

An Empirical Assessment of Exposure Measurement Error and Effect Attenuation in Bi-Pollutant Epidemiologic Models

Lisa Baxter¹, Kathie Dionisio¹, and Howard Chang²

¹ U.S. EPA ² Emory University

Dionisio KL, Baxter LK, Chang HH. An Empirical Assessment of Exposure Measurement Error and Effect Attenuation in Bi-pollutant Epidemiologic Models. Environ Health Perspect; http://dx.doi.org/10.1289/ehp.1307772.

Office of Research and Development National Exposure Research Laboratory.

Background

- Exposed to a complex mixture of pollutants
- Multipollutant models can be used to understand the health effects of exposure to mixtures
- Exposures typically estimated using ambient monitoring data but these may not adequately capture
 - spatial and temporal coverage
 - exposures in different microenvironments
 - infiltration

Background

- Differing degrees of exposure error across pollutants
- Previous focus on quantifying and accounting for exposure error in single-pollutant models
- Examine exposure errors for multiple pollutants and provide insights on the potential for bias and attenuation of effect estimates in single and bipollutant epidemiological models

Objectives

Quantify the relationships among multiple pollutants and their associated exposure errors across exposure metrics

Use empirical values to determine the potential attenuation of coefficients in bi-pollutant epidemiologic models

Methods

- 1. Compare exposure metrics within- and acrosspollutants
- 2. Compare exposure errors within- and acrosspollutants
- 3. Using results from 1) and 2) calculate attenuation factors for single and bi-pollutant model coefficients

Methods: Exposure Metrics

- Estimated daily exposures to ambient air pollution for 193 ZIP codes in the Atlanta, GA (1999-2002)
- 1. CS: Central-site measurements
 - From SEARCH, ASACA, and U.S. EPA's AQS monitoring networks
 - -24-hr average concentrations (PM_{2.5}, EC, and SO₄)
 - Hourly concentrations aggregated to 24-hr averages (CO, NO_x) or 8-hr maximum (O₃)
- 2. AQ: Air quality model estimates
 - Combines local-and regional-scale model results
- 3. PE: Stochastic population exposure model estimates
 - Stochastic Human Exposure and Dose Simulation Air Toxics (SHEDS-AT) model

Dionisio et al. (2013). "Development and evaluation of alternative approaches
for exposure assessment of multiple air pollutants in Atlanta, Georgia." J Expos
Sci Environ Epidemiol 23(6): 581-592.

Methods: Exposure Error

- Exposure error, δ, is calculated as the difference between two exposure metrics:
 - $-\delta_{spatial} = AQ CS$; exposure error due to a lack of spatial refinement
 - $-\delta_{population} = PE AQ$; exposure error due to lack of human exposure factors
 - $-\delta_{total} = PE CS$; exposure error due to lack of both spatial variability and human exposure factors

Methods: Attenuation Factors for Single Pollutant Models

$$\lambda = \frac{1}{1 + \frac{var(\delta)}{var(x_{fine})}}$$

$$\beta_{observed} = \lambda * \beta_{true}$$

 λ = attenuation factor

 δ = exposure error

var (δ) = the variance across days of δ

 $\begin{array}{l} x_{fine} = \ the \ exposure \ metric \ with \ the \ greater \ degree \ of \ refinement \ (i.e., increased \ spatial \ resolution, \ or \ inclusion \ of \ weighting \ by \ population \ factors) \\ var(x_{fine}) = \ the \ variance \ across \ days \ of \ x_{fine} \\ \beta = \ model \ coefficients \end{array}$

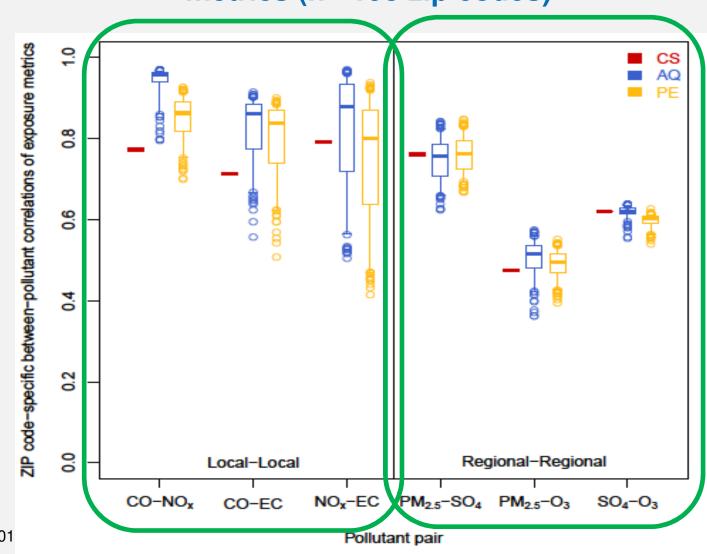
 $\lambda = 1$ indicates no attenuation $\lambda = 0$ indicates null results

Methods: Attenuation Factors for Bi-pollutant Models

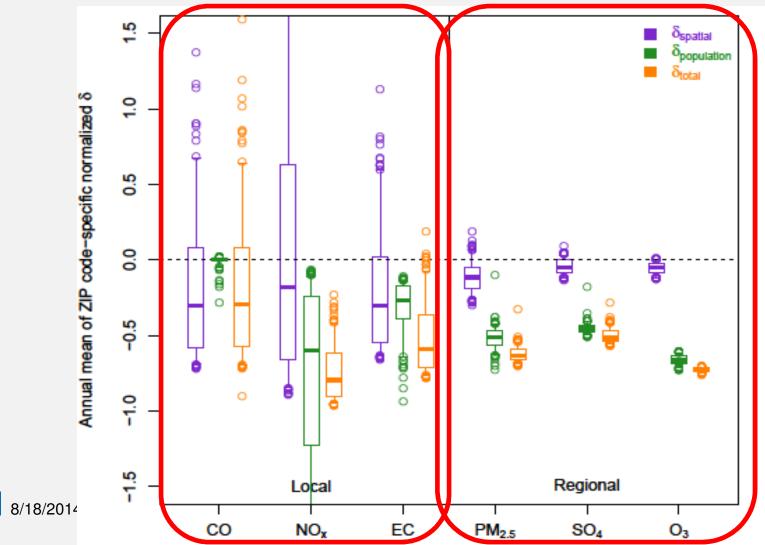
 $\lambda_{\chi_1} = \mathbf{S}(\mathbf{S} + \mathbf{V})^{-1}$

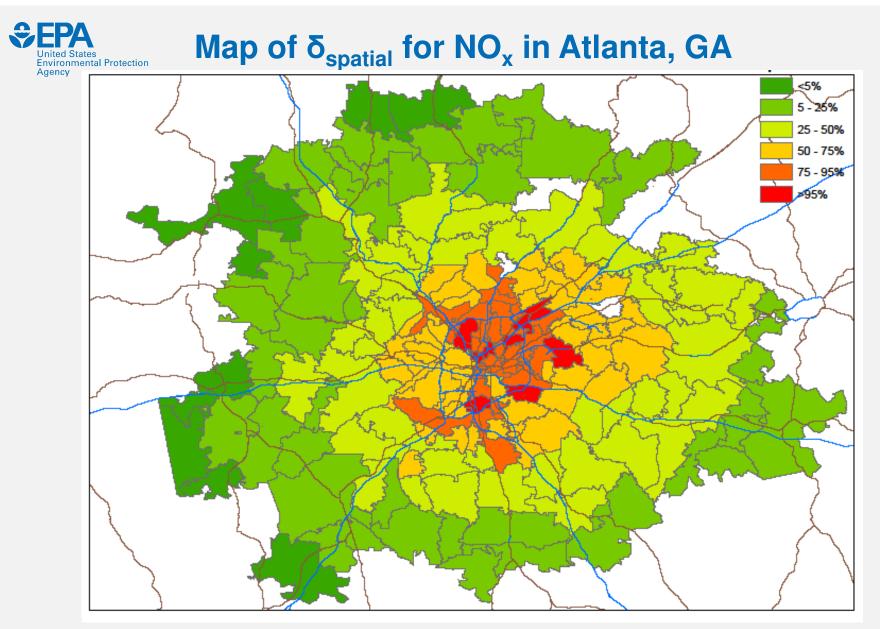
$$\beta_{observed,x_1} = \lambda_{x_1} \times \beta_{true,x_1}$$

 λ_{x_1} = attenuation factor for pollutant x_1 in a classical error, bipollutant model, assuming pollutant x_2 has no effect (β_{x_2} = 0) **S** = covariance of the more refined exposure metric for x_1 and x_2 **V** = covariance of the exposure errors for x_1 and x_2


Modified from Zeger et al. (2000). "Exposure measurement error in time-series studies of air pollution: concepts and consequences." Environmental Health Perspectives 108(5): 419-426.

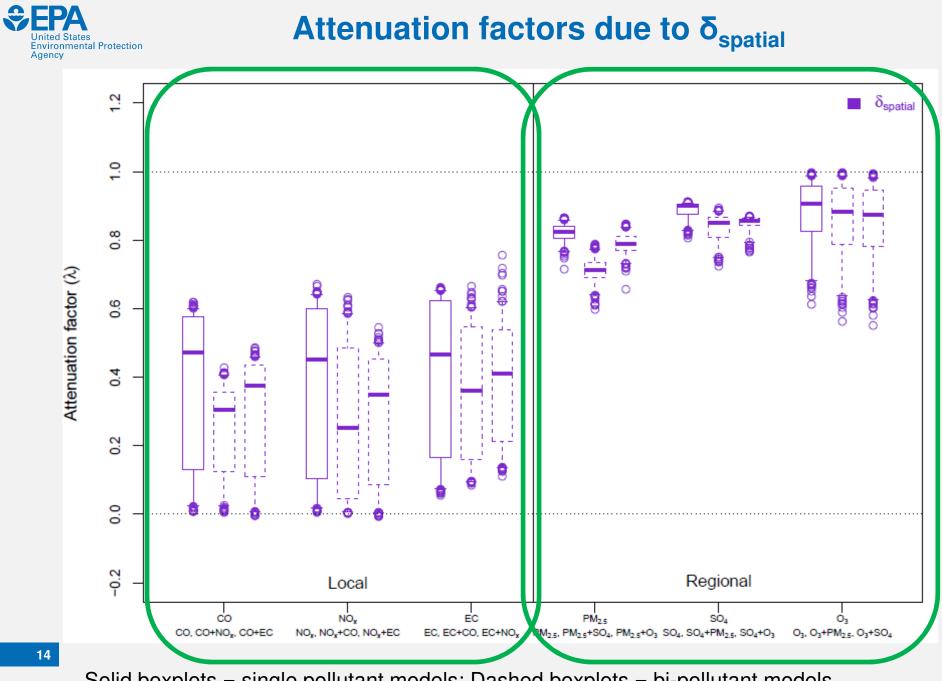
Results: Relationships between multiple pollutants and their associated exposure errors


Distributions of pearson correlations between daily exposure metrics (n= 193 zip codes)


¹⁰ 8/18/201

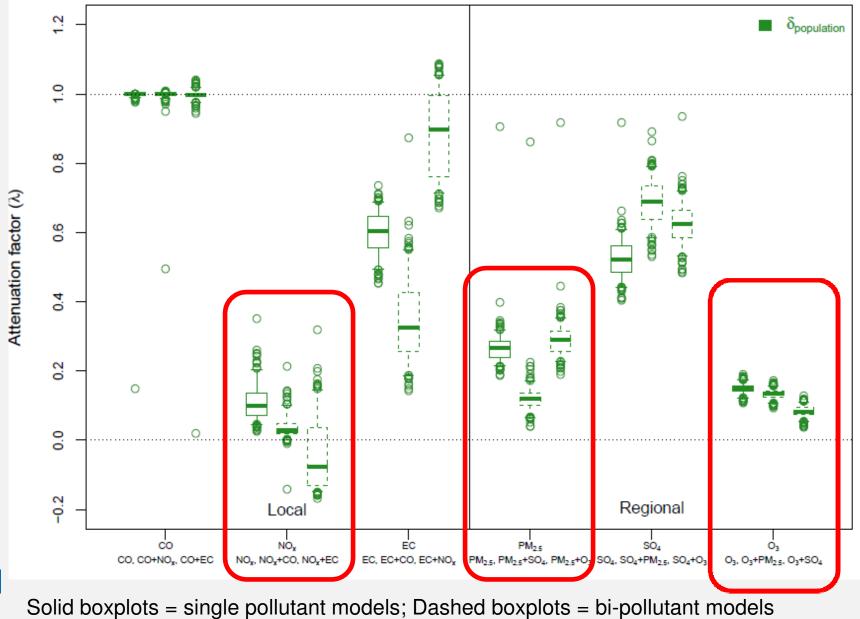
Normalized (divided by annual average CS measurement) ZIP code-specific exposure error estimates

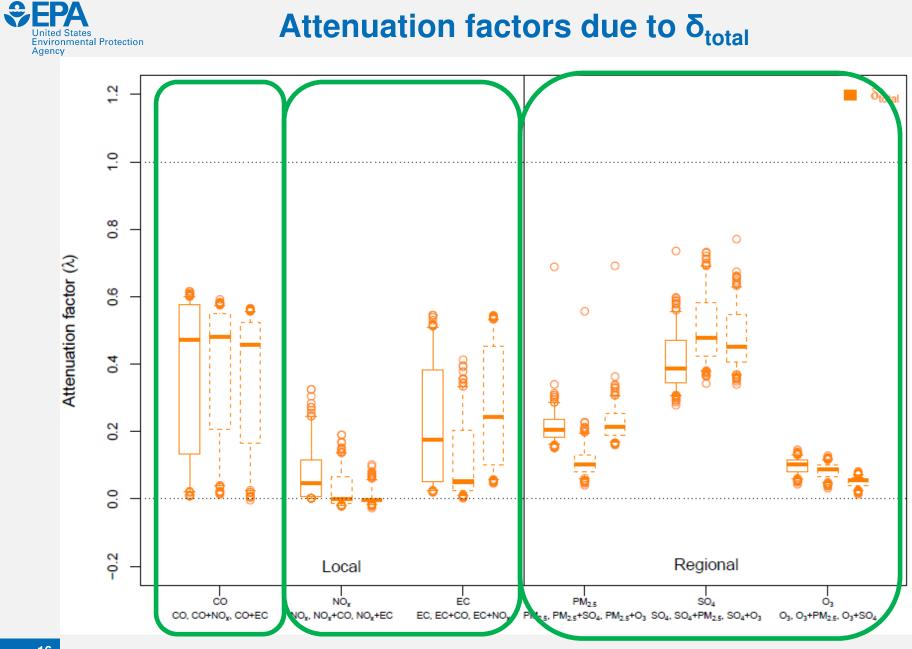
11 8/


Colored regions represent ZIP codes in the study area, blue and brown lines indicate major roads.

Legend is grouped by percentile, where 5% = -0.85; 25% = -0.66; 50% = -0.18; 75% = 0.63; and 95% = 1.73.

12


Results: Attenuation Factors


Solid boxplots = single pollutant models; Dashed boxplots = bi-pollutant models

Attenuation factors due to $\delta_{population}$

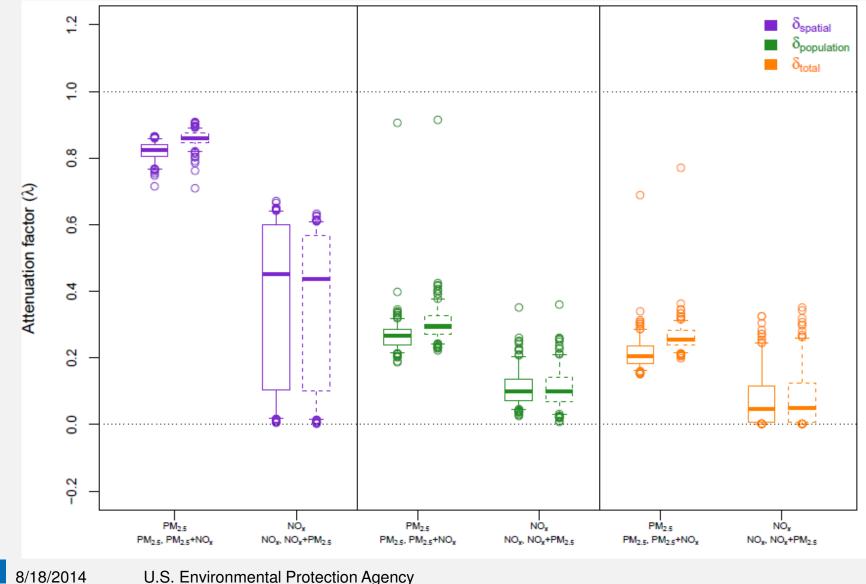
15

Solid boxplots = single pollutant models; Dashed boxplots = bi-pollutant models

16

Summary and Conclusions

- Attenuation of coefficients for bi-pollutant models, particularly for local pollutants (CO, NO_x, EC)
- Spatially varying attenuation due to spatial variability (i.e. differences between zip codes)
- More research are exploring multipollutant approaches
 - Effects on model coefficients will depend on relationships between pollutants and their errors
- Next step: simulation study including the empirically determined covariance structures to quantify the effect on bi-pollutant model coefficients


18

Acknowledgments

- EPA: Halûk Özkaynak, Vlad Isakov
- Emory University: Stefanie Sarnat, Jeremy Sarnat
- Georgia Tech: Jim Mulholland

Disclaimer: Although this work was reviewed by EPA and approved for publication, it may not necessarily reflect official Agency policy.

\$EPA Attenuation Factors for a local-regional pollutant pair United States Environmental Protection example Agency

U.S. Environmental Protection Agency

19

Results: Parameters impacting attenuation and bias in a bivariate pollutant model^a

		AQ	PE		δ _{spatial}				δ _{population}				δ _{total}			
x ₁	x ₂	$Corr(x_1, x_2)$	Corr(x ₁ ,x ₂)		$Var(\delta_1)^b$	$Var(\delta_2)^b$	$Corr(\delta_1,\delta_2)$		Var(δ ₁) ^b	$Var(\delta_2)^b$	$Corr(\delta_1, \delta_2)$		Var(δ ₁) ^b	Var(δ₂) ^b	$Corr(\delta_1, \delta_2)$	
Local-Local pollutant pairs																
CO	NOx	0.96	0.86	Π	0.25	0.83	0.73		0.00	0.32	-0.13		0.25	0.80	0.35	
со	EC	0.86	0.84		0.25	0.30	0.65		0.00	0.05	-0.19		0.25	0.33	0.52	
NOx	EC	0.88	0.80		0.83	0.30	0.76		0.32	0.05	0.85		0.80	0.33	0.72	
Regional-Regional pollutant pairs																
PM _{2.5}	SO↓	0.76	0.76		0.04	0.05	0.21		0.09	0.10	0.77		0.12	0.16	0.70	
PM _{2.5}	0;	0.52	0.49		0.04	0.02	0.03		0.09	0.11	0.52		0.12	0.16	0.41	
SO↓	0,	0.62	0.60		0.05	0.02	0.11		0.10	0.11	0.62		0.16	0.16	0.57	

 a All values presented are median across all ZIP codes; b Var(δ) represents variance of normalized exposure error

* builds upon the hypothetical simulation presented in Zeger et al. (2000)