador et al., 2012). This technology has been around for at least 30 
years but, since each satellite-derived dataset has different temporal and spatial resolution, 
period of activation and methods of calculating precipitation, each dataset has information 
for only the time the satellite was operational. Although there are many satellite precipitation 
datasets and satellite-derived products, only the four most recommended and most recent 
satellite datasets are described below. The newest precipitation dataset, the GOES-16 satellite 
which was launched in November 2016, will provide atmospheric measurements of Earth 
with more spectral bands than its predecessors. For further information about the use of 
satellite data in modeling see Bitew and Gebremichael (2011) who used PERSIANN and 
CMORPH datasets in the hydrological model MIKE-SHE and Tramblay et al. (2016) who 
compared CMORPH, RFE, TRMM, and PERSIANN in the a hydrological model for water 
resource management in ungauged areas.  

 

Table 4. Description of precipitation datasets that use satellite technology. 

Name Spatial Time Spatial Time Frame Category Method 
Coverage step Resolution 

TRMM 35N, 35S 3hr 0.25x0.25 1998-2015 Single Microwave, 
Satellite  Infrared 

GPM 60N 60S 0.5 hour 0.1x0.1 2014-present Multi- Microwave, 
Satellite- Infrared, Satellite 
radar Precip Radar 

CMORPH 60N 60S 0.5, 3- 0.07277x0.07277 2002-present Multi- Morphing of 
hour , 0.25x0.25 Satellite Microwave and 

Infrared 
PERSIANN 60N 60S Hourly 0.04x0.04 2003-present Multi- Infrared & cloud 
CCS Satellite segmentation 

algorithm 
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Name Spatial 
Coverage 

Time 
step 

Spatial 
Resolution 

Time Frame Category Method 

PERSIANN 
CDS 

60N 60S Daily 0.25x0.25 1983-2015 Multi-
Satellite 

Infrared, 
Artificial Neural 
Network 

CHIRPS 50N, 50S Daily 0.05x0.05 1981-present Satellite-
gauge 

Infrared with 
station data 

CMAP Global Monthly 2.5x2.5 1979-2006 Satellite-
gauge 

Infrared with 
station data 

NLDAS N. 
America 

Hourly 0.125x0.125  1979-present Multi-
Satellite-
radar 

Integration of 
CMORPH and 
RADAR 

GLDAS Global 3hr 0.25x0.25 2000-Dec 2016 Satellite-
gauge 

Incorporation of 
satellites and 
ground-based 
observations 

 

4.3.1 TRMM 

The Tropical Rainfall Measuring Mission (TRMM) was a single satellite used to 
detect precipitation and tropical storms near the equator to better understand climate and 
weather patterns. TRMM used microwave and infrared information to calculate precipitation 
every three hours at a resolution of 0.25-degrees (see Figure 4). Although TRMM was 
deactivated in 2015, its data from 1998 to 2015 has been used in numerous publications. 
TRMM took tropical measurements of precipitation covering 35 degrees north to 35 degrees 
south and had multiple reanalysis products. TRMM data can be accessed at NASA's website 
(Skofronick-Jackson, 2017). 

 

 

Figure 4. TRMM’s orbit path captures the spatial resolution over the tropics on April 12th, 2012. Yellow areas depict probable 
rainfall.  Image from NASA. 

https://pmm.nasa.gov/data-access/downloads/trmm
https://trmm.gsfc.nasa.gov/data/quicklook/120412_qlhi.gif
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4.3.2 GPM 

The Global Precipitation Mission (GPM) of 2014 is a continuation of TRMM’s 
mission. Partners from the United States, Japan, France, India and the European Union allow 
GPM to track precipitation across the globe using 10 satellites. With a fine global resolution 
of 0.1-degree taken every half hour, GPM provides precipitation measurements using 
microwave, infrared, and radar technology. It has greater accuracy than its predecessor and 
covers the earth between 60 degrees north and 60 degrees south. Due to calculation time, the 
dataset can be accessed four to six hours after observation on NASA’s website (Skofronick-
Jackson, 2017). 

4.3.3 CMORPH 

The Climate Prediction Center Morphing (CMORPH) product is another highly 
recommended satellite dataset for precipitation. It gets its name from the method of 
calculating precipitation by morphing microwave and infrared information from multiple 
satellites at a 0.0730-degree resolution. Observations are taken every half hour and 
accumulated every three hours with up to an 18-hour lag in data accessibility. CMORPH has 
provided precipitation data since 2002 over the span of 60 degrees north to 60 degrees south. 
CMORPH data can be accessed at NOAA’s website. 

4.3.4 PERSIANN 

The Precipitation Estimation from Remotely Sensed Information using Artificial 
Neural Networks (PERSIANN) has satellite derived datasets calculated from infrared 
imagery and artificial neural network algorithms (CHRS, 2004). This dataset’s coverage is 
between 60 degrees north and 60 degrees south. PERSIANN has two products that provide 
precipitation data, one on an hourly time step (CCS) and one on a daily time step (CDR). The 
PERSIANN CCS (Cloud Classification System) has a resolution of 0.04-degrees with data 
from 2003 to the near present. Due to the complexity of algorithms, the CCS data can be 
accessed one or two days after observation. PERSIANN CDR (Climate Data Record) has a 
resolution of 0.25-degrees with data from 1983 to June 2016, with an even greater lag in 
accessibility. All PERSIANN data can be accessed at CHRS's data portal. 

4.4 Combining Datasets 

Combining observed precipitation measurements often involves two or more types of 
observations. An example of combined precipitation data are reanalysis products such as 
North American Regional Reanalysis (NARR) and Climate Forecast System Reanalysis 
(CFSR). Reanalysis products are generated when multiple precipitation datasets are merged 
onto a regularly-spaced grid to produce a consistent spatiotemporal output (NOAA, 2017). 
Blending and merging observed datasets can significantly improve precipitation estimates 
(Ebert, 2007; NOAA, 2017). Since rain gauge data are often sparse in some areas and may 
contain missing values, satellite and radar data has been combined with gauge data to fill the 

https://pmm.nasa.gov/data-access/downloads/gpm
http://www.cpc.ncep.noaa.gov/products/janowiak/cmorph_description.html
http://chrsdata.eng.uci.edu/
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gaps, as in the Climate Prediction Center Merged Analysis of Precipitation (CMAP) and 
Climate Hazards Group Infrared Precipitation with Station data (CHIRPS). In addition to the 
previously stated datasets, there are many more datasets that combine multiple observational 
methods including the popular LDAS and PRISM datasets that are described in detail below. 
An example of the use of combined datasets is Radcliffe and Mukundan (2017) which 
compared the effect of PRISM and CFSR, in a SWAT model of streamflow. 

4.4.1 LDAS 

The North American Land Data Assimilation System (NLDAS) combines North 
American radar data and satellite data from CMORPH which allows higher resolutions and 
better accuracy for detecting precipitation. NLDAS has an hourly time step on a 0.125 -
degree grid of North America and a maximum time lag of four days for data retrieval. The 
Global Land Data Assimilation System (GLDAS) combines satellite data and ground-based 
observational data to provide precipitation and other variables on a spatial resolution of 0.25-
degrees, covering the Earth between 90 degrees north and 60 degrees south. GLDAS data are 
given every three hours and takes a least a month to process. EPA’s BASINS system 
combines NLDAS data with NCEI data for plugging in missing values in order to have a 
near-seamless time series of precipitation data. Lee et al. (2010) compared NLDAS to NCDC 
station data in the HSPF tool to improve streamflow predictions for water quality 
assessments. NLDAS and GLDAS data can be accessed at NASA’s website. 

4.4.2 PRISM 

The Parameter-elevation Relationship on Independent Slopes Model (PRISM) provides 
climatology information by combining ground gauge stations from multiple sources and 
radar products. The data is provided on a four by four kilometer spatial resolution covering 
the contiguous United States from 1981 to present on a monthly or annul temporal resolution. 
The method used to produce the gridded dataset is a combination of the Climatologically 
Aided Interpolation (CAI) method, Digital Elevation Model (DEM), and radar interpolation. 
With this methodology, the longer time-step is able to capture orographic precipitation 
patterns in mountainous areas better than a daily interpolation (Daly et al., 2008). PRISM 
data can be retrieved from the PRISM Climate Group website.  

5. Simulated Data 

Even after combining different types of observed data, there may still be missing 
values in the datasets. Simulated data, based on computer models, can fill these gaps to 
produce a continuous time series for model input. Weather prediction models are 
mathematically-driven models that simulate precipitation from the past as well as the future. 
Simulated precipitation measurements make computation easier for modelers because there 
are no missing values nor time spent on data retrieval. Three main types of models simulate 
precipitation data: Numerical Weather Predictors (NWP), stochastic models, and 
nonparametric models, as described in Table 5. Simulating weather characteristics is difficult 

https://disc.sci.gsfc.nasa.gov/hydrology/data-rods-time-series-data
http://www.prism.oregonstate.edu/explorer/
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because climatic processes can occur below the grid size of the model which leads to 
generalizations that introduce bias. Despite these limitations, some models closely mimic 
true weather patterns and can be used to study and manage water quality and water supply 
(Harmel et al., 2002). An example of the application of simulated precipitation data is the 
paper by Golden et al. (2013). Golden et al. used simulated rainfall amounts from Global 
Circulation Models in three watershed models (VELMA, GBMM, TOPLOAD) to determine 
how future changes in climate may impact watershed mercury transport.  

Table 5. Summary of simulated precipitation dataset characteristics. 

Simulated Method Inputs Spatial 
Resolution 

Spatial Extent Error 

Numerical 
Weather 
Prediction 

Cumulus and 
microphysics 
schemes 

Atmospheric 
conditions and 
thresholds 

0.03x0.03-degree 
grid 0.703x0.703-
degree grid 

Global or 
limited area 
model (LAM) 

Scheme 
selection 

Stochastic  Probability 20-year history of 
precipitation  

Site specific Global or 
delineated area 

Skewed 
distributions  

Non-
Parametric 

Historical trends Long historical 
records and 
emission 
scenarios   

0.35x0.35-degree 
grid 1.4x1.4-
degree grid 

Global or 
regional 
downscaled 

Model drift 
from observed 
data 

 

5.1 Numerical Weather Prediction (NWP) 

Numerical Weather Prediction models integrate differential equations that describe 
fluid flows to predict rainfall and other atmospheric conditions. Two major types of 
equations used to estimate precipitation describe microphysics and cumulus clouds. 
Microphysics parameterization schemes resolve the process of rain production, and cumulus 
parameterization schemes describe effects of cumulus clouds in rain events. Combining them 
determines rainfall occurrences and amount (Yang et al., 2015).  Many schemes are needed 
to produce a set of rainfall predictions: for example, the Weather Research and Forecasting 
(WRF) model uses seven microphysics parameterization schemes and three cumulus 
parameterization schemes. More details on specific schemes can be found in Yang et al. 
(2015). Scheme selection is a main source of error within NWP models because certain 
schemes work better in certain circumstances. Some physical processes in rain production 
occur at small scales or in specific climates and cannot be properly modeled over a larger 
resolution. Two frequently used numerical weather prediction models are described below.  

5.1.1 WRF Model 

The Weather Research and Forecasting (WRF) model, known previously as the fifth 
generation Mesoscale Model (MM5), is a numerical weather predictor used in climate 
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forecasting models such as CMAQ4, NRCM5, and NCEP Eta6. The Kain-Fritsch Scheme is a 
cumulus scheme in WRF that models precipitation based on condensation exceeding a 
threshold value (Yang et al., 2015). WRF uses past observation data or idealized atmospheric 
conditions and thresholds in schemes to generate rainfall. The daily precipitation output has a 
fine resolution of 0.03-degree grid that can be scaled to fit the modeler’s area of interest. The 
source code for WRF can be found on UCAR's website. 

5.1.2 ECHAM 

The European Centre Hamburg Model (ECHAM) is a numerical weather prediction 
method used as the atmospheric model in climate models such as MPI-ESM7 and ECHO-G8. 
ECHAM6 is the latest version using parameterization schemes include mass flux in cumulus 
convection and cloud microphysics to determine daily precipitation. A detailed description of 
the model can be found in Stevens et al. (2013) and Giorgetta et al. (2013). ECHAM has 
multiple sets of spatial resolutions with the finest resolution of 0.7031x0.7031 degrees for 
experimental use. ECHAM source code is freely available to the public at the Max Planck 
Institute for Meteorology website. 

5.2 Stochastic 

Stochastic models, among the simplest prediction models, use statistics and 
probabilities associated with weather data to predict atmospheric parameters (Harmel et al., 
2002). Model output generates data that is statistically consistent with the observed data 
input. These models generate daily weather at a single point location or through a more 
complicated process of multi-site generation (Mehrotra et al., 2006). To generate 
precipitation, a Markov Chain Model determines the probability of having a wet day or a dry 
day, then finds the probability of a wet day following a dry or wet day (Wilks & Wilby, 
1999). Historical precipitation measurements of 20 years or more is recommended to initiate 
the Markov chain; then, an equation using mean daily rainfall, standard deviation of daily 
rainfall, and a skew coefficient gives the amount of rainfall on a particular wet day. 
Stochastic models often fail to accurately describe the length of dry or wet periods and model 
output can be skewed based on historical input data, thus requiring statistical verification.  

                                                 
4 Community Multiscale Air Quality Modeling System https://www.epa.gov/cmaq  
5 Nested Regional Climate Model https://rda.ucar.edu/datasets/ds601.0/  
6 National Center for Environmental Prediction Eta model https://rda.ucar.edu/datasets/ds609.2/  
7 Max-Planck-Institute Earth Systems Model (Stevens et al., 2013) 
https://www.mpimet.mpg.de/en/science/models/mpi-esm/  
8 ECHAM4 Atmospheric model coupled with HOPE-G oceanic model ("Lawrence Livermore National Laboratory 
Program for Climate Model Diagnosis and Intercomparison," 2005) 

http://www2.mmm.ucar.edu/wrf/users/download/get_source.html
http://www.mpimet.mpg.de/en/science/models/echam/
http://www.mpimet.mpg.de/en/science/models/echam/
https://www.epa.gov/cmaq
https://rda.ucar.edu/datasets/ds601.0/
https://rda.ucar.edu/datasets/ds609.2/
https://www.mpimet.mpg.de/en/science/models/mpi-esm/
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5.2.1 Weather Generators (WGEN)  

Weather Generators are used for statistically simulating atmospheric conditions in 
many models. The Water Erosion Precipitation Project (WEPP) and the Soil and Water 
Assessment Tool (SWAT) both use stochastic weather generators. SWAT’s default is  
Cooperative Observer Network (COOP) gauge data from 1960 to 2010, for historical 
reference, to begin the Markov Chain Model (Tuo et al., 2016). Weather generators create 
precipitation accumulation for the specified day, month, and year. SWAT can predict 
precipitation accumulation over a delineated area of interest, out to year 2100. The WGEN 
algorithm and Fortran code can be found in Richardson (1984); variations of this stochastic 
model have been created with the same internal structure as WGEN-- for instance, 
WXGEN9, CLIGEN10, and GEM11. Comparing results of different weather generators 
produces different predictions for each weather simulator due to their stochasticity 
(Migliaccio & Srivastava, 2007). 

5.3 Nonparametric Models 

Nonparametric models resample historic data to find trends and weather 
characteristics for future data. They can be thought of as smoothed, conditional bootstrapping 
or kernel density estimates (Rajagopalan et al., 1997). Nonparametric simulations use large 
numbers of observational data to create a probability density function that best describes the 
data (Sharma, 2000). A Gaussian kernel function is commonly used to describe weather 
patterns (Rajagopalan et al., 1997; Sharma, 2000).  Nonparametric models produce only 
values that occurred from the historical dataset, but data may be regenerated that violates a 
boundary condition, such as the rain versus snow threshold temperature (Rajagopalan et al., 
1997). This can cause error in the model’s product, so careful consideration of input data is 
important.  It is assumed (but cannot be guaranteed) that models which accurately predict 
historic weather patterns are more likely to accurately predict future weather patterns (Rupp 
et al., 2013). 

5.3.1 GCM 

Global Circulation Models (GCM) use a combination of nonparametric trends and 
numeric predictions to generate precipitation on a global scale. GCMs are good 
representations of temporal trends on a large scale, but often vary when downscaled to a 
regional level. The Coupled Model Intercomparison Project Phase 5 (CMIP5) was designed 
to evaluate how realistic 20+ GCMs are at recreating past climate data, projecting future 
climate change, and understanding differences among models (Taylor, 2009). Each model is 
given inputs of historical climate data from 1800- 2005 and future emission scenarios to 

                                                 
9 Erosion/Productivity Impact Calculator Weather Generator (Wallis & Griffiths, 1995) 
10 USDA’s Climate Generator (Meyer, 2004) 
11 Generation of weather Elements for Multiple applications (Harmel et al., 2002) 
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simulate near-term (to year 2035) or long-term (to year 2100) weather conditions. The 
Intergovernmental Panel on Climate Change (IPCC) provided CMIP5 with four future 
atmospheric scenarios represented by radiative forcing values in year 2100 called 
Representative Concentration Pathways (RCP) (Taylor, 2009). Each GCM used these 
scenarios to predict weather conditions: 

RCP2.6 assumes that greenhouse gas emissions will peak around 2030, then decline; 
RCP4.5 assumes the peak will be around 2050, then level off at 4.5W/m2; 
RCP6.0 assumes the peak will be around 2090, then level off at 6W/m2; 
RCP8.5 estimates emission will continuously rise throughout the 21st century; 
This set of scenarios is the newest decision from IPCC on future climate scenarios. 

RCP 4.5, 6, and 8.5 are comparable to Special Report on Emission Scenarios (SRES) B1, B2, 
A1F1, respectively. Simulated precipitation data can be retrieved from a specific model or as 
a multi-model mean. An assessment of CMIP5 models based on observational data for 
reliability can be found in Rupp et al. (2013). The CNRM-CM5 model within CMIP5 
performed with the least error in reproducing global precipitation, followed by CESM1-
CAM5 (Rupp et al., 2013). Please note the experimental design for CMIP6 has only been 
recently published, and data is available but is still being evaluated (Eyring et al., 2016). 
CMIP5 data can be downloaded at the WorldClim website. 

6. Discussion 

Precipitation is a difficult variable to measure precisely. In calibrating the SWAT 
model for river basin modeling, Tuo et al. (2016) found that precipitation is the main source 
of uncertainty. Observed and simulated precipitation datasets have strengths and weaknesses 
in providing an accurate representation of rainfall amounts. Simulated datasets from 
numerical weather prediction, stochastic models, and nonparametric models provide a 
seamless time series and perform well in cold weather, mountainous regions, and non-
extreme conditions. Simulated future data are applicable for managing and planning purposes 
since there is a need for information about changes in future precipitation. Observed datasets 
often include gaps in the time series due to lack of measurement, but they perform best in 
warm conditions and reflect extreme weather events well. Direct rainfall measurement from 
rain gauges is preferred by researchers since assumptions are not made and they have long 
measurement records. Many studies comparing differences in precipitation datasets for 
regional analysis have been performed, (e.g., Costa & Foley, 1998; Fekete et al., 2004; 
Tapiador et al., 2012).  

Precipitation plays a large role in the availability of drinking water, erosion, and 
transportation of contaminants. Selection of precipitation data has crucial effects on 
hydrological model performance; thus, choosing precipitation datasets based on method, time 
step, and resolution needs to be carefully thought out (Tuo et al., 2016). Regulatory, 
planning, and exploratory purposes require different levels of uncertainty. Regulatory 
projects must have very little error and uncertainty while exploratory projects encourage 
uncertainty. A need for advancements in precipitation accuracy, length of record, and free 
availability is still a recurring problem in the modeling community. There is no “best” 

http://www.worldclim.org/CMIP5_5m
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precipitation dataset, only the most appropriate for a given purpose. As Harmel et al. (2002) 
said, "Historical data provide only one realization or ‘picture’ of a previous weather pattern 
that may not represent future climate scenarios”.  
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