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Foreword 

Environmental concerns are primarily ecological concerns. In the past, most regulations that have been implemented to 
protect ecological resources have done so with only implicit connections to organisms and the habitats and communities 
in which they live. Research that make such connections explicit is needed to improve current and future ecological risk 
assessments. Although sustainability of ecological resources is ultimately the goal of all environmental management, 
identification of what is meant by ecological sustainability is often not well defined. Nevertheless, it is clear that one 
area of needed research pertaining to this topic is the development of comparative risk approaches that can identify, 
generate, and evaluate alternative future scenarios. Such research also needs to be focused on regional environmental 
issues and concerns rather than simply local or site-specific issues. In this regard, river basins, sub-basins, and 
watersheds, defined by their network of water and material movement, are perhaps the most useful and well defined 
landscape units for which regional scale environment concerns must be routinely addressed. 

To address these issues and needs, the Ecosystems Research Division of the National Exposure Research Laboratory 
developed a research program in 1999 entitled Basin-scale Assessment of Sustainable Ecosystems (BASE). BASE's goal 
was to investigate and develop methods and approaches that integrate ecological, hydrological, and landscape processes 
with projections of socioeconomic demands on regional watersheds and river basins. 

Rosemarie C. Russo, Ph.D. 
Director 
Ecosystems Research Division 
Athens, Georgia 
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Abstract 

BASE (Basin-Scale Assessments for Sustainable Ecosystems) is a research program developed by the Ecosystems 
Research Division of the National Exposure Research Laboratory to explore and formulate approaches for assessing the 
sustainability of ecological resources within watersheds and larger river basins. To give the program focus, BASE has 
focused on developing a conceptual framework to assess the sustainability of ecological resources in the Albemarle-
Pamlico Basin, NC under the influence of the multiple stressors that might be imposed by human activities across the 
region. To make this project doable, BASE’s focus was narrowed further to deal only with the assessment of projected 
changes in various dimensions of fish health within the Albemarle-Pamlico Basin. A more complete assessment, 
however, would consider a wide variety of ecological resources, selected to represent many kinds of potential 
vulnerability. These could include dwindling habitats, altered climate that places many species of both animals and plants 
out of their physiological tolerance limits, and the continuing threat to biota across the region from a changing suite of 
environmental contaminants. 

The major components of BASE are: 1) identification and generation of stressor scenarios that directly or indirectly 
produce ecological effects; 2) hydrologic, hydrodynamic, and water quality simulations; and 3) fish endpoint simulations. 
Conceptually, analyses of projected socioeconomic and demographic changes within the basin are used to generate input 
scenarios for regionally distributed hydrological and water quality models. The resulting water quality scenarios are, in 
turn, used as inputs to various fish endpoint models whose outputs are used to assess the regional sustainability of fish 
health. 

According to the BASE conceptual framework, projected socioeconomic and demographic trends can be translated 
directly into future land use practices that directly alter 1) regional hydrologic patterns, 2) sediment, nutrient, and 
contaminant loadings to surface waters, 3) in-stream sediment transport and deposition, and 4) general water quality 
dynamics. Methods for translating projected urban development into impervious land use cover are described and 
discussed in detail. Methods for estimating the runoff of water, nutrients, pesticides, and sediments from the landscapes 
based on current or projected land use are also considered. To complete the framework, models for simulating regional 
hydrology, water quality, and fish community processes are described and reviewed. 

To illustrate how these components can be sequentially linked to assess fish health, a demonstration project aimed at 
assessing the ecological responses of fish communities within the Contentnea Creek watershed of the Albemarle-Pamlico 
basin is presented. 
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1. Introduction

An analysis of the ecological sustainability of a large watershed (river basin or multiple basins) obviously 
could provide essential information for the optimal environmental management of that area. The goal of such an 
ecological sustainability analysis should be the evaluation of the expected, long-term response of a suite of 
representative ecological resources to the major stressors that may occur within the basin, with greater emphasis on 
the more hazardous and more widespread stressors. A basin-scale analysis will generally include a heterogeneous 
mix of physiographic, hydrographic, ecological, socio-economic, and political characteristics. Many of these 
complexities are encountered by environmental managers who must decide how to allocate limited resources to a 
large set of environmental problems. Choices of which of many ecological problems to attempt to solve and which to 
postpone are limited by human and other resources, so an indication is needed of the relative severity of problems 
affecting ecosystems within a basin and what resources are sustainable under which practices. Although choices may 
be made, in part, on political grounds, the better the knowledge of the relative ecological vulnerabilities and 
environmental management practices that will sustain ecological resources, the more cost effective will be choices 
for environmental management. 

Many ecological problems are inherently non-local. Actions at one geographic location often have large 
ecological effects at far distant points, so that for some problems, large regions must be considered for an adequate 
evaluation of consequences. For aquatic resources, a river basin is an appropriate unit in which to consider these 
interconnected ecological problems. An ecological sustainability analysis, as proposed herein, should use 
characterization of the geographic distribution and magnitudes of ecological changes that are projected to result from 
a suite of potential human actions, and identify from this suite those that provide the greatest degree of sustainability. 
There is, however, no necessity that only basin-wide problems be considered or that an estimate be made of the 
severity of a problem on a whole-basin basis because both types of analyses are within the scope of our definition of 
basin-scale sustainability analysis. It would be valuable for a manager to know how to deal with a particularly severe 
problem confined to a small area within a region, and in general, to know the subregional scope of practices that are 
damaging and those that are beneficial. When considering which of competing problems to try to solve, a manager 
could benefit by knowledge of which are more likely to become even more severe under continuation of current uses 
and what alterations are necessary for sustainability. The ability of the ecological resource to recover when a stressor 
is removed or a needed support service provided (other species, accessibility of stream reach, etc.) would be valuable 
knowledge. Estimates of this resiliency must come from knowledge of the resource, and if this knowledge is codified 
in a working model, it is more widely usable and, therefore, more valuable. Finally, a manager could benefit by 
knowledge of the specific causes of ecological damage, i.e., what are the human actions to which the resource is 
vulnerable and what are the specific remedies. It would be valuable to go beyond vulnerability, however. Knowledge 
of practices that sustain ecological resources encompass, and therefore are more valuable than the more limited 
knowledge of vulnerabilities. With such information, a manager would be well positioned to allocate resources 
optimally to environmental protection. 

Analyses of the sustainability of ecosystems, as envisioned herein, will consider responses of present-day 
biota to potential future stressors and management practices - the latter represented by scenarios selected for their 
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plausibility as insights into possible future environmental choices. Scenarios represent not just uncertainty of 
knowledge of what will happen, but also what might happen. There are a few factors, such as climate, whose future 
trajectories are believed to be essentially set - that is we have little power to change this trajectory over the next 
several decades. In contrast, the magnitudes of many environmental stressors that will occur over the same time 
period will be determined by choices made over that same period. Future scenarios will consist both of 
representations of those factors whose trajectories over decades are already set and of other factors whose 
trajectories will be set by future choices. Comparisons of these response measures of sustainability among scenarios 
will be directly interpretable. Each scenario will be chosen to reflect real, long-term possibilities for land use, 
chemical use, forestry and agricultural practices, and other factors that humans control, in addition to those that are 
essentially outside our control. These analyses will present us with a projection of the consequences of choices that 
affect the environment long before they occur - in most cases, long enough ahead of time to make optimal choices. 
The analyses will identify responses with characteristic times that are very long, such as climatic change; of 
intermediate length, such as alteration in forest composition and soils; and that are short, such as alterations in 
surface-water hydrology and transport of materials. The longer the characteristic time, the earlier must decisions be 
made for any intended changes before significant results can be realized. 

To assess how resources of today will respond to future stressors, we must assess the current ecological 
resource base, identify and predict the behavior of future stressors, and predict the response of ecological resources 
to those anticipated stressors. Clearly the prediction of required stressor and resource dynamics must be performed 
using mathematical simulation models of some form. Because the predictions of such models will be inherently 
uncertain, we must develop the ability to characterize results, including the associated uncertainty, in ways that are 
useful to those with responsibility to steer away from behaviors and choices that carry greater ecological risk. 
Currently, we have no documented, procedural means with a sound theoretical basis by which questions of the 
ecological effects of today’s socio-economic choices can be evaluated. Ecological sustainability analysis can be the 
tool by which we preview results of chains of choices on future environments and ecosystems. Change is certain, 
and choices that are made will establish the nature, rate, and magnitude of that change. A more concrete awareness 
of the likely results of our actions would give us a better chance to choose environmental policies that support 
sustainable ecosystems. 

The simulation approach can become overburdened with detail. The key to a successful project of this type 
lies in the abilities of the investigators to define the problem that will both answer the environmental question at 
hand, and for which the essential abstraction can be made that makes the problem tractable and computationally 
feasible. Using models to solve problems, even problems of the scope of a large basin, must be a restricted activity 
by necessity since one can easily define a problem that is too big to be feasible. Therefore, as a demonstration 
project for the development of a basin-scale ecological sustainability analysis scientists at the Ecosystems Research 
Division of the National Exposure Research Laboratory have chosen to focus on one particular ecological resource 
of widespread concern within the Albemarle-Pamlico river basin of North Carolina. In particular, we have focused 
our efforts on developing a sustainability analysis framework for the health of the basin's fish communities and 
associated fisheries. 

For this study of ecological sustainability, we have defined the problem more narrowly to be the effect of 
water quality changes on fish populations, both resident and migrant. Ideally, a set of feasible management practices 
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will be identified that will stabilize water quality sufficiently to support sustained resident and anadromous fish 
communities in these waters indefinitely. Water quality changes are taken to mean the projected changes that will 
occur in response to human activities that introduce a variety of biological stressors over a selected future time, say 
50 years. Questions can be expected to be posed about these effects, including questions of where within the region 
are the effects most severe, and what management alternative improves water quality the most, or the most 
economically. The full problem definition should be rich enough to include a wide suite of such questions. The 
choice of resolution (spatial, temporal, and component-wise) is determined, in part, by the nature of the questions to 
be answered. The essential components (without getting into detail at this point) include: landscape state in terms of 
its physiography, land cover, and land use (to determine runoff quantity and quality in terms of suspended and 
dissolved constituents) for both present and a suite of future scenarios; the quantity and quality of runoff for all of 
the watersheds at the smallest scale that we will consider; movement of water through the watercourses; flow fields 
during weather events (long-term drought, high-rainfall event, etc.); water quality as a resultant of both water 
flowing from upstream and from in-stream processes; and finally, the states of fish populations. These are stated in 
terms of our perception of essential components of the natural system. In the problem-solution phase, the modeler 
must apply models that compute the quantities of each of the processes carried out by the essential components, 
compute differences between current state and a projected future state, and identify scenarios representing 
management practices that provide sustainability of the fish communities. 

1.1. BASE Program Approach and Design

The goals of this research, which will be subsequently referred to as BASE (Basin-scale Assessment of 
Sustainable Ecosystems), are to design and implement a framework for assessing the sustainability of fish 
communities in the Albemarle-Pamlico basin associated with a suite of alternative management practices over a 
future time interval, and to contribute knowledge of the conduct of this project to assist with design requirements for 
a software assessment tool to support such analyses organized on the basis of a discrete hydrologic unit. 

Computations in the BASE framework will be carried out by a series of models that are linked according to 
the topographically driven flows of water and transported material of the natural system. These linkages are 
portrayed schematically in Figure 1, including the model acronyms. 
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Figure 1. Schematic relationships between models used in the BASE sustainability framework. 

The computation of sustainability as a persistence of fish populations or communities between the present 
environmental state and that presented by scenarios of the future is indicated schematically in Figure 2. 

4




Figure 2. Schematic ecological sustainability as persistence of ecological resources into a future scenario. 

Note that multiple scenarios for future environments are indicated in Figure 2, and that both uncertainty and a range 
of sustainabilities, each associated with a given future scenario, are the outcomes of the use of multiple future 
scenarios. 

Watersheds - The causal chain of influence of environmental factors on fish health within a basin is 
assumed to be the following. The state of the watershed (forest, field, pavement, etc.), weather, ecological processes 
and human activities on the watershed control the character of runoff (water production, sediment delivery, 
allochthonous organic material delivery, concentration of nutrients and toxicants). Both the character of runoff and 
in-stream processes control water quality. Allochthonous organic material (leaves and woody detritus) is the primary 
carbon source for small streams, driving the production of benthic insects, which are the primary food source for 
many stream fishes. In water bodies of larger size and longer water residence times, the allochthonous organic 
material contributes less per unit of volume or bottom area, and autochthonous organic carbon from primary 
productivity by phytoplankton dominates. 

In streams where allochthonous organic material is the dominant carbon source, the activities of 
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microorganisms and bottom-dwelling invertebrates decompose and resynthesize the organic detritus, and are the 
source of food for most fish populations. The presence and composition of riparian vegetation, as well as the 
distribution of forest cover of the upland portions of the watershed are determinants of the quantity and quality of 
allochthonous organic material that enters the streams, thereby influencing the density of bottom-dwelling 
invertebrates that can be supported. Sedimentation destroys habitat for the invertebrate populations, high levels of 
pesticides lead to higher mortality and lower reproductive rates, and high concentrations of inorganic nutrients can 
lead to periphyton overgrowth that is detrimental to some and favorable to other invertebrate species. Fish 
communities are comprised of species whose physiology, behaviors, and ecological interactions favor their presence 
in streams of given water quality, flow regime, temperature pattern, bottom characteristics, and food source. These 
quantities, altered by activities that change the character of runoff, in turn, alter fish physiology, behavior, and 
ecological interactions and consequently, the composition and density of fish communities. 

In larger water bodies with residence times long enough that phytoplankton can develop, water clarity, 
temperature, and the source strengths of the major nutrients (particularly nitrogen species and phosphate) strongly 
determine the densities of phytoplankton populations that develop. Under favorable conditions, phytoplankton 
populations tend to develop to densities that reduce the limiting nutrients to background concentrations, which 
support further growth only at levels that equate to population mortality. Conditions are generally not favorable for 
long periods, however, so phytoplankton populations tend to increase to high levels and remain there for some time 
until conditions begin to cause severe mortality. Inorganic nutrients are returned to the water by microbial 
decomposition of the dead phytoplankton. Where source strengths of nutrients are high and variable, this boom and 
bust cycle continues, and where nutrient supply is low and more stable, a lower density and more stable 
phytoplankton population tends to develop. The food web in planktonic systems can be complex, with several 
planktonic invertebrate populations feeding on the phytoplankton, with several fish species feeding on both the 
phytoplankton and on the planktonic invertebrates, and with the food habits of many fish species changing from 
plankton-feeding of the fry, to piscivory later in the fishes’ life. Lower reaches of the rivers and the estuaries and 
sounds support large, transient, anadromous populations that immigrate upriver to spawn and return downriver to the 
estuaries and ocean, leaving behind large populations of young to feed and grow to sizes where they too leave the 
sounds and overwinter in the ocean. The characteristics of watersheds and upstream reaches, and processes that 
occur within the lower reaches control the water quality of the lower reaches, with phytoplankton growth being one 
of the controlling processes. In addition to the requirement of the continuous existence of a support level of 
plankton, the flow regime, water temperature, dissolved oxygen, pH, turbidity from suspended sediment and 
plankton, toxicant concentrations, and other quantities influence the health of resident and anadromous populations 
of fish. 

Activities needed to assess fish health can be categorized into discrete phases that follow the above 
description. These phases are: 1) generation of regional land-use scenarios, 2) runoff modeling (hydrology and 
source water quality), 3) in-stream hydrodynamics and water quality modeling (including microbial and algal 
activity), and 4) fish community modeling. These modeling activities will connect the state of the watershed to 
expectations of the states of fish communities in the watercourses of the region. Given a scenario that projects future 
states of the regional watersheds, the same modeling activity can be used to connect the projected future states of the 
watershed to expected future states of fish communities. If a current ecological resource would be detrimentally 
affected by human activities that could occur in the future, we would naturally say that the ecological resource is 
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vulnerable to that type of activity, and that for the resource to be sustainable, that activity would necessarily have to 
be curtailed or altered such that the impact is avoided. If sustainability is the objective, knowledge is required of 
what practices to substitute for those that create vulnerabilities in ecological resources. Modeling scenarios will 
include a range of posited human activity patterns, so that those tending to promote sustainable ecosystems can be 
identified. An additional approach will be evaluated in which the best features of the original set of future scenarios 
will be compiled to construct the most favorable overall scenario. 

Focusing on relationships and causal chains within a watershed underscores a working assumption that fish 
populations and their health can be evaluated independently across watersheds, but that population interactions must 
be taken into account within watersheds. From the point-of-view of modeling fish health, this defines a watershed as 
being hydrologically and ecologically distinct. The eight-digit hydrologic unit code (HUC) defines watersheds that 
reasonably well meet this criterion. Modeling fish health in small streams, however, requires sub-watershed 
resolution. This implies that runoff, water flow, water quality, etc. must be computed for each of the small stream, 
sub-watershed units within the eight-digit HUC. The 11-digit HUC defines smaller watersheds that are of a size that 
might reasonably well meet the size criteria of associated small stream networks with interacting fish populations. 
The area of the Albemarle-Pamlico region is about 31,400 square miles and there are 22 eight-digit HUC’s within 
the region. There are 197 11-digit HUC’s reported for the region (a few records are duplicated so that there are 
actually fewer than 197). To model this region’s fish health within small streams as well as within large streams, 
rivers, and estuaries assuming that there will be two or three small streams per 11–digit HUC, the total number of 
small watershed analyses required would be on the order of 400 – 600. It does not appear feasible to do 
computations of runoff and streamflow for each of these streams individually without some type of automation, or 
possibly some type of sampling scheme. One approach that we are pursuing in an attempt to reduce the requirement 
for local calibration of each watershed is the application of the runoff and streamflow model, HSPF, in small 
subwatersheds where the physical-chemical properties are more uniform. These HSPF outputs would then be 
composited to estimate the runoff and streamflow for the whole watershed. If this approach gives usable predictions, 
it or some modification could be used for computation of runoff and streamflow on the many ungaged watersheds of 
the basin. 

Analysis of individual watersheds, although assuming that there is little mixing of fish populations among 
large watersheds, must not assume that the watershed is isolated in other ways. Most watersheds are not headwaters 
and are part of a much larger airshed. Activity far upstream and far away can have significant effects. Although we 
are forced to draw artificial boundaries with respect to the airshed and to attempt to obtain fluxes of airborne 
materials across those boundaries, we are not forced to do so for river basin hydrology and associated transport. 
Thus, any watershed can be properly placed within the water routing scheme and the analysis done for the watershed 
in the context of upstream conditions and any cross-watershed transport that is known to occur. 

Basins - At the data level, a basin analysis is a collection of watershed analyses, but from a simulation 
point-of-view, there is the additional requirement that the watershed analyses be conducted in the full context of 
their watershed and stream-flow connectivity and other factors of basin morphology. At the most downstream points, 
even the watershed analyses are basin-scale in scope, especially in systems like the Albemarle-Pamlico where the 
rivers flow into common estuaries and sounds. Analyses of the water quality, fish health, etc., in these downstream 
systems are inherently basin-scale, because influences on all watersheds contribute to conditions within the sounds. 
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Anadromous fishes, i.e., those that use the creeks, rivers, and sounds for spawning and nursery areas, require 
analyses that are supra-watershed. These fishes traverse large distances, passing from sounds into lower rivers and 
estuaries and then upriver into creeks where they spawn, and then depart from the system. The fry and young then 
traverse the same systems, albeit much more slowly as they pass through their early life stages in preparation for 
return to the ocean. Therefore, both the adults and young of these fshes are exposed to conditions in several 
waterbodies and watersheds annually. Conditions in the river during the time of passage of fry and young can 
strongly influence the size of the year class and, therefore, the size of the migration supporting the fishery during 
subsequent years. 

Computer simulations will generate a mass of geographic and temporal detail about water quality, fish 
habitat, and the state of fish health across the region, but comprehension of these data depends on interpretation at a 
higher and more comprehensive level. Measures of fish health (species composition of communities, population 
densities, age structure, body burdens of toxic chemicals, etc.) will be generated for mapping, including annual 
cycles that could show the time of year or life stage that is most vulnerable and the geographic pattern of occurrence 
of that vulnerability. Other measures of quantities that support or impinge upon fish health will also be available, 
such as sediment, nutrient, and pesticide loading by stream reach, or larger water body. 

1.2. Concepts and Definitions Related to Ecological Sustainability

During the mid 1970's and early 1980's, a great deal of attention was focused on two important concepts 
related to the sustainability of ecological resources. The first of these was the notion of ecological resistance that was 
defined to be the ability of an ecological component or process to maintain constant or nearly constant levels of 
activity when exposed to external stressors. The second concept was that of ecological resilience, which was defined 
as the ability of an ecological component or process to return to nominal levels of activity after external stressors that 
depressed the component's or process's activity were relaxed. Having defined these very different types of system 
response to external perturbation, whether natural or anthropocentric in origin, many researchers attempted to 
categorize ecosystems, communities, and populations as to whether they are resistant or resilient relative to 
ecological stressors. 

At the same time, systems ecologists began an active dialog focusing on the concept of ecological stability. 
Although "stability" may be semantically related to "sustainability", early ideas regarding ecological stability were 
only indirectly related to what today's environmental managers and regulators may have in mind regarding 
ecological sustainability. Early concepts of ecological stability were largely founded in general systems theory and, 
in fact, were focused more on the models of ecological components and processes rather than the components or 
processes themselves. See, for example May(1973). Ecological stability from this perspective largely concerned 
itself with two different, but related, aspects of “ecosystem” behavior. The first of these behaviors is the ability of an 
ecosystem to return to its “nominal” trajectory or equilibrium state after being perturbed (Waide and Webster 1976). 
For linear ecological models or the linearized versions of non-linear ecological models, this type of stability has 
become synonymous with the Lyapunov stability from applied mathematics (Astor et al. 1976). The second behavior 
of interest was the ability of an ecosystem to maintain nearly constant population sizes in the face of parameter 
variations (Waide and Webster 1976). The former ability was generally referred to as “neighbor stability” whereas 
the latter was referred to as “structural stability”. 
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An important dimension of structural stability as defined above is the property that all system components 
exhibit bounded growth without catastrophic population crashes. For example, a predator-prey system would be 
considered stable if both the predator and the prey coexisted in balance with one another. Similarly, a system of two 
or more competitors would be considered stable if all coexisted with non-zero populations. 

Any concept of ecological sustainability, including that of fish health, must include all the concepts 
mentioned above. Resources that are explicitly exploited for harvest or consumption must be both resistant and 
resilient to actual or potential over harvest. Many freshwater fisheries are managed and maintained by fish stocking 
programs that can cause widespread disagreement as to what ecological sustainability really should be. This is 
particularly true when such programs involve the stocking of non-indigenous species. In such situations, the 
recreational angler may view resource sustainability simply as the sustainability of the game species of interest. 
However, from the perspective of ecologists, naturalists, or other outdoors enthusiasts, ecological sustainability must 
encompass the maintenance of the natural biodiversity of waters being managed by such programs. These two 
expectations for ecological or resource sustainability are often in conflict with one another since the biodiversity of 
any native fauna or flora is typically at risk with the introduction of any exotic or non-indigenous species. 
Consequently, in these situations our ideas of ecological sustainability must include not only the persistence of the 
game species but also the structural stability of the affected aquatic communities. 
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2. Fish Health

Fish health can be defined from both an ecological and a human health/value perspective in a wide variety 
of ways. Questions related to ecological perspectives include: 

1) Is individual fish growth and condition (e.g., fat reserves) sufficient to enable them to survive 
periods of natural (e.g., overwintering) and man induced stress? 

2) Are individual fish species maintaining sustainable populations? In particular, is individual growth 
adequate for the fish to attain the minimum body size required for reproduction? Is there adequate 
physical environment for successful spawning? Is there adequate physical habitat for the survival 
of the young-of-year? 

3) Do regional fish assemblages exhibit their expected biodiversity or community structure based on 
biogeographical and physical chemical considerations? 

4) Are appropriately size fish abundant enough to maintain piscivorous wildlife (e.g., birds, 
mammals, and reptiles) during breeding and non-breeding conditions? 

5) Are potential fish prey sufficiently free of contaminants (endocrine disruptors, heavy metals, etc.) 
so as not to interfere with the growth and reproduction of piscivorous wildlife? 

Questions related to human perspectives include: 

6)	 Is the fish community/assemblage of concern fishable? That is, are target fish species sufficiently 
abundant and of the desired quality? Although the two principal dimensions of quality are body 
size and contaminant burden, another dimension is the outward appearance of the fish. In 
particular, are the fish free of parasites or signs of disease? 

Although such assessment questions clearly identify many of the major issues with which regional 
environmental managers might be concerned, such questions generally must be further refined in order to be truly 
useful and relevant for regional assessments of fish health. For example, the format of the following assessment 
questions would seem to be much more useful to regional environmental managers. 

!	 In what percent of lakes in region A are largemouth bass (or other game species) achieving their expected 
growth rate? 

!	 In what percent of lakes in region A is the mean size of largemouth bass (or other game species) expected 
to decrease, increase, or remain unchanged over the next 10 years? 

!	 In what percent of lakes in region A are largemouth bass (or other game species) of legal size exceeding 
fisheries advisories for mercury, PCB, etc? 

!	 In what percent of lakes in region A is the productivity of largemouth bass (or other game species) expected 
to decrease, increase, or remain unchanged over the next 10 years? 

!	 In what percent of lakes in region A is the recruitment of largemouth bass (or other game species) not 
sufficient to maintain the fishery for the next 20 years? 
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! In what percent of wetlands in region A are forage fish (e.g., sunfish, killifish, top minnows, etc) expected 
to attain body concentrations of mercury, PCB, etc that are known to pose an exposure risk to piscivorous 
wildlife? 

! In what percent of wetlands in region A are forage fish (e.g., sunfish, killifish, top minnows, etc.) standing 
stocks sufficient to maintain expected populations of breeding and non-breeding wading birds? 

! In what percent of streams in region A are native fish species able to successfully compete (i.e., maintain 
viable population) with projected program stockings of recreational game fish? 

! In what percent of streams in region A is the productivity of native fish species expected to be inadequate to 
support anticipated demand of recreational fisheries? 

Given appropriate stressor scenarios, each of these example questions concerns either the expected body sizes of a 
species, the expected body burdens of a species, the productivity of a given species or community at large, or the 
expected functional/species diversity of community. Consequently, it is not surprising that important metrics or 
indicators that have been traditionally used to assess fish health include 1) the community’s species diversity, 2) the 
community’s total biomass (kg/ha or kg/km), 3) the population density (fish/ha or fish/km) or biomass (kg/ha or 
kg/km) of the community’s dominant species, 4) the age or size class structure of the community’s dominant 
species, 5) levels of chemical contaminants in muscle or whole fish for human or ecological exposure assessments, 
respectively, and 6) the occurrence of disease or other pathologies. 

Many natural and anthropogenic stressors effect these characteristics that, in turn, can effect the growth, 
reproduction, and survival of the piscivorous wildlife that depend on these resources. Water quality parameters such 
as temperature, dissolved oxygen, and chemical contaminants directly impact the growth and survival of fish 
species. Excessive nutrient loads often foster algal blooms that can exhaust the water’s dissolved oxygen or produce 
natural toxins. Excessive sediment loads can cause increased siltation that can diminish the abundance of benthic 
food resources or benthic habitat required for successful spawning and recruitment. Such sediment loadings can also 
be the source of particle-bound pesticides and toxics. Dredging and benthic scouring due to increased water flow can 
increase exposures to toxic chemicals as suspended contaminated sediments re-equilibrate with the water. The 
destruction of riparian vegetation can increase water temperature and sediment loads and reduce allochthonous 
resources. 

2.1. Ecological Dimensions

Ecological dimensions of fish health can be focused at either the single species, the aquatic community, or 
the larger, coupled, aquatic-terrestrial ecosystem. At the level of single species, management and public concerns 
may be focused either on rare, threatened, or endangered species or on indicator species that serve as measurement 
endpoints for the larger communities or ecosystems in which they live. At the community level, there are several 
aspects of fish health that may be of concern to decision-makers and conservationists. These include: 1) community 
species diversity; 2) community functional diversity; 3) the presence or absence of exotic or invasive species; 4) 
community biomass; 5) community productivity; or 6) multivariate indices of biological integrity. At the level of the 
coupled, aquatic-terrestrial ecosystem, one may be concerned with the ability of fish communities to provide 
piscivorus, terrestrial wildlife with adequate food resources. 
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2.2. Human Use and Health Perspectives

Although public perceptions regarding fish health may have many dimensions, four indicators of good 
regional fish health would undoubtedly be 1) the absence of fish kills, 2) abundant catches of desirable game fish, 3) 
frequent catches of trophy size fish, and 4) fish that are sufficiently free of contaminant to be safely eaten. 

The North Carolina Division of Water Quality (NCDWQ) has maintained statewide records of fish kills 
since 1996 (NCDENR 1997b, 1998, 1999b, 2000, 2001). Table 1 summarizes the number and locations of fish kills 
that the NCDWQ has recorded to date. From 1996 to 1998 fish kills within the Albemarle-Pamlico basin accounted 
for 29 to 35 percent of the state's total recorded fish kills. However, this percentage has steadily increased such that 
in 1999, 2000, and 2001 fish kills within the Albemarle-Pamlico basin accounted for 52, 65, and 79 percent , 
respectively, of the state's recorded kill events. Fish kills are attributed to one of six causes: 1) bycatch related 
mortality; 2) dissolved oxygen depletion; 3) temperature events; 4) toxic algal blooms; 5) waste spills and pesticide; 
and 6) unknown. Table 2 summarizes the probable causes of all fish kills as identified by the NCDWQ. 

Bycatch is the discarded, non-target fish associated with commercial fishing operations. Decomposition of 
this high protein organic source can result in not only toxic ammonia concentrations but also low dissolved oxygen 
concentrations. Dissolved oxygen depletions, in the larger context, can be caused by a wide variety of natural or 
anthropogenic events. Natural causes include heavy rains during drought or low flow conditions. Such rains can 
flush excessive organic matter into surface waters that, in turn, triggers increased microbial decomposition. Heavy 
summer rains, which are often significantly cooler than receiving surface waters, not only can cause the turnover of 
highly reduced anoxic sediments but also can create inversion layers in ponds and other small impoundments. The 
cooler surface water in such layers can retard reaeration of the underlying water. Excessive nutrient or organic 
loadings from urban or agricultural sources can cause dissolved oxygen depletions by increasing algal and bacteria 
metabolism. In addition to their potential to deplete dissolved oxygen concentrations, certain types of algal blooms 
can also produce extremely hazardous biotoxins. In the Albemarle-Pamlico basin Pfiesteria and Pfiesteria-like 
organisms have been the most notorious algal group in this regard. Temperature-related fish kills may be caused by 
either exceeding the fish's thermal tolerance limits or as a contributing factor to low dissolved oxygen 
concentrations. 

Table 3 summaries the fish species that are classified as game species in North Carolina. These species may 
be the most important indicators of acceptable fish health for many regional anglers and outdoorsmen. Whether such 
persons practice catch-and-release or fish for harvest, their perception of fish health is undoubtedly based not only 
on their ability to catch an abundance of reasonably sized fish but also on their ability to frequently catch trophy 
sized fish. Although the notion of what constitutes a trophy fish certainly varies among anglers, the North Carolina 
Angler Recognition Program provides statewide guidelines for what is considered a trophy fish by average anglers. 
See Table 4. It is important to note that simple comparison of Tables 3 and 4 reveals that in North Carolina, trophy 
fish are not necessarily synonymous with game fish. For example, while not recognized as game species, regionally 
and locally important food species such as catfish and bowfin are recognized as potential trophy fish. Similarly, 
rough fish such as carp and gar are also recognized for their trophy potential. 

Although catch-and-release angling has become a very large percentage of the total fishing effort for many 
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large game fish such as largemouth bass and trout, fishing for consumption still dominates the sport. Consequently, 
if anglers cannot eat their catches due to the presence of excessive toxic chemical concentrations, their perception of 
the resource's health is greatly diminished even without the occurrence of fish kills or other overt ecological effects. 
Tables 5 and 6 report the most current statewide fish consumption advisories for North Carolina. As can be clearly 
seen from these tables, dioxin and mercury are issues for some of the sport fisheries in the Albemarle-Pamlico basin. 

Table 1. Summary of reported North Carolina fish kills for 1996-2001 (NCDENR 2001). 

Basin 1996 1997 1998 1999 2000 2001 
Broad none none none 1 none none 
Cape Fear 21 16 23 14 12 5 
Catawba none 3  1  3  2  4  
Chowan  2  2  1  1  none 1 
French Broad none 2 3 1 none none 
Lumber 4 3 5 none 2 none 
Neuse 14 12 8 16 23 37 
Pasquotank 10 2 8 2 none 1 
Roanoke 2 none 1 none none none 
Tar/Pamlico  3  6  5  11  14  23  
Watauga none none none 1 none none 
White Oak  3  3  1  3  3  3  
Yadkin/Pee Dee  1  10  2  1  2  3  
total kills 60 57 58 54 58 77 
total fish killed NR 91,998 593,545 1,298,472 716,141 1,369,140 

Table 2. Suspected causes of North Carolina fish kills for 1996-2002 expressed as a percent of total. 

Probable Cause 1996 1997* 1998 1999 2000 2001 

Bycatch ? - ? 4 5 1 

Dissolved Oxygen Depletion ? 37 49 30 21 34 

Toxic Algal Blooms ? 19 2 11 12 4 

Temperature / Other  ?  - 2  4  5  9  

Waste Spills / Pesticides ? 30 7 15 7 8 

Unknown ? 28 40 36 50 46 

* Kill events were attributed to 1 or more cause and, therefore, annual column sum is greater than 100%. 
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Table 3. Fish species or groups recognized as North Carolina inland game fish (NCWRC 2002). 

Family Species 
Centrarchidae Black bass (largemouth, smallmouth and spotted) 

Bluegill 
Crappie (white and black) 
Flier 
Green sunfish 
Pumpkinseed 
Redbreast sunfish (robin) 
Redear sunfish (shellcracker) 
Roanoke bass 
Rock bass 
Warmouth 
All other species of the family 

Clupeidae American shad, in inland waters 
Hickory shad, in inland waters 

Esocidae Chain pickerel (jack) 
Muskellunge 
Tiger musky 
All other species of pickerel 

Percichthyidae Bodie bass (striped bass x white bass) 
Striped bass, in inland waters 
White bass 
White perch, in inland waters 

Percidae Sauger 
Walleye 
Yellow perch 
All other species of perch 

Salmonidae Kokanee salmon 
Mountain trout (including but not limited to brook, brown 
and rainbow) 

Other marine 
species in inland 
waters Flounder 

Red drum (channel bass, red fish and puppy drum) 
Spotted sea trout 
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Table 4. Fish species and body sizes recognized by the North Carolina Angler Recognition Program (NCARP), 
effective July 1, 1997, as a “trophy” fish (NCARP 2002). 

Family 
Amiiade 

Species 
Bowfin 

Weight
10 lbs

 Length 
22” 

Centrarchidae Bluegill 
Crappie (Black or White) 
Flier 

1 lb
2 lbs
0.4 lb 

11” 
16” 
8” 

Green Sunfish 1 lb  9” 
Largemouth Bass 
Redbreast Sunfish 

8 lbs 
1 lb

 24” 
11” 

Redear Sunfish 1 lb  11” 
Roanoke Bass 1 lb  11” 
Rock Bass 1 lb  11” 
Smallmouth Bass 3 lbs  19” 
Spotted Bass 
Warmouth 

2 lbs
1 lb

 15” 
11” 

Clupeidae 

Cyprinidae 
Esocidae 

American Shad 
Hickory Shad 
Carp 
Chain Pickerel 

3 lbs
2 lbs
20 lbs
4 lbs

 16” 
13” 
34” 
26” 

Ictaluridae 
Muskellunge 
Blue Catfish 

20 lbs
30 lbs

 41” 
41” 

Channel Catfish 10 lbs  30” 
Flathead Catfish 30 lbs  41” 
White Catfish 4 lbs  21” 

Lepisosteidae 
Percichthyidae 

Longnose Gar 
Bodie Bass 
Striped Bass 
White Perch 

10 lbs
8 lbs
10 lbs
1 lb

 48” 
24” 
30” 
12” 

White Bass 2 lbs  17” 
Percidae Walleye 

Yellow Perch 
6 lbs
1 lb

 23” 
14” 

Salmonidae Brook Trout (hatchery) 
Brook Trout (wild) 
Brown Trout (wild) 
Brown Trout (hatchery) 
Rainbow Trout (wild) 
Rainbow Trout (hatchery) 

2 lbs
0.5 lb
2 lbs
2.5 lbs
0.75 lb
2.5 lbs

 16” 
10” 
15” 
18" 
12” 
18” 

15 



Table 5. North Carolina fish consumption advisories published by the North Carolina Wildlife Resources 
Commission (NCWRC 2002). 

Waterbody Species Pollutant Advisory Description 
Albemarle Sound (from
Bull Bay to Harvey
Point west to mouth of 
Roanoke and Chowan 
Rivers) Carp and Catfish  Dioxins 

No consumption by women of childbearing age 
and children. No more than one meal per month 
for the general population. 

Roanoke River (Hwy
17 in Williamston to 
the mouth of Albemarle 
Sound) Carp and Catfish Dioxins 

No consumption by women of childbearing age 
and children. No more than one meal per month 
for the general population. 

Welch Creek (Martin,
Beaufort, and 
Washington Counties) Carp and Catfish Dioxins 

No consumption by women of childbearing age 
and children. No more than one meal per month 
for the general population. 

Walters Lake 
(Haywood County) Carp Dioxins 

No consumption by women of childbearing age 
and children. No more than one meal per month 
for the general public. 

Pages Lake, Pit Links
and Watson Lake 
(Moore County) Largemouth Bass. Mercury 

No consumption by women of childbearing age 
and children. No more than two meals per month 
for the general population. 

Big Creek (Columbus 
County) 

Largemouth Bass 
and Bowfin 
(blackfish) Mercury 

No consumption by women of childbearing age 
and children. No more than two meals per month 
for the general population. 

Waccamaw River 
(Columbus and 
Brunswick Counties) 

Largemouth Bass 
and Bowfin 
(blackfish) Mercury 

No consumption by women of childbearing age 
and children. No more than two meals per month 
for the general population. 

Ledbetter Lake 
(Richmond County) Largemouth Bass Mercury 

No consumption by women of childbearing age 
and children. No more than two meals per month 
for the general population. 

Lumber River basin 
(Moore, Hoke,
Scotland, Richmond, 
Robeson, Bladen, 
Columbus and 
Brunswick Counties) 

Largemouth Bass 
and Bowfin 
(blackfish) Mercury 

No consumption by women of childbearing age 
and children. No more than two meals per month 
for the general population. 

Black Lake (Bay Tree
Lake) (Bladen Co) 

Largemouth Bass 
and Bowfin 
(blackfish) Mercury No consumption. 

Phelps Lake
(Washington and
Tyrrell Counties) 

Largemouth Bass 
and Bowfin 
(blackfish) Mercury 

No consumption by women of child bearing age 
and children. No more than two meals per month 
for the general population. 

South River (Harnett,
Sampson, Cumberland 
and Bladen Counties)
and downstream of 
South River at the 
lower part of Black
River (Sampson,
Bladen and Pender 
Counties) 

Largemouth Bass, 
Bowfin (blackfish)
and chain pickerel Mercury 

No consumption by women of childbearing age 
and children. No more than two meals per month 
for the general population. 

STATEWIDE Bowfin (blackfish) Mercury 

No consumption by women of childbearing age, 
pregnant women and children. No more than two 
meals per month for the general population. 
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Table 6. Fish consumption advisories published in North Carolina 305B Report, February 2000 
(http://h2o.enr.state.nc.us/bepu/files/305b/2000AppendixB.pdf ) 

Waterbody Species Pollutant Advisory Description 

Pigeon River (includes
Waterville Lake) 

Carp, Catfish Dioxin All groups should not consume fish 

Belews Lake Carp, Redear
Sunfish, Crappie 

Selenium General Population – 1 meal per week. Children 
and childbearing women –No consumption 

Hyco Lake Carp, White
Catfish, Green 
Sunfish 

Selenium General Population – 1 meal per week. Children 
and childbearing women – No consumption 

Baytree Lake Largemouth Bass Mercury All groups should not consume fish 

Ledbetter Lake Largemouth Bass Mercury General Population – 2 meals per month. Children 
and childbearing women – No consumption 

Phelps Lake Largemouth Bass Mercury General Population – 2 meals per month. Children 
and childbearing women - No consumption 

Roanoke River 
(Williamston to 
Albemarle Sound) 

All fish except
herring, shad and
shellfish 

Dioxins General Population – 2 meals per month. Children 
and childbearing women – No consumption 

Pages Lake, Pit Links
and Watson Lake 

Largemouth Bass Mercury General Population – 2 meals per month. Children 
and childbearing women – No consumption 

Big Creek (Columbus 
County) 

Largemouth Bass Mercury General Population – 2 meals per month. Children 
and childbearing women – No consumption 

Waccamaw River Largemouth Bass Mercury General Population – 2 meals per month. Children 
and childbearing women – No consumption 

Welch Creek All fish except
shellfish 

Dioxins All groups should not consume fish 

South River and Black 
River below South 
River 

Largemouth Bass, 
Chain Pickerel 

Mercury General Population – 2 meals per month. Children 
and childbearing women – No consumption 

Albemarle Sound (Bull
Bay to Harvey Point
west to mouth of 
Roanoke and Chowan 
Rivers 

All fish except
herring, shad and
shellfish 

Dioxins General Population – 2 meals per month. Children 
and childbearing women – No consumption 

All waters in the 
Lumber River basin 
including Pages Lake,
Lake Tabor, Lake 
Waccamaw, Maxton 
Pond and Johns Pond 

Largemouth Bass Mercury General Population – 2 meals per month. Children 
and childbearing women – No consumption 

All water of North 
Carolina 

Bowfin Mercury General Population – 2 meals per month. Children 
and childbearing women – No consumption 
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2.3. Stressors

Fish assemblages are influenced by biological processes, environmental factors, and anthropogenic 
stressors. Biological processes influencing fish assemblages include autoecology, density-dependent interactions of 
individuals, and competitive interactions among species. Environmental factors affecting fish assemblages include 
hydrology and physico-chemical habitat. Biological processes and environmental factors determine the structure of 
fish assemblages in the absence of anthropogenic stressors. Anthropogenic stressors, such as sediment and 
hydrologic and habitat alteration, can have profound effects at the level of the assemblage. Because of the 
complexity of influences structuring fish assemblages, mathematical models have been used to gain better 
understanding. The influence of biological processes, environmental factors, and anthropogenic stressors on fish 
assemblages, and the uses of mathematical models to integrate these influences are discussed below. 

In the absence of anthropogenic stressors, biological processes and environmental factors structure 
assemblages. Patterns of diversity and the relative abundances of populations in assemblages are thought to be 
determined by temporal and spatial heterogeneity in environmental factors (Townsend 1989, Reice 1994). Although 
this hypothesis is generally supported by field studies (Grossman et al. 1982, Rahel et al. 1984, Yant et al. 1984, 
Jackson et al. 1992, Grossman et al. 1998), other studies have demonstrated that biological processes, in particular 
species interactions, may at least in part determine the structure fish assemblages (Tonn et al. 1986, Taylor 1996). 
The relative importance of the influence of biological processes and environmental factors in structuring 
assemblages remains an open question. Because community structure appears to differ between regions (Hawkes et 
al. 1986, Whittier et al. 1988, Angermeier and Winston 1999), the answer may vary with region (Matthews 1998). 

2.3.1. Disruption of Nominal Biological Processes

The abundance of a fish species is determined in part by autoecological processes including feeding, 
reproduction, movement, and survival. Fish species display a wide range of feeding and reproductive behaviors 
(Allan 1995) that are alternatively favored in different environments, leading to difference species abundances 
among these environments (Karr 1981). Movement, as determined by species-specific stream fish dispersal abilities 
(Hill and Grossman 1987, Gatz and Adams 1994) in relation to the number, type, and proximity of suitable habitats 
(Schlosser 1995), controls the number of individuals immigrating to these habitats. Survival of specific age classes, 
which may be controlled by tolerances to environmental factors such as temperature, oxygen, and acidity, will also 
affect fish abundances (Matthews 1998). 

The abundances of stream fish populations are also influenced by density-dependent interactions among 
individuals. Density-dependence is the dependence of per capita growth rate on present and/or past population 
densities, where growth rate typically declines with increasing density as a result of resource limitation. Although it 
is unlikely in most stream fish populations that juveniles interact strongly with adults due to differences in resource 
use between these life stages (Lobb and Orth 1991), three types of density-dependent limitation are possible in fish 
populations: juvenile survival rate may exhibit a density-dependent response to juvenile density (Shuter 1990), and 
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adult density may have a negative effect on either adult fecundity (Shuter 1990) or adult survival rate (Grossman and 
Ratajczak In review). It is likely that most populations are regulated biologically by some form of 
density-dependence (Cappuccino 1995). 

The nature and strength of species interactions may also affect species abundance and diversity. 
Competition may occur among stream fishes for habitat or food (Matthews 1982), and can limit summer growth, 
pre-winter size, and potentially winter survival in juvenile fishes (Schlosser 1987), which in turn determine 
abundance. Competition can also prevent the coexistence of species that experience strong interactions, such that 
similar species will exhibit negative covariation in abundance or presence over time (e.g., Winston et al. 1991). 
Competition may limit the set of species that can coexist in an assemblage to those that use different sets of 
resources. Fish species that do coexist typically exhibit resource partitioning (Lobb and Orth 1991, Johnson et al. 
1992). Predation of larger fishes on smaller fishes has the direct effect of reducing prey population, and can also 
produce indirect effects through food web interactions (Allan 1995). 

2.3.2. Alteration of Physical Habitats

Fish assemblages are also affected by physical and chemical factors that determine habitat quality and 
availability. Stream size, as determined by drainage area and channel width, controls characteristics such as canopy 
cover and organic input (e.g., Vannote et al. 1980). The stability and complexity of the substrate influences all 
aquatic biota, in particular the invertebrates that serve as food for most stream fishes (Allan 1995). In-stream 
temperature affects winter survival and fecundity of fishes, particularly in north-temperate areas (Lyons 1996, 
Donald 1997, Hurst and Conover 1998). Physical characteristics, such as suspended sediment, have also been related 
to fish assemblage composition (Goldstein et al. 1996, Bilger and Brightbill 1998). In-stream chemical factors, such 
as oxygen and acidity, can also influence assemblages (Allan 1995). 

Stream fish assemblages are influenced by hydrology. Current velocity may determine energetic costs of 
maintaining position, thereby affecting energy stores and survival (Facey and Grossman 1992). Flow and the 
flooding regime may determine habitat availability (Grossman and Ratajczak In review), spawning success, and 
larval abundance (Pearsons et al. 1992, Johnston et al. 1995) for fishes. Flow variability has also been related to fish 
assemblage structure. For example, Chipps et al. (1994) and Poff and Allan (1995) demonstrated differences in 
trophic compositions of fish assemblages between more and less variable streams. Yearly variability in flow has also 
been related to compositional differences through time for a single site (Strange et al. 1992). 

2.3.3. Chemical Contaminants

2.3.3.1. Water Quality Issues

During 1992-1995 the USGS analyzed for 47 different pesticides in surface-water samples across the 
Albemarle-Pamlico basin. Of these, 45 pesticides were detected. Twenty-one streams had detectable concentrations 
of 1 to 5 pesticides, 30 streams had detectable concentrations of 6 to 20 compounds, and 4 streams, all in the Tar 
River basin, had detected concentrations of 20 or more pesticides. Metolachlor, atrazine, prometon, and alachlor 
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were detected in 80, 69, 60, and 63 percent, respectively, of 233 stream samples from 65 sites in the 
Albemarle-Pamlico basin. Sixteen pesticides, including four insecticides (carbaryl, carbofuran, ethoprop, and 
diazinon) were measured at concentrations greater than 0.1 :g/L. (USGS 1998). 

Herbicides were generally detected during the spring and summer months. Concentrations of several 
pesticides, including atrazine and metolachlor, were elevated immediately after application in March and April. 
These concentrations peaked in June and July and then dissipated to low values or the detection limit for most of the 
year. These data suggested that drinking-water standards for pesticides are most likely to be violated during May 
through July. An additional concern in this regard, however, was the fact that drinking water or aquatic life standards 
only existed for only about 50 percent of the compounds detected (USGS 1998). 

2.3.3.2. Sediment Quality Issues

As part of the USGS pesticide study discussed above in Section 2.3.3.1, the USGS also analyzed sediments 
for a wide variety of organochlorines, semivolatile organic compounds (SVOCs), and trace elements. In 1992, 
streambed sediments were collected at 22 stations and analyzed for 35 organochlorine pesticides, 63 semivolatile 
compounds, and 44 major, minor, and trace elements (Woodside and Simerl, 1996). DDT, DDD, and DDE were 
detected in 27, 40, and 63 percent, respectively, of the samples analyzed. Additionally, dieldrin and chlordane were 
detected in 18 and 9 percent, respectively, of the samples tested. 

2.3.4. Landscape and Non-point Source Issues

Land development in a watershed is reflected in the diversity and composition of fish assemblages (e.g., 
Karr 1981, Paller et al. 1996, Scott and Hall 1997). Species diversity typically decreases with an increase in land 
development (Karr 1981). A commonly-observed trend in trophic structure is a decrease in insectivores and an 
increase in omnivores, which are better adapted to feeding in disturbed conditions (Karr et al. 1986). The assemblage 
may also show shifts in taxonomic composition in response to land development, such as a decrease in minnows, 
darters, sunfish, or suckers (Karr et al. 1986). Although certain regularities regarding how fish metrics change with 
land-use have been demonstrated for many geographic regions (e.g., Karr 1981, Angermeier and Schlosser 1987, 
Leonard and Orth 1988, Miller et al. 1988, Hughes et al. 1998), the nature of the change varies with region (Smoger 
and Angermeier 1998). 

Scientists recognize that fish assemblages in developed watersheds are affected primarily by nonpoint 
source anthropogenic stressors that result from land use development, in particular altered hydrologic regimes, 
sedimentation, and habitat degradation (Williams et al. 1989, Richter et al. 1997, Wilcove et al. 1998). Alteration of 
hydrologic regimes, in terms of the amount and variability of flow affect all aspects of fish life history (e.g., Allan 
1995). Sedimentation can increase fish movement, interfere with fish feeding by reducing reactive distance for 
sight-feeders and lowering the abundance of insects available as food, and impair reproduction of fishes with 
specific spawning habitat requirements (Newcombe and MacDonald 1991, Bergstedt and Bergersen 1997). Habitat 
destruction can isolate patches of suitable habitat within a stream, which reduces species' survival. Habitat 
destruction also changes the natural mosaic of habitat conditions, thereby altering natural fish movement and 
migration patterns (Reeves et al. 1995). 
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The response of fish assemblages to anthropogenic stressors in a given region is determined by the 
interaction of the stressors with the biological processes and environmental factors at these sites, although the 
mechanism by which this occurs is not well understood. The assemblage response may simply be the net effect of 
individual autoecological responses to stressors (e.g., Karr 1981). However, the effects of stressors on individuals 
may be altered by biological processes. For example, Shuter (1990) showed that the effect of stressors in a fish 
population dynamics model depends on where in the life cycle a population is regulated in density-dependent 
fashion, and Jaworska et al. (1997) showed that incorporating species interactions in a fish population model 
distorted the stressor response patterns predicted at the population level. The response may also be due to the 
shifting in importance of environmental factors compared to biological processes, for example, an increase in 
density-independent environmental factors could outweigh the counteracting biological process of 
density-dependence (Turchin 1995, Hayes et al. 1996). A better understanding of how biological processes, 
environmental factors, and anthropogenic stressors interact to determine fish assemblage structure in specific regions 
would be of importance to management. 
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3. Description of the Albemarle-Pamlico Basin

3.1. Site Description

The Albemarle-Pamlico drainage basin is located in southern Virginia, continuing south into north-central 
and eastern North Carolina. The entire basin encompasses approximately 28,000 square miles and includes the 
Chowan, Roanoke, Tar-Pamlico, and Neuse River basins (McMahon and Lloyd 1995). See Figure 3. Four 
physiographic provinces are present within the basin: Ridge and Valley, Blue Ridge, Piedmont, and Coastal Plain 
(Fenneman 1938). Topography ranges from mountains in the west to very flat areas in the east. Along with 
topography, a temperature gradient runs west to east with increasing average annual temperatures occurring over the 
lower eastern elevations (McMahon and Lloyd 1995). Table 7 summarizes basic statistics for each of the four 
Albemarle-Pamlico river basins. 

Land use across the basin is divided into the following categories: 50% forested, 30+% agricultural, 15% 
wetlands, and <5% urban/developed (McMahon and Lloyd 1995). Land use may be described as a mosaic of these 
categories across the basin. Agriculture and wetlands, however,  are more prevalent in the east and forested lands are 
typically dominant in the west. Agriculture within the basin introduces high concentrations of fertilizers, pesticides, 
sediments, and animal wastes into the environment. Portions of the Tar-Pamlico and Chowan River basins have been 
designated as ‘nutrient sensitive waters’; the Chowan and Neuse River basins are the most heavily impacted by 
pesticides (McMahon and Lloyd 1995). Sediment loading is typically higher in areas of high relief. The level of non-
point source pollutants entering the surface and ground water systems is dependent upon the crops grown, animals 
raised, tillage practices, waste storage facilities and the climate, slope, soils, and drainage conditions of the 
watershed. For a detailed description of land use, population demography and non-point source pollution in the 
basin, please read McMahon and Lloyd (1995) and Harned et al. (1995). 

The Chowan River basin is located in the coastal plain of northeastern North Carolina and southeastern 
Virginia. In North Carolina the basin encompasses all or parts of Bertie (30%), Chowan (67%), Gates (80%), 
Hertford (100%), Northampton (65%), Perquimans (0.03%), and Washington (0.01%) Counties. The Chowan River 
is formed by the confluence of the Nottoway and Blackwater Rivers at the Virginia and North Carolina state line. 
Whereas in North Carolina the drainage of the basin is 1,315 square miles, in Virginia the drainage area of the basin 
is 3,575 square miles. The two major tributaries of the Chowan River are the Meherrin River and its largest tributary, 
Potecasi Creek, and the Wiccacon River and its largest tributary, Ahoskie Creek (NCDENR 2002a, e). 

The Neuse River basin originates in the northern Piedmont region of North Carolina and terminates into the 
Pamlico Sound. The drainage area of the basin is 6,192 square miles, making it the third largest river basin in North 
Carolina. The basin itself is one of only three major North Carolina river basins whose boundaries are located 
entirely within the state. Within the basin, there are 3,293 miles of freshwater streams and thousands of acres of 
freshwater impoundments. The basin encompasses all or part of the following counties: Beaufort (2.1%), Carteret 
(50%), Craven(95%), Duplin (0.16%), Durham (73%), Edgecombe (0.36%), Franklin (10%), Granville (25%), 
Greene (100%), Harnett (0.02%), Hyde (0.02%), Johnston (98%), Jones (81%), Lenior (99%), Nash (20%), Onslow 
(1.2%), Orange (49%), Pamlico (83%), Person (32%), Pitt (42%), Sampson (0.79%), Wake (85%), Wayne (91%), 
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and Wilson (81%). Major tributaries of the Neuse River include: Crabtree Creek, Swift Creek, Little River, 
Contentnea Creek, and the Trent River (NCDENR 2002b, e). 

The Roanoke River basin originates in north central North Carolina and south central Virginia and 
terminates into the Pamlico portion of the Tar-Pamlico river basin. The drainage area of the basin in North Carolina 
is 3,493 square miles. Major tributaries of the Roanoke River in North Carolina include the Mayo, Dan and Cashie 
rivers and the Smith, Country Line, Sweetwater and Conoho creeks. The total stream miles of the basin in North 
Carolina is 2,414. In Virginia the drainage area of the basin is 6,382 square miles. Whereas major tributaries in the 
northern section of the basin are the Little Otter, Big Otter, Blackwater and Pigg Rivers, major tributaries in the 
southern portion of the basin include the Dan River, Smith River, and Banister River. Whereas in North Carolina the 
basin encompasses all or parts of the following counties: Alamance (0.13%), Beauford (0.91%), Bertie (70%), 
Caswell (90%), Edgecombe (0.07%), Forsyth (21%), Granville (33%), Guilford (1.7%), Halifax (40%), Martin 
(75%), Northampton (35%), Orange (2.4%), Person (60%), Rockingham (81%), Stokes (85%), Surry (2.7%), Vance 
(52%), Warren (38%), and Washington (13%), in Virginia the basin includes all or parts of the following 16 
counties: Appomattox, Bedford, Botetourt, Brunswick, Campbell, Carroll, Charlotte, Floyd, Franklin, Halifax, 
Henry, Mecklenburg, Montgomery, Patrick, Pittsylvania, and Roanoke (NCDENR 2002c, e). 

The Tar-Pamlico River basin, which like the Neuse River basin is entirely contained within North Carolina, 
encompasses all or part of the following counties: Beauford (97%), Carteret (1.5%), Cavern (0.63%), Dare (11%), 
Edgecombe (99%), Franklin (90%), Granville (43%), Halifax (60%), Hyde (91%), Martin (25%), Nash (80%), 
Pamlico (17%), Person (7.8%), Pitt (58%), Tyrrell (0.28%), Vance (48%), Warren (62%), Washington (19%), and 
Wilson (19%) (NCDENR 2002e). 

Table 7. Summary Statistics for the Albemarle-Pamlico major basins (NCDENR 2002e) 

Basin Population Density 
inds/mi2

 Area
 (mi2) 

Stream
 Miles

 % of State 
Stream 
Miles 

Stream 
Mile to 
Area Ratio 

Impaired 
Stream 
Miles

 % Stream 
Miles 
Impaired 

Chowan 62,474 48 1,378 788 2.1 0.57 132 75 

Neuse 1,015,511 181 6,235 3,440 9.1 0.55 454 33 

Roanoke 263,691 107 3,503 2,389 6.3 0.68 168 23 

Tar-Pamlico 364,862 80 5,571 2,335 6.2 0.42 53 9 

Population estimates based on 1990 census. 
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Figure 3. Major river basins and 8-digit HUC watersheds of the Albemarle-Pamlico basin. 

3.2. Socio-economic Development

3.2.1. Urban Development

The Chowan River basin approximately 0.9% of North Carolina's total population. The basin's population 
growth is low to moderate, with most growth occurring around the larger municipalities and in the vicinity of the 
lower Chowan River. Murfreesboro, Ahoskie, and Edenton are the largest urban areas in the basin. Rural areas 
within the basin, however, are declining in population. Based on projections from 1990 to 2020, Chowan and Gates 
Counties are expected to increase by 17% and 19%, respectively. Populations in Bertie, Hertford, and Northampton 
Counties, however, are expected to decrease by 1 to 10% (NCDENR 2002a, e). 

The Neuse River basin contains approximately 15.3% of North Carolina's total population. Not only is the 
Neuse River basin the most populated of the four Albemarle-Pamlico basins, but it also the most densely populated. 
Based on 1987 estimates, approximately 5.1% of the Neuse River basin is urban development with most of this 
development being concentrated in the upper basin around Raleigh, Durham, Cary and Garner (NCDENR 2002b). 
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Projected population growths from 1990 to 2020 for counties completely or partially contained within the basin are 
as follows: Beaufort (8.1%), Carteret (43%), Craven(25%), Durham (35%), Edgecombe (-0.8%), Franklin (63%), 
Granville (32%), Greene (21%), Johnston (72%), Jones (-0.6%), Lenior (2.8%), Nash (40%), Onslow (33%), Orange 
(50%), Pamlico (15%), Person (21%), Pitt (46%), Sampson (17%), Wake (101%), Wayne (19%), and Wilson 
(9.3%)(NCDENR 2002e). 

The Roanoke River basin contains approximately 4.0% of North Carolina's total population. Projected 
population growths from 1990 to 2020 for the North Carolina counties completely or partially contained within the 
basin are as follows: Beauford (8.1%), Bertie (-1.0%), Caswell (3.3%), Forsyth (23%), Granville (32%), Guilford 
(27%), Halifax (8.3%), Martin (2.0%), Northampton (-9.6%), Orange (50%), Person (21%), Rockingham (7.5%), 
Stokes (41.7%), Surry (18%), Vance (13%), Warren (14%), and Washington (-15%) (NCDENR 2002e). 

The Tar-Pamlico River basin contains approximately 5.5% of North Carolina's total population. Although 
the basin is the second most populated basin within the Albemarle-Pamlico region, its population density is moderate 
compared to the other basins. Fishing, farming, forestry, and phosphate mining are the most important economic 
activities in the basin, with agriculture and forest cover each accounting for slightly over 40% of the total land area. 
Projected population growths from 1990 to 2020 for counties completely or partially contained within the basin are 
as follows: Beauford (8.1%), Dare (78%), Edgecombe (-0.8%), Franklin (63%), Granville (32%), Halifax (8.3%), 
Hyde (-18%), Martin (2.0%), Nash (40%), Pamlico (15%), Person (21%), Pitt (46%), Vance (13%), Warren (14%), 
Washington (-15%), and Wilson (9.3%) (NCDENR 2002e). 

3.2.2. Agricultural Patterns and Issues

Approximately 87% of the land cover in the Chowan River basin is either forest or agriculture. However, 
from 1982 to 1992, the most significant changes in land cover was the urban/built-up category that increased by 
59%. This increase was matched by reductions in forested land (-1%), cultivated cropland (-2%), and pastureland (­
23%) and by a slight increase in uncultivated cropland. Swine production has increased significantly from 1990 to 
1994 in the upper portion of the Chowan River in North Carolina (327% increase) and the Meherrin River and 
tributaries (446% increase) (NCDENR 2002a). While the largest cash crop in the basin is peanuts, sorghum, corn, 
tobacco and potatoes are also important agricultural interests (NCDENR 1997a) 

Based on 1987 satellite imagery provided by the North Carolina Center for Geographic Information and 
Analysis (CGIA), agriculture and forestry accounts for 34.7% and 33.9%, respectively, of the land area in the Neuse 
River basin. Wetlands and open water (including the Neuse estuary and large impoundments) account for another 
20% of the basin's surface area (NCDENR 2002b). 

In North Carolina, forested and agricultural land covers account for 61% and 25%, respectively, of the 
Roanoke River basin. The most dramatic recent changes within the basin occurred from 1982 to 1992 when 
uncultivated cropland and urban covers increased approximately 60% and 54%, respectively (NCDENR 1996). 

3.3. Regional Climate
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The mean annual temperature for the Albemarle-Pamlico basin is approximately 52 degrees Fahrenheit. 
There is a reasonably constant east-west gradient across the coastal plain and piedmont portions of the basin with the 
southeastern coastal plain area having a mean annual temperature of slightly more than 62 degrees Fahrenheit. This 
temperature gradient increases by a factor of about four in the Blue Ridge Mountains. The basin's mean annual 
rainfall also varies on an east-west gradient with the southeastern coastal plain and middle piedmont receiving mean 
annual rainfall of 52 inches and 44 inches, respectively. The rainfall pattern in the upper piedmont and mountains, 
however, is much more complex with annual rainfalls varying from 36 to 52 inches. Patterns in temperature and 
plant growth are such that approximately b's of the basin's annual rainfall is evaporated or transpired annually 
(McMahon and Lloyd 1995). 

3.4. Regional Hydrology

3.4.1. Surface Water Hydrology

Only 12 to 18 inches of the basin's annual rainfall enters the Albemarle-Pamlico Sound as streamflow. Of 
this amount, only about a a (approximately 5 inches) represents overland runoff. The remaining b's (approximately 
11 inches) is ground water baseflow. This fact is reenforced by the observation that long term average monthly 
streamflows are relatively independent of long term monthly rainfalls (McMahon and Lloyd 1995). Average 
contributions of ground water to subbasin streamflow are estimated to be 45-53%, 48-58%, 49-57%, and 61-64% for 
the Neuse River, Chowan River, Tar-Pamlico River, and Roanoke River basins, respectively (McMahon and Lloyd 
1995). 

3.4.2. Ground Water and Regional Geomorphology

The movement of water carrying dissolved nutrients and chemicals from the land surface, through the 
subsurface, and into stream channels is an important influence on most measures of fish health. The influence of 
subsurface baseflow contributions on fish health is especially pronounced within Atlantic coastal plain watersheds, 
where highly permeable, unconsolidated and poorly-consolidated sedimentary deposits transmit significant 
quantities of precipitation recharge through the subsurface. In the Albemarle-Pamlico basin, it’s estimated that more 
than 70% of the streamflow in surface water drainages originates from groundwater (McMahon and Lloyd 1995). 

Considering the large proportion of streamflow in the Albemarle-Pamlico basin that derives from 
subsurface baseflow, it’s evident that the accuracy of fish health assessments partly hinges on how well we can 
predict baseflows and their associated nutrient and chemical loadings. Unlike baseflow predictions, however, 
subsurface nutrient and chemical load predictions strongly depend on the local arrangement of geologic 
heterogeneities in space. Accurate load predictions thus require that small-scale geologic variability be characterized. 
As an alternative to high-cost, disruptive, and incomplete sampling of small-scale heterogeneities, it is proposed that 
subsurface geologic structure beneath the Atlantic coastal plain be inferred using standard gaussian geostatistical 
techniques and fairly well understood principles of geology. 

3.4.2.1. Effects of Geologic Heterogeneities on Solute Transport 
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(1) 

While the rate at which water moves through the subsurface is strongly influenced by the spatial 
arrangement of geologic heterogeneities, the influence of geologic structure is even greater for the case of transport 
of dissolved chemical species. This extreme sensitivity of solute transport to the distribution of heterogeneities can 
be traced to the hyperbolic structure of the advection-dispersion equation, which governs the movement of dissolved 
solutes through porous media. For a conservative solute not subject to sorption or chemical transformation, 
subsurface movement of solute dissolved in groundwater is governed by the following partial differential equation: 

is solute concentration,
velocity along direction . 

The first term on the right side of the equation relates to molecular diffusion and small-scale hydrodynamic mixing 
effects, and is typically negligible compared to the second, advective term. Sensitivity of solute transport to the local 
distribution of heterogeneities arises from this second term, which describes transport occurring at the same rate and 
direction as groundwater moves. Figure 4 illustrates how field-scale variations in hydrogeologic properties like 
hydraulic conductivity (K), caused by the presence of subsurface geologic heterogeneities, can control patterns of 

where  is time,  is average groundwater is a diffusion coefficient tensor, and

both ground water flow and advective movement of dissolved nutrient and chemicals. 

Figure 4. Advective movement of dissolved nutrients and other chemicals through subsurface heterogeneities. 

As water flows through the subsurface, it tends to take shorter flowpaths through low-permeability geologic facies 
and longer flowpaths through highly permeable geologic units. The dominance of advective mechanisms of 
transport, coupled with the fact that the geometry of advective movement is strongly influenced by the spatial 
distribution of high- and low-permeability materials, suggests that the single most dominant factor influencing 
subsurface transport at field and regional scales is the manner in which geologic heterogeneities are arranged in 
space. 

Given this strong dependence of subsurface flow and transport patterns on the spatial arrangement of 
geologic heterogeneities, accurate prediction of solute transport requires that we characterize all subsurface 
heterogeneities that may influence advective transport. However, due to the high costs and extreme invasiveness 
associated with measurement of geologic properties, characterization of all heterogeneities that may influence 
subsurface transport of nutrients and chemicals is not a realistic option. Instead, we can utilize geologic principles to 
infer deterministic subsurface geologic statistics, using concepts borrowed from architectural element analysis. 
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Architectural element analysis relies on descriptions of lithofacies composition, external shape, and internal 
geometry to identify suites or assemblages of lithofacies unique to a particular depositional setting. In the 
architectural element classification scheme, depositional units within a package of genetically-related deposits 
represent primary building blocks that can be physically separated from one another according to a hierarchy of 
bounding surfaces. Moreover, there is a distinct signature associated with small-scale geologic variability occurring 
within each unit. 

Figure 5 presents a number of genetically-related depositional units commonly encountered in braided-
stream environments, based on the classification of Miall (1985). Miall’s suite of eight architectural elements for 
braided-stream environments may provide a sound basis for identifying and classifying subsurface geologic 
architectures in a wide variety of other depositional environments, including glacial, eolian, lacustrine, deltaic, 
marine, estuarine, and tidal-flat depositional settings. Of particular interest are sedimentary architectures associated 
with inner continental shelf and marginal marine deposits, such as those observed within the North Atlantic coastal 
plain. 

3.4.2.2. Coastal Plain Geology

The coastal plain represents the emergent part of a 150-300 m wide belt of Mesozoic and Cenozoic highly-
permeable, poorly-indurated sedimentary rock lying between the Piedmont Physiographic Province of the 
Appalachian Mountains and the north Atlantic coastline, and extending 2400 miles from Florida to the Grand Banks 
of Newfoundland. Figure 6 illustrates how the coastal plain and the continental shelf represent a single 
physiographic feature along the margins of the North American continent, separated from the ocean floor by a sharp 
break known as the continental slope. 

Sediments underlying the Atlantic coastal plain were eroded from the Appalachian Highlands to the west, 
and transported to the continental margins primarily by streamflow. These sediments were subsequently reworked by 
widespread cyclic transgression and regression of the ocean to produce marginal marine and inner continental shelf 
deposits. Transgression and regression of the shoreline throughout geologic time has resulted in both vertical 
aggradation and seaward lateral progradation of sediments, producing a regional coastward-dipping and -thickening 
homoclinal wedge of unconsolidated and consolidated rocks. A typical regional cross-section of rocks underlying the 
Coastal Plain is shown in Figure 7. To the east of the Fall Line, the Albemarle-Pamlico basin is underlain by shallow 
unconsolidated sands and gravels and deeper semiconsolidated sands. Total thickness of these deposits increases 
from zero near the Fall Line to 10,000 ft along southern NJ and eastern NC. Superimposed on the regional marine 
sequences are shallow deltaic and fluvial deposits produced by continued transport and reworking of sediment from 
the continental interior by water. To the west of the Fall Line, the basin is underlain by NE-SW trending belts of 
metamorphic rock associated with the Appalachian orogeny. 

As a consequence of the downdip thickening associated with the coastal plain sediments, many subsurface 
units beneath the coastal plain have no surface equivalents that can easily be studied. Instead, subsurface geologic 
structure must be inferred based on our understanding of the depositional setting that likely prevailed over the 
coastal plain throughout geologic time. 
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Figure 5. Architectural elements in a braided-stream depositional environment (modified from Miall 1985) 
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Figure 6. Atlantic Coastal Plain and Continental Shelf. 
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Figure 7. Regional geologic section (from http://sgi1.dncrlg.er.usgs.gov/albe-html/Maps) 

3.4.3. Riparian and Wetland Issues

Riparian areas are ecotones that occur at the interface between terrestrial and aquatic environments. 
Gregory et al. (1991) further defines riparian areas as three-dimensional zones of interaction between terrestrial and 
aquatic environments that extend horizontally to the limits of the flood plain and vertically into the canopy of near 
stream vegetation. Riparian areas exist across the United States and encompass a wide variety of vegetation types 
including grassland, shrubs and forests. Because of their widespread occurrence along small, first order streams to 
large lowland rivers, riparian ecosystems exhibit a high degree of variability across the landscape. Within riparian 
areas, topography, hydrology, soils, and plant communities may change rapidly across short distances thus making 
riparian habitats one of the most diverse and challenging systems to study. However, within this context of diversity, 
there are certain environmental conditions that are fairly common to riparian ecosystems. 
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Due to their proximity to the stream or river channel, riparian ecosystems experience repeated disturbances 
from mild to extreme flooding events. Several studies have linked high plant species-richness in riparian areas to the 
frequent occurrence of flooding within these ecosystems (Gregory et al. 1991, Planty Tabacchi et al. 1996). 
However, other studies have found a reduction in plant species-richness following repeated flooding events that 
skew the plant community towards species that are tolerant of frequent disturbances by floods (Denslow 1985, 
Wardle et al. 1997). Thus, increased plant species-richness is likely to occur in areas of only low to moderate 
disturbance and within riparian areas possessing a mosaic of soil types and topographical conditions (Nilsson et al. 
1994, Planty Tabacchi et al. 1996, Everson and Boucher 1998). Diversity in land form, soil type, and community 
composition are defining characteristics of riparian habitats, making them valuable to both terrestrial and aquatic 
environments. 

For example, riparian forests are particularly important for maintaining stream water quality and habitat 
generation for aquatic and terrestrial organisms. Riparian areas modify hydrology by absorbing and storing rainfall 
and runoff and filtering surface and subsurface water destined for the stream/river channel or ground water aquifer 
(Brinson et al. 1981, Gregory et al. 1991, Sharitz et al. 1992). Riparian areas also generate complex aquatic and 
terrestrial habitats. Collares-Pereira et al. (1995) found that riparian vegetation cover was one of the most important 
variables affecting fish distributions within Portuguese lowland streams. Riparian areas also alter light regimes and 
contribute particulate organic matter to the aquatic system that may serve as food or habitat for aquatic flora and 
fauna (Brinson et al. 1981, Gregory et al. 1991, Sharitz et al. 1992). Finally, riparian areas protect the stream bank 
from erosion by slowing water flow rates and securing stream bank soils. Thus, riparian areas typically improve 
water quality and maintain stream habitats over the short and long term. 

Riparian areas also affect biogeochemistry within the watershed. Early studies of the importance of riparian 
areas focused upon the role of riparian buffer zones in intercepting runoff, dissolved nutrients and sediment (Karr 
and Schlosser 1978, Verry and Timmons 1982, Lowrance et al. 1984). Several studies have found that highly 
effective riparian areas were comprised of a combination of grass or herbaceous vegetation along the outer limits of 
the flood plain and immature forests immediately adjacent to the stream channel (Lowrance et al. 1984, Bosch et al. 
1994). For example, Peterjohn and Correll (1984) found that riparian buffer zones intercepted 4.1 mg sediment and 
11 kg organic N, 0.83 kg ammonium-N, 2.7 kg nitrate-N and 3 kg phosphate bound to sediment per ha of riparian 
forest, annually. Unfortunately, across the United States, only approximately 40% of the watersheds have forested 
riparian areas whereas an equal number of watersheds have little or no forest cover, and nearly 10% are completely 
urban (Jones et al. 1997). Therefore, under typical conditions, it is unlikely that the majority of riparian areas will be 
able to function in an ideal manner. The use of the REMM model to analyze the function of riparian areas within the 
Albemarle-Pamlico drainage basin will illustrate the importance of forested riparian buffer systems to water quality 
and fish health as well as stressing the importance of riparian habitat characterization for future modeling efforts. 

3.5. Water Quality Issues

Nutrient enrichment is a primary water quality concern in the Chowan River basin. With the 
implementation of the Nutrient Sensitive Waters (NSW) management strategy, however, nutrient loads have been 
reduced, and algal blooms have been less frequent and shorter in duration. Implementation of agricultural nonpoint 
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source control measures through the Agricultural Cost Share Program had reduced North Carolina's total phosphorus 
input by 6% (DEM, 1990). Many point source discharges in the basin have also altered their operations to reduce 
their nutrient loads to the surface waters. Consequently, since 1990, the nitrogen reduction goal of 20% had been 
accomplished and total phosphorus had been reduced by 29% (goal of 35%) (NCDENR 2002a). 

Fish consumption advisories for dioxin remain in effect for the Chowan River from the Virginia border to 
Albemarle Sound. The primary source of dioxins in the Chowan River is believed to be the Union Camp Fine Paper 
mill in Franklin, VA. This advisory currently recommends that the general population consume no more than two 
meals of any fish except herring, shad (including roe), or shellfish in one month and that children and child-bearing 
women consume no fish until further notice. See Tables 5 and 6. Annual monitoring by Union Camp, however, does 
indicate that dioxin levels are decreasing in fish from the Chowan and Meherrin Rivers since the advent of new 
bleaching technologies (NCDENR 2002a). Elevated mercury concentrations in fish have also been reported 
sporadically within the basin (NCDENR 1997a) 

Although the total area of impaired water in the Neuse River basin is less than other basins, it is affected by 
more severe localized problems. Water use impairment affects 30% of the freshwater stream miles and 9% of the 
estuarine area. High sediment loads and low dissolved oxygen are the major problems in the basin's freshwaters 
while nutrient runoff and algal blooms are the major problem in the basin's estuarine areas. Significant 
concentrations of toxic substances, particularly mercury and dioxin, have been detected at several local sites, and 
water, sediment, and fish tissue concentrations have indicated areas of concern for both aquatic life and human 
health. Compared to the other major river basins, the Neuse has the highest water column concentrations of toxic 
metals. (NCDENR 2002b). The major sources of impaired water quality in the Neuse River basin has been identified 
as agricultural runoff, defective septic tanks, marinas, and waste water treatment plants. Nonpoint sources are 
responsible for approximately 80% of the area's impaired water quality. A great portion of this nonpoint source 
runoff comes from urban development that enables stormwater to move rapidly into estuaries and sounds without 
adequate in-stream processing. (NCDENR 2002b) 

Over half of the waters in the Roanoke River basin are impaired. Suspended sediments (27%), toxics 
contaminations (11%), excessive nutrient loadings (21.5%), and fecal contamination are the primary causes of 
impairment. Nonpoint sources account for approximately 85% of pollutant inputs (NCDENR 2002c). North Carolina 
ambient water quality standards and metal concentration limits have been exceeded at many sites along the Roanoke 
River and may be due to the relatively high level of industry in the basin (NCDENR 2002c). However, other 
potential nonpoint sources of metals and toxics in the Roanoke basin include 10 Superfund sites and 4 solid waste 
sites (NCDENR 2002c). Up until October 2001, all fish species from the lower Roanoke River, Welch Creek, and 
Albemarle Sound were subject to a fish consumption advisory for dioxin (NCDHHS 2001). See Tables 5 and 6. This 
advisory, however, has been lifted for all North Carolina game species (see Table 3). 

As of April 16, 2002 North Carolina issued a fish consumption advisory for mercury in largemouth bass, 
chain pickerel, bowfin (blackfish), king mackerel, shark, swordfish, and tilefish taken from North Carolina waters 
south and east of Interstate 85 (NCDHHS 2002). 
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3.6. Biological Resources

3.6.1. Fish Biogeography and Biodiversity

The Albemarle-Pamlico basin contains a diverse range of habitats from small mountain streams to large 
estuaries to the sounds between the coast and Outer Banks (Lloyd et al. 1991). These habitats can be aggregated into 
five major ecoregions, i.e., the Middle Atlantic Coastal Plain, the Southeastern Plains, the Piedmont, the Blue Ridge 
Mountains, and the Central Appalachian Ridge and Valley (Figure 8). This rich habitat diversity results in an equally 
rich diversity of fish communities within the basin. The Neuse drainage has 93 total fish species, with 10 being 
introduced. The Tar drainage has 82 species, 5 being introduced. The Roanoke drainage has 124 species, with 25 
being introduced. Among the native fish species, the Neuse and Tar are about 94% similar, but share only 67% and 
68%, respectively, of the native fish with the Roanoke (Hocutt et al. 1986). 

Figure 8. Ecoregions of the Albemarle-Pamlico basin. 
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3.6.2. Sport and Commercial Fisheries

The Chowan River and its tributaries provides some of North Carolina's finest freshwater fishing. From 
1977 to 1980 the total fishing effort within the basin was estimated to be 201,600 angling hours per year (NCDENR 
1997a). Additionally, cypress - tupleo swamps that flank virtually the entire Chowan River provides habitat for 
many coastal plain species. The river and its tributaries provide spawning habitats for anadromous river herring 
(alewife and blueback herring) and shad (hickory shad and American shad). Although the basin provides over 230 
miles of rivers and streams as spawning habitat for these anadromous species, access to additional potential 
spawning areas is blocked by six dams and culverts throughout the basin (NCDENR 2002a). Not only are these 
anadromous species important recreational resources in their own right, particularly the American and hickory shad, 
but these species also provide excellent forage for largemouth bass, the most sought after sport fish in the river. 
During the summer and fall months, bass concentrate at the mouths of tributary creeks to feed on young-of-year 
herring. As a result of this abundant food supply, bass frequently attain sizes in excess of five pounds. The river and 
its tributaries (e.g., Sarem Creek, Bennett's Creek and Wiccacon River) also provide good fishing for sunfish and 
bream during the spring spawning period (AprilnMay). These waters also produce good catches of black crappie 
during spring months and white perch during the summer (Ashley 2002). 

The Neuse River basin supports both abundant and varied fresh and brackish water sport fisheries. 
Commercial and sport marine fisheries exist below New Bern for striped bass, southern flounder, Atlantic croaker, 
spot, bluefish, gray trout and channel bass. Above this point, freshwater sport fisheries exist for largemouth bass, 
sunfish, catfish, yellow and white perch and chain pickerel. Largemouth bass and sunfish are abundant in the river 
and its tributaries. Black crappie are among the most sought after fish in late fall and early spring. Important 
commercial and recreational sport fisheries for American and hickory shad exist in the Neuse during these species’ 
spring spawning run. Prime areas for shad fishing include Pitch Kettle and Contentnea Creeks (see Chapter 6). 
Striped bass fishing which is popular in both the Neuse and the Trent Rivers, is best in the early spring and fall 
(Ashley 2002). 

The Roanoke River basin provides excellent fishing for striped bass, largemouth bass, sunfish and catfish. 
The Roanoke River is the principal spawning stream for the Albemarle Sound population of striped bass. Stripers 
enter the mouth of the river in late March or early April on their annual spawning run to their principal spawning 
grounds near Weldon. The Roanoke River also offers very good fishing for white perch that spawns in the river from 
late March to late May. As the weather warms, both striped bass and white perch migrate back downstream to 
Albemarle Sound. During this same time, however, fishing for largemouth bass, sunfish and catfish begins to peak. 
Fishing for largemouth bass peaks in May but may remain good until cool weather slows the action in November. 
Although bluegill is the most abundant sunfish species, fliers, redear (shellcrackers), redbreast and warmouth are 
also caught frequently. Channel catfish and bullheads are caught along the entire length of the river and provide 
excellent table fare. Although these catfish generally weigh less than four pounds, channel catfish in excess of 20 
pounds are frequently caught (Ashley 2002). 

The Tar-Pamlico River basin, like the Neuse River basin, supports both fresh and brackish water sport 
fisheries. Although often obstructed by dams and culverts, the stream and rivers of the Tar-Pamlico River basin 
provide almost 400 miles of spawning areas for several anadromous fish species (NCDENR 2002d). The section of 
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river between Rocky Mount and Old Sparta provides important spawning areas for anadromous American shad, 
hickory shad, river herring and striped bass. Between Grimesland and Washington, the river supports heavy fishing 
pressure for striped bass, largemouth bass, various sunfish, white perch, and yellow perch. Largemouth bass are 
abundant throughout the Tar River watershed and receive heavy fishing pressure during May and early June. Sunfish 
(bluegill, redbreast, warmouth, flier and pumpkinseed) are also abundant in the river and its larger tributaries (e.g., 
Tranters Creek, Swift Creek and Fishing Creek) (Ashley 2002). 

3.6.3. Endangered and Threatened Fishes

Although no fish species are federally or state listed as threatened or endangered in the Chowan River 
basin, at least 5 freshwater mussels and 1 crustacean are. These include: the alewife floater (Anodonta implicata), the 
eastern lampmussel (Lamsilis radiata), the tidewater mucket (Leptodea ochracea), the eastern pond mussel (Ligumia 
nasuta), the triangle floater (Alasmidonta undulata), and the Chowanoke crayfish (Orconectes virginensis) 
(NCDENR 1997a). 

Threatened and endangered mussel species native to the Neuse River basin include: the Tar spinymussel 
(Elliptio steinstansana), the dwarf wedgemussel (Alasmidonta heterodon), the Atlantic pigtoe (Fusconaia masoni) , 
brook floater (Alasmidonta varicosa) , the green floater (Lasmigona subviridis), the yellow lampmussel (Lampsilis 
cariosa), the yellow lance (Elliptio lanceolata), the Carolina fatmucket (Lampsilis radiata conspicua), the creeper 
(Strophitus undulatus), the Roanoke slabshell (Elliptio roanokensis), the triangle floater (Alasmidonta undulata), the 
Cape Fear spike (Elliptio marsupiobesa), and the notched rainbow (Villosa constricta) (NCNEWP 202). 

Eight species of threatened or endangered mussels and fish are indigenous to the Roanoke River basin. The 
threatened or endangered mussels species include: the eastern pond mussel (Ligumia nasuta), the green floater 
(Lasmigona subviridus), the Roanoke slabshell (Ellipito roanokensis), the tidewater mucket (Leptodea ochracea), 
and the triangle floater (Alasmidonta undulata). The fish species of concern are the cutlips minnow (Exoglossum 
maxillingua), the rustyside sucker (Thoburnia hamiltoni), and the shortnose sturgeon (Acipenser brevirostum). 
However, at least four other fish species have also been identified as species of special concern. These are the 
spotted marginate madtom (Noturus insignis), the bigeye jumprock (Moxostoma ariommun), the Roanoke hogsucker 
(Hypentelium roanokense) and the riverweed darter (Etheostoma podostemone) (NCDENR 1996). 

The Tar-Pamlico River basin provides habitats for ten mussel species and three fish species that are state or 
federally listed as rare, threatened, or endangered. The mussel species of concern include: the Tar spinymussel 
(Elliptio steinstansana), the dwarf wedgemussel (Alasmidonta heterodon), the triangle floater (Alasmidonta 
undulata), the yellow lance (Elliptio lanceolata), the Roanoke slabshell (Elliptio roanokensis), the Atlantic pigtoe 
(Fusconaia masoni), the yellow lampmussel (Lampsilis cariosa), the squawfoot (Strophitus undulatus), the eastern 
lampmussel (Lampsilis radiata), and the notched rainbow (Villosa constricta). The fish species of concern are the 
least brook lamprey (Lampetra aepyptera), the Roanoke bass (Ambloplites cavifrons), and Carolina madtom 
(Noturus furiosus) (NCDENR 1999a, Prince 2002). 
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4. Identifying Nominal Conditions for Fish Health

4.1. Fish Community Associations

As discussed in Section 3.6.1, the Albemarle-Pamlico basin contains a diverse range of habitats from small 
mountain streams to large estuaries to the sounds between the coast and Outer Banks (Lloyd et al. 1991). This rich 
habitat diversity results in an equally rich diversity of fish communities within the basin. Although detailed texts on 
the biogeography of fish in the basin exist (Menhinick 1991, Jenkins and Burkhead 1993), there has been little effort 
to describe the distribution and composition of fish communities quantitatively in the basin as a whole. The few 
studies that have undertaken such analyses have only treated portions of the Albemarle-Pamlico basin. In particular, 
the Virginia portion of the basin has been analyzed by Angermeier and Winston (1998, 1999) and the basin’s coastal 
plain communities within North Carolina have been studied by Spruill et al. (1998). 

Methods for Characterizing Basin Fish Assemblages 

The structure of fish communities within the Albemarle-Pamlico basin can be readily characterized using 
publically available data. For this study, four data sets were used for this purpose. These included: 1) one USGS 
National Water-Quality Assessment (NAWQA) program data set, 2) one USEPA Environmental Monitoring and 
Assessment Program (EMAP) data set, 3) one North Carolina Department of Environment and Natural Resources 
data set, and 4) one Virginia Game and Inland Fisheries data set. These data sets report fish abundances for 
wadeable streams not larger than 5th order that were sampled between 1990-1999 using electrofishing. Figure 9 
displays the distribution of sample sites represented in these combined data sets with respect to the basin’s 8-digit 
Hydrologic Unit Code (HUC) watersheds. Using these data, a series of site × species and site × site matrices were 
constructed to analyze the biogeography and community structure of fish assemblages in the Albemarle-Pamlico 
basin. 

To perform these analyses, a site × species matrix was constructed disregarding all species found at only a 
single site. The abundances in the resulting 302×100 site-species array were then reduced to a binary absence / 
presence format. Sample sites were then aggregated to produce a 21×100 array based on 8-digit HUC (Hydrologic 
Unit Code) (see Figure 3) and a 34×100 array based on 8-digit HUC/ecoregion combinations. Finally, similarity 
matrices were constructed from each site × species matrix by calculating the mean Jaccard’s similarity for all stream 
pairs within the basin at large, each 8-digit HUC, and each 8-digit HUC/ecoregion combination. These similarity 
matrices were investigated using the complete linkage clustering technique, which separates the summarized sites 
into similar groups. 

A principal components analysis (PCA) was preformed on the 34×100, 8-digit HUC/ecoregion × species 
array. Component loadings of the PCA axes were species, and PCA scores were obtained for each site. Ordination 
diagrams of component loadings for the summarized sites were plotted for comparison with the results of the cluster 
analysis. 
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Figure 9. Distribution of fish sample sites with respect to 8-digit HUC watersheds. 

Each cluster of streams identified above was analyzed separately for species associations. Two clusters did 
not have enough sample sites for meaningful analyses. The remaining five were arrayed in site × species matrices 
using all of the sample sites within the cluster. Simple matching coefficients were calculated for each species pair in 
each array and reduced to similarity matrices corresponding to the five original clusters. A cluster analysis using the 
complete linkage method was conducted on each similarity matrix to define distinct fish associations in each cluster. 
The species associations within stream clusters were investigated for similarities in habitats used by the fish. Habitat 
properties shared by the fish in each association were investigated, including substrate preference, stream flow, and 
stream depth as described in Page and Burr (1991). 

Canonical correlations between fish associations in the 8-digit HUC/ecoregion clusters and types of land 
use in the cluster were run to investigate how fish associations varied with type of human impact within a cluster. 
Measures of land use included the amount of residential, industrial, agricultural, and forested land within the cluster. 
Ordination diagrams of the correlations between fish associations and land use canonical variables were plotted. 

Results and Discussion 

Cluster analysis at the 8-digit HUC level 

Cluster analysis of the fish communities at the level of the 8-digit HUC resulted in clusters that formed 
across the four major river basins, as well as within a single river basin (Figure 10). Fish communities within the 
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Roanoke River basin fell into three different clusters, while those of the Chowan River basin grouped into four 
clusters. These clusters formed along an upstream-downstream gradient, consistent with the changes that might be 
associated with the different ecoregions. Clusters also formed across the major river basins along a north-south 
gradient, as might be associated within one or a few ecoregions. For example, one cluster included sites in the lower 
Chowan, Roanoke, and Neuse River basins in the area of the Middle Atlantic Coastal Plain ecoregion. These 
findings indicate that fish communities are organized at some level other than that of only the river basin. 

Cluster analysis at the 8-digit HUC + ecoregion level 

The cluster analysis of the fish communities at the level of the 8-digit HUCs and ecoregions produced 
seven clusters (Figure 11). Five of the clusters (A-E) contained enough samples for interpretation, while clusters F 
and G contained too few samples for analysis of the fish associations. Cluster F was from two very small areas on 
the border between ecoregions and may be a transition area between clusters E, C, and D. Cluster G contained only 
one sample, one of the closest to the ocean and the only one from its 8-digit HUC. The lack of species found there 
(n=8) resulted in a sample clustering separate from the other sites, and is likely not representative of the 8-digit 
HUC/ecoregion combination. 

The other five clusters were more distinct. Cluster A formed in the upper Roanoke River basin across the 
Piedmont, Blue Ridge Mountains, and Central Appalachian Ridges and Valleys ecoregions. All of the sample sites 
in the mountains were grouped in this cluster. Cluster B formed across the Roanoke and upper Chowan River basins 
but was limited to the Piedmont ecoregion. Cluster C formed in the Tar-Pamlico, Roanoke, and entire Neuse River 
basins across the Piedmont, Southeastern Plains, and Middle Atlantic Coastal Plain ecoregions. Cluster D was in the 
Chowan River basin limited to only the Southeastern Plains ecoregion. Cluster E formed across the Chowan, 
Roanoke, and Tar-Pamlico River basins, but only within the Middle Atlantic Coastal Plain ecoregion. In the 
formation of a cluster, the influence of the river basins as opposed to the ecoregions became more important with 
increasing distance from the coast. 

The principal components analysis (PCA) revealed the distinctions between clusters A-G in ordination 
space (Figure 12). PC1 and PC2 accounted for 21% and 13% of the variation in the fish species data, respectively. 
Fish with high positive loadings on PC1 included the central stoneroller (Campostoma anomalum), the fantail darter 
(Etheostoma flabelare), and the finescale dace (Phoxinus oreas) all of which are representative of rocky, flowing 
waters towards the headwaters of the basin. Species with high negative loadings on PC1 included the creek 
chubsucker (Erimyzon oblongus), the American eel (Anguilla rostrata) and the pirate perch (Aphredoderus sayanus), 
which were more common down-basin and often associated with vegetation or debris. PC2 was more difficult to 
interpret based on the habitat of the fish. Species loading high positively on PC2 included the satinfin shiner 
(Cyprinella analostana) and the V-lip redhorse (Moxostoma pappillosum), perhaps indicative of deeper flowing 
waters. Fish with high negative loadings on PC2 included the tesselated darter (Etheostoma olmstedi) and the banded 
sculpin (Cottus carolinae), which may be indicative of shallow riffle habitats. However, the habitat differences of 
the fish on PC2 were not as distinct as on PC1, indicating that some factor other than habitat may better explain the 
separation of the clusters along the PC2 axis. 
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Figure 10. Fish community clusters based on combinations of 8-digit HUC watersheds. River basin boundaries are
outlined in orange, and 8-digit HUC watershed boundaries are outlined in black 

Figure 11. Fish community clusters based on combinations of 8-digit HUC watersheds and ecoregions. River basin 
boundaries are outlined in orange; 8-digit HUC watershed boundaries are outlined in black; and ecoregions are 
outlined in green. 
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Figure 12. Ordination diagram of PCA results. Component loadings are linear combinations of fish species. Labels 
are the clusters in Figure 11 . 

Fish associations within clusters 

The analysis of the fish associations within clusters A-E showed associations that were generally 
interpretable by the habitat preferences of the fish species, with the habitat preferences being more important 
upstream than downstream (Tables 8 - 12). Clusters A and B showed clear separation of fish associations grouped by 
flow, water depth, presence of vegetation, and substrate. The fish associations in clusters C and D also showed 
separation by habitat, but some of the clusters were more similar than distinct (such as the vegetated pool vs. 
vegetated swamp associations in cluster C). The cluster furthest downstream, cluster E, showed the least separation 
based on habitat preferences, with all fish found in some form of vegetated, low-flow water. Rose and Echelle 
(1981) showed that similar species will associate with each other, even in streams that are separated over a wide 
area. This similarity appears to be habitat-based upstream. The downstream habitats are either not distinct enough 
units as described and/or another variable is adding a substantial influence on the fish associations. This other 
variable may be the presence of humans in the river basins. 

Canonical Correlations and the Influence of Humans 

Canonical correlations between measures of human use of the land in clusters C (Figure 13 A) and E 
(Figure 13 B) separated the fish associations in those clusters primarily along a gradient of high to low human 
impact on the land. Correlations between human impact on the land and fish communities throughout the rest of the 
basin were not conducted since the data sets used to compile information about the fish did not have similar 
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variables describing the presence of humans. The first canonical variable of land use for both clusters was a gradient 
from evergreen forest/wetlands to industrial/mining/transportation, indicating a measure of low to high impact on the 
land by humans. This variable separated the similar fish associations in cluster E (i.e., ‘uncommon species, vegetated 
pools’ and ‘vegetated pools/backwater’) as well as in cluster C (i.e., ‘rocky/sandy pools/runs, 1-50 m wide’ and 
‘rocky/sandy pools, 1->50 m wide’). The first canonical variable explained 30% of the variation in the fish 
associations in cluster C, and 39% in cluster E. 

The second variable in cluster E was along a gradient from cropland to residential areas, perhaps a measure 
of the type of impact by humans. Cropland areas might add excess nutrients and pesticides to streams via runoff, 
while residential areas might introduce other pollutants and cause dramatic habitat alteration. The second variable in 
cluster C was along a gradient of wetland/evergreen forests to residential areas, again suggestive of another type of 
low to high human impact gradient. The form of these human impact gradients is speculative without corresponding 
nutrient, pollutant, and toxicant data from within the streams, but this seems a likely explanation and will be 
investigated with continued sampling this summer that will collect the associated data necessary to investigate this 
hypothesis. 

Conclusions 

! Fish communities in streams of the Albemarle-Pamlico basin form distinct groups based on combinations 
of major river basin and ecoregion characteristics. 

! Within these groupings of streams, the fish species separated into distinct fish associations. These 
associations were based on habitat preference by the fish, especially in the upstream groups. 
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Figure 13. Ordination diagrams of canonical correlation results. Cluster C fish associations are shown in panel A and 
cluster E fish associations are shown in panel B. Labels are the species-habitat groups from Table 10 for cluster C 
and from Table 12 for cluster E. 
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Table 8. Species-habitat groups within Cluster A. 

Catostomus commersoni white sucker Common species in the cluster 
Lepomis auritus redbreast sunfish 

Rocky pool 

Rocky riffle/pool 

Clear, rocky runs 

Etheostoma nigrum johnny darter 
Etheostoma podostemone riverweed darter 
Rhinichthys atratulus blacknose dace 
Semotilus atromaculatus creek chub 

Campostoma anomalum 
Clinostomus funduloides 
Etheostoma flabellare 
Hypentelium roanokense 
Luxilus cerasinus 
Moxostoma cervinum 
Nocomis leptocephalus 
Noturus insignis 
Phoxinus oreas 

central stoneroller 
rosyside dace 
fantail darter 
Roanoke hog sucker 
crescent shiner 
black jumprock 
bluehead chub 
margined madtom 
finescale dace 

Etheostoma vitreum 
Hypentelium nigricans 
Luxilus albeolus 
Lythrurus ardens 
Notropis chiliticus
Percina roanoka 

glassy darter 
northern hog sucker 
white shiner 
rosefin shiner 
redlip shiner
Roanoke darter 

Continued on next page 
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Table 8. (continued) Species-habitat groups within Cluster A. 

Gravel/boulder runs 

Roanoke logperch 

Cottus bairdi 
Exoglossum maxillingua 
Moxostoma ariommum 
Percina peltata 
Percina rex 

mottled sculpin 
cutlips minnow 
bigeye jumprock 
shield darter 

Cyprinella analostana satinfin shiner 
Dorosoma cepedianum gizzard shad Vegetated pools, 1-25 m wide 
Lepomis macrochirus bluegill 
Micropterus salmoides largemouth bass 

Ambloplites rupestris 
Cyprinus carpio 
Micropterus dolomieu 

rock bass 
common carp 
smallmouth bass Vegetated pools, 5-50 m wide 

Moxostoma anisurum silver redhorse 
Moxostoma erythrurum golden redhorse 

Pomoxis nigromaculatus black crappie 

Uncommon pool/run species 

Ameiurus natalis yellow bullhead 
Ictalurus punctatus channel catfish 
Lepomis cyanellus green sunfish 
Lepomis gibbosus pumpkinseed 
Moxostoma pappillosum V-lip redhorse 
Moxostoma rhothoecum torrent sucker 
Notropis hudsonius spottail shiner 
Oncorhynchus mykiss rainbow trout 
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Table 9. Species-habitat groups within Cluster B. 

Noturus insignis 

Mixed substrate pool/run 

Notropis procne 

Clear, rocky pool/riffle 

Clear, rocky riffle/run 

Rhinichthys atratulus 

Common pool/run species 

margined madtom 

Etheostoma flabellare 
Etheostoma nigrum 
Lepomis auritus 
Lepomis cyanellus 
Lepomis gibbosus 
Lepomis macrochirus 
Luxilus cerasinus 
Lythrurus ardens 
Nocomis leptocephalus 

fantail darter 
johnny darter 
redbreast sunfish 
green sunfish 
pumpkinseed 
bluegill 
crescent shiner 
rosefin shiner 
bluehead chub 

Ameiurus platycephalus 
Cyprinella analostana 
Micropterus salmoides 

flat bullhead 
satinfin shiner 
largemouth bass 
swallowtail shiner 

Catostomus commersoni white sucker 
Clinostomus funduloides rosyside dace 
Luxilus albeolus white shiner 
Percina roanoka Roanoke darter 
Semotilus atromaculatus creek chub 

Anguilla rostrata 
Campostoma anomalum 
Etheostoma vitreum 
Hypentelium nigricans 
Hypentelium roanokense 
Lampetra appendix 
Moxostoma cervinum 
Phoxinus oreas 

American eel 
central stoneroler 
glassy darter 
northern hog sucker 
Roanoke hog sucker 
Amer. brook lamprey 
black jumprock 
finescale dace 
blacknose dace 

Continued on next page 
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Table 9. (continued) Species-habitat groups within Cluster B. 

Sandy pools/backwaters 

Pomoxis nigromaculatus black crappie 

Ameiurus brunneus 
Ameiurus catus 
Ameiurus nebulosus 
Dorosoma cepedianum 
Enneacanthus gloriosus 
Esox americanus 
Fundulus rathbuni 
Gambusia holbrooki 
Hybognathus regius 
Lepomis microlophus 
Moxostoma anisurum 
Moxostoma erythrurum 
Notemigonus crysoleucas 
Notropis alborus 
Notropis altipinnis 
Notropis amoenus 
Notropis hudsonius 
Perca flavescens 
Percina peltata 
Pomoxis annularis 

snail bullhead 
white catfish 
brown bullhead 
gizzard shad 
bluespotted sunfish 
redfin pickerel 
speckled killifish 
eastern mosquitofish 
eastern silvery minnow 
redear sunfish 
silver redhorse 
golden redhorse 
golden shiner 
whitemouth shiner 
highfin shiner 
comely shiner 
spottail shiner 
yellow perch 
shield darter 
white crappie 

Ameiurus natalis 
Aphredoderus sayanus 
Erimyzon oblongus 

yellow bullhead 
pirate perch 
creek chubsucker Muddy, vegetated swamp/low flow 

Esox niger chain pickerel 
Lepomis gulosus warmouth 
Moxostoma pappillosum V-lip redhorse 
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Table 10. Species-habitat groups within Cluster C. 

Noturus insignis 

Common pool/run throughout cluster 

margined madtom 

Rocky/sandy pools/runs, 1-50 m wide 

Rocky/sandy pools, 1->50 m wide 

Aphredoderus sayanus 
Erimyzon oblongus 
Etheostoma olmstedi 
Gambusia holbrooki 
Lepomis auritus 
Lepomis macrochirus 
Micropterus salmoides 

pirate perch 
creek chubsucker 
tessellated darter 
eastern mosquitofish 
redbreast sunfish 
bluegill 
largemouth bass 

Cyprinella analostana satinfin shiner 
Etheostoma nigrum johnny darter 
Lepomis cyanellus green sunfish 
Luxilus albeolus white shiner 
Lythrurus ardens rosefin shiner 
Nocomis leptocephalus bluehead chub 
Notropis procne swallowtail shiner 
Percina peltata shield darter 
Percina roanoka Roanoke darter 

Ambloplites cavifrons 
Ameiurus nebulosus 
Catostomus commersoni 
Clinostomus funduloides 
Etheostoma vitreum 
Hybognathus regius 
Hypentelium nigricans 
Ictalurus punctatus 
Lepomis microlophus 
Lepomis sp. - hybrid 
Moxostoma anisurum 
Moxostoma cervinum 
Moxostoma pappillosum 
Nocomis raneyi 
Notropis altipinnis 
Notropis hudsonius 
Notropis volucellus 
Pomoxis nigromaculatus 
Semotilus atromaculatus 

Roanoke bass 
brown bullhead 
white sucker 
rosyside dace 
glassy darter 
eastern silvery minnow 
northern hog sucker 
channel catfish 
redear sunfish 
hybrid sunfish 
silver redhorse 
black jumprock 
V-lip redhorse 
bull chub 
highfin shiner 
spottail shiner 
mimic shiner 
black crappie 
creek chub 

Continued on next page 
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Table 10. (continued) Species-habitat groups within Cluster C. 

Lepomis gulosus 

Umbra pygmaea 

Vegetated pools, sluggish current 

Vegetated swamps 

Ameiurus natalis 
Anguilla rostrata 
Enneacanthus gloriosus 
Esox americanus americanus 
Lepomis gibbosus 

yellow bullhead 
American eel 
bluespotted sunfish 
redfin pickerel 
pumpkinseed 
warmouth 

Acantharchus pomotis 
Amia calva 
Centrarchus macropterus 
Esox niger 
Etheostoma serrifer 
Notemigonus crysoleucas 
Notropis amoenus 
Notropis cummingsae 
Noturus gyrinus 

mud sunfish 
bowfin 
flier 
chain pickerel 
sawcheek darter 
golden shiner 
comely shiner 
dusky shiner 
tadpole madtom 
eastern mudminnow 
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Table 11. Species-habitat groups within Cluster D. 

Ictalurus punctatus channel catfish Deep pools of larger streams 
Lepisosteus osseus longnose gar 

Rocky/sandy runs 

Pomoxis nigromaculatus black crappie 

Sandy pools 

Notropis amoenus comely shiner 

Sluggish pools with vegetation 

Noturus gyrinus tadpole madtom 

Vegetated muddy/sandy swamps/pools 

Cyprinella analostana 
Etheostoma vitreum 
Gambusia holbrooki 
Lampetra appendix 
Moxostoma anisurum 
Moxostoma pappillosum 
Notropis procne 

satinfin shiner 
glassy darter 
eastern mosquitofish 
Amer. brook lamprey 
silver redhorse 
V-lip redhorse 
swallowtail shiner 

Amia calva 
Etheostoma olmstedi 
Hybognathus regius 

bowfin 
tessellated darter 
eastern silvery minnow 

Ameiurus natalis 
Erimyzon oblongus 
Esox americanus 

yellow bullhead 
creek chubsucker 
redfin pickerel 

Anguilla rostrata 
Aphredoderus sayanus 
Enneacanthus gloriosus 
Esox niger 
Lepomis auritus 
Lepomis gibbosus 
Lepomis gulosus 
Lepomis macrochirus 
Micropterus salmoides 
Percina peltata 

American eel 
pirate perch 
bluespotted sunfish 
chain pickerel 
redbreast sunfish 
pumpkinseed 
warmouth 
bluegill 
largemouth bass 
shield darter 
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Table 12. Species-habitat groups within Cluster E. 

Lepomis macrochirus bluegill 

Lepomis gibbosus 

Noturus gyrinus 

Common species, found in pools 

Vegetated pools/backwater 
pumpkinseed 

Uncommon species, vegetated pools 

tadpole madtom 

Anguilla rostrata 
Aphredoderus sayanus 
Enneacanthus gloriosus 
Erimyzon oblongus 
Esox americanus 

American eel 
pirate perch 
bluespotted sunfish 
creek chubsucker 
redfin pickerel 

Acantharchus pomotis mud sunfish 
Centrarchus macropterus flier 

Amia calva 
Dorosoma cepedianum 
Esox niger 
Etheostoma fusiforme 
Etheostoma olmstedi 
Etheostoma serrifer 
Gambusia holbrooki 
Lepomis auritus 
Lepomis marginatus 
Micropterus salmoides 

bowfin 
gizzard shad 
chain pickerel 
swamp darter 
tessellated darter 
sawcheek darter 
eastern mosquitofish 
redbreast sunfish 
dollar sunfish 
largemouth bass 

Chologaster cornuta swampfish Muddy, heavily vegetated backwaters 
Enneacanthus obesus banded sunfish 

Umbra pygmaea 

Vegetated swamps 
Ameiurus natalis yellow bullhead 
Lepomis gulosus warmouth 
Notemigonus crysoleucas golden shiner 

eastern mudminnow 
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fish health

species of concern include: 

1) 

2) 
reproduction? 

3) 

available to piscivorous species of concern? 

4) 

5) 

6) 

), the fish’s body weight 
is therefore governed by the following differential equation 

(2) 

4.2. Nominal Fish Growth and Related Processes 

Because many of the assessment questions related to  concern, either explicitly or implicitly, the 
individual growth rates of fish, estimation of expected or nominal growth rates for ecologically dominant, 
recreational, and commercial fish species is an important issue for both fisheries ecologists and environmental 
decision-makers. Examples of important assessment questions that directly pertain to individual growth rates of fish 

Is individual fish growth and condition sufficient to enable them to survive periods of natural (e.g., 
overwintering) and man induced stress? 

Is individual growth rate adequate for juvenile fish to attain the minimum body size required for 

Is the growth rate of piscivorous species adequate to allow them accessible to appropriately sized 
prey? Conversely, are the growth rates of potential prey species within the range that makes them 

Are appropriately sized fish abundant enough to maintain piscivorous wildlife (e.g., birds, 
mammals, and reptiles) during breeding and non-breeding conditions? 

Is the growth of game species sufficient to meet public expectations of the fishery? 

Is the growth rate of fish high enough to biodilute residues of persistent bioaccumulative 
chemicals to levels that are safe for the fish themselves, piscivorous wildlife, and humans? 

Having recognized the need to assess individual growth rates of fish, the question that immediately follows is what 
model should be used to for this purpose? This model selection, like most model selections, is not a trivial concern 
since over the past 60 years at least four different models have become standards for characterizing the growth of 
fishes; these are the von Bertalanffy, Richards, Gompertz, and Parker-Larkin models. See Ricker (1979) for a 
detailed discussion of these models and other less commonly used models. 

According to the von Bertalanffy model, the body weight growth of fish can be formulated as a simple mass 
balance of anabolic processes that are directly proportional to the fish’s surface area and catabolic processes that are 
directly proportional to the fish’s body weight. Assuming isometric growth (i.e., 

where  is the fish’s body weight;  is the fish’s total is the fish’s rate of feeding and assimilation; and
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metabolic rate. In terms of body length, this model is also equivalent to 

(3) 

 is the fish’s “maximum” body length which results from where
setting Eq.(2)

(4) 

 to zero. For further discussion, see Parker and Larkin (1959) and Paloheimo and Dickie (1965). 

The Richard’s model (Richards 1959) is a generalization of the von Bertalanffy model that relaxes the 
assumption of isometric growth and strict proportionality between a fish’s feeding/assimilatory processes and its 
absorptive surface areas. In the Richards model, all these processes are simply assumed to be an allometric power 

is the fish’s body length and

(5) 

function of the fish’s body weight. The fish’s growth is then described by the differential equation 

Although both the von Bertalanffy and Richards models appear to be based on a strong physiological 
foundation, a more critical look at these models cast doubts on the generality of such conclusions or assertions. One 
particular point of contention in this regard is the assumption that fish metabolism (i.e., respiration and excretion) is 
directly proportional to the fish’s body weight. Although this assumption is certainly satisfied or closely 
approximated for some fish species, most fish species have metabolic demands that are best described as power 
functions of their body weights. Consequently, from a purely physiologically-based perspective a much better 
anabolic-catabolic process model for fish growth could be argued to be 

See Paloheimo and Dickie (1965). Unlike the von Bertalanffy and Richards models, however, this model generally 
does not have a closed analytical solution. Furthermore, when this model is fit to observed data, there is no guarantee 
that the fitted exponents will match expected physiological exponents unless the analysis is suitably constrained. 

) that decrease with 

(6) 

In light of such interpretative problems, simpler empirical growth models may be more than adequate for 
many applications. Two such models that have proved useful in this regard are the Gompertz and Parker-Larkin 
models. Both of these models are intended to describe specific growth rates (i.e., 
the age or size of the individual. According to the Gompertz model, fish growth is described by 

On the other hand, the Parker-Larkin model (Parker and Larkin 1959) describes fish growth using the simple 
allometric power function formulation 
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function of the fish’s body weight. 

Methods 

Although each of these growth models can potentially describe very different growth trajectories, much of 
the discussion surrounding their use has focused on whether the models predict asymptotically zero or indeterminate 
growth (Parker and Larkin 1959, Paloheimo and Dickie 1965, Knight 1968, Schnute 1981). Although the growth 
rates of individual fish almost always decrease with increasing age or body size, Knight (1968) argued that the 
traditional notion of asymptotically zero growth is seldom, if ever, supported by studies that have focused on actual 
growth increments rather than on size at age. Because the Parker-Larkin model is the only model outlined above that 
assumes that the growth of fish is fundamentally indeterminate, this model might have an important conceptual 
advantage over the von Bertalanffy, Richards, and Gompertz, models. The Parker-Larkin model also may have an 
additional advantage over both the von Bertalanffy and Richards models in that the Parker-Larkin model does not 
rely on an apparently unrealistic assumption that the respiration of fishes can be generally described by a linear 

In the following sections, a procedure for estimating nominal growth rates for fish species in the Albemarle-
Pamilico basin using the Parker-Larkin growth model is outlined. Following this discussion, methods for comparing 
observed and expected growth rates will be considered. Finally, the importance of accurately estimated growth rates 
for assessing regional patterns of chemical bioaccumulation and population dynamics is discussed. 

There are three basic types of data that have been traditionally used to calculate fish growth rates; these are: 
1) length at age data, 2) back-calculated length at age for specific age classes sampled over multiple years, and 3) 
back-calculated length at age for specific year classes or cohorts. Back-calculated body lengths for the later two data 
types are generally calculated by regression using growth increments indicated by annular features of body scales, 
otoliths, pectoral spines, or other “hard” structures. Whereas for a length at age dataset each individual fish 
contributes only one observation (i.e., its current length), each individual fish contributes a time series of body 
lengths for both of the remaining types of growth data. 

Nominal growth rates for fish species occurring in the Albemarle-Pamlico basin were estimated from data 
summarized by Carlander (1969, 1977b, 1997). For each species, reported body lengths at age, whether back-
calculated or not, were converted to live body weights using the geometric mean of the weight-length regressions 
summarized by Carlander (1969, 1977b, 1997) for that species. Estimated live body weights were then fit to the 

(7) 

is 

(8) 

analytical solution Parker-Larkin growth model using the NL2SOLV non-linear regression and optimization 
software. The standard form of the solution of the Parker-Larkin growth model for any time interval

However, because this expression is discontinuous at , Eq.(8) was not used directly for estimating the growth 
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parameters  and . Instead, the equivalent expression

(9) 

and , 

(10) 

 was used for this purpose. After obtaining estimates for the parameterswhere

specific growth rates

Results 

were calculated using the identity 

these species display a wide range of values, i.e.,  and . It is interesting 
to note that the redfin pickerel (Esox americanus

Lepomis, Micropterus, and Pomoxis

Table 13 summarizes the calculated daily growth rates (g/g/d) for ecologically and recreationally important 
fish species found in the Albemarle-Pamlico basin. The growth coefficients and exponents that were estimated for 

) had both the smallest growth coefficient and the largest growth 
exponent. This situation, however, is not too surprising since when power functions are fit to most data, the resulting 
coefficients and exponents are generally negatively correlated. See Section 5.4.4.2. 

What is more interesting are the trends in the growth coefficients and exponents displayed by closely 
related fish species. For example, whereas growth coefficients and exponents within each of the centrarchid genera 

 are generally very similar to one another, these same parameters for the closely 
related catfish genera Ameiurus and Ictalurus
i.e.,  and 
species was also displayed by the two species of Alosa (shad), Esox (pickerel), and Moxostoma (redhorses) that were 

Morone species analyzed. In 
particular, striped bass (M. saxatilis) and white perch (M. americana
vastly different growth coefficients that undoubtedly reflect their relative adult sizes. 

Discussion 

 demonstrate a relatively wide range of values, 
. This divergent pattern of growth parameters for congeneric 

analyzed. An intermediate pattern of growth parameters was displayed by the two 
) displayed very similar growth exponents but 

Comparing Observed and Expected Growth Rates 

For any species of concern, let  denote the species’ nominal or expected specific growth rate 
within a watershed or basin of concern. Also let 
the i-th sample station within that watershed or basin. In order to evaluate how the species’ actual growth rates 

denote that species’ observed specific growth rate at 
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Table 13. Summary of daily growth rates (g/g/d) for Albemarle-Pamlico basin fish species. 

Species daily growth rate (g/g/d) 
Alosa pseudoharengus 0.0165 W[g] -0.619 (n= 18; r2=0.92) 
Alosa sapidissima 0.3516 W[g] -0.907 (n= 47; r2=0.98) 
Ambloplites cavifons 0.0933 W[g] -0.703 (n= 328; r2=0.96) 
Ameiurus catus 0.0053 W[g] -0.294 (n= 42; r2=0.95) 
Ameiurus natalis 0.0456 W[g] -0.595 (n= 23; r2=0.86) 
Ameiurus nebulosus 0.0123 W[g] -0.378 (n= 13; r2=0.97) 
Catostomus commersoni 0.0909 W[g] -0.731 (n= 105; r2=0.95) 
Centrarchus macropterus 0.0214 W[g] -0.803 (n= 34; r2=0.95) 
Cyprinus carpio 0.0153 W[g] -0.389 (n= 350; r2=0.96) 
Dorosoma cepedianum 0.3682 W[g] -1.307 (n= 26; r2=0.89) 
Erimyzon oblongus 0.2569 W[g] -0.878 (n= 10; r2=0.95) 
Erimyzon sucetta 0.1070 W[g] -0.863 (n= 19; r2=0.92) 
Esox americanus vermiculatus 0.0017 W[g] -0.044 (n= 18; r2=0.87) 
Esox niger 0.0567 W[g] -0.630 (n= 83; r2=0.96) 
Hypentilium nigricans 0.3906 W[g] -1.021 (n= 22; r2=0.87) 
Ictalurus punctatus 0.0146 W[g] -0.346 (n= 256; r2=0.99) 
Lepisosteus osseus 0.3508 W[g] -0.928 (n= 36; r2=0.99) 
Lepomis auritus 0.0154 W[g] -0.577 (n= 33; r2=0.90) 
Lepomis cyanellus 0.0172 W[g] -0.562 (n= 251; r2=0.91) 
Lepomis gibbosus 0.0341 W[g] -0.512 (n= 126; r2=0.90) 
Lepomis gulosus 0.0283 W[g] -0.524 (n= 211; r2=0.88) 
Lepomis macrochirus 0.0144 W[g] -0.612 (n= 879; r2=0.90) 
Lepomis microlophus 0.0498 W[g] -0.761 (n= 102; r2=0.94) 
Micropterus dolomieui 0.1114 W[g] -0.723 (n= 621; r2=0.92) 
Micropterus salmoides 0.0701 W[g] -0.705 (n=1241; r2=0.96) 
Morone americana 0.0212 W[g] -0.613 (n= 149; r2=0.92) 
Morone saxatilis 1.5661 W[g] -0.687 (n= 170; r2=0.97) 
Moxostoma anisurum 1.0441 W[g] -0.819 (n= 29; r2=0.96) 
Moxostoma macrolepidotum 0.0323 W[g] -0.401 (n= 89; r2=0.96) 
Notemigonus crysoleucas 0.1788 W[g] -1.361 (n= 21; r2=0.81) 
Notropis hudsonius 4.0321 W[g] -0.920 (n= 14; r2=0.89) 
Oncorhynchus mykiss 0.0034 W[g] -0.342 (n= 222; r2=0.93) 
Perca flavescens 0.0387 W[g] -0.730 (n= 597; r2=0.92) 
Polyodon spathula 0.0561 W[g] -0.487 (n= 13; r2=0.96) 
Pomoxis annularis 0.0717 W[g] -0.602 (n= 745; r2=0.91) 
Pomoxis nigromaculatus 0.0307 W[g] -0.584 (n= 598; r2=0.92) 
Semotilus atromaculatus 0.1094 W[g] -0.763 (n= 24; r2=0.92) 
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compare to its expected growth rate, a well defined metric describing the difference between  and  is needed. 
Perhaps the most straightforward measure of this difference would be the average ratio  over the species’ 
expected size range. In particular, 

(11) 

where  and
 is on average less than its expected growth rate , then . Conversely, if the species realized growth 

 denote the species lower and upper body weights, respectively. If the species realized growth 
rate
rate

coefficients less the 104 or 105

(12) 

used to construct a cumulative distribution function (CDF) to evaluate the overall condition of the species’ realized 
growth within the basin. Using such a CDF, watershed and basin managers and decision-makers could easily 
determine whether the majority of their surveyed populations are actually maintaining their expected growth rates. 
These ratio’s could also be used to generate maps displaying the actual distribution of species growth rates. 

Bioaccumulation of Persistent Organic Pollutants (POPs) 

Growth rates of fish affect their rates and levels of chemical bioaccumulation in two different but 
interrelated ways. Firstly, growth rates determine to what extent fish can biodilute existing chemical body burdens to 
physiologically safe concentrations or chemical activities. Secondly, because growth is simply the mass balance 
between feeding/assimilation and total metabolic demands (i.e., total respiration and excretion), growth rates of fish 
are positively correlated with their realized feeding rates. Thus, although high growth rates would generally indicate 
that fish can potentially biodilute existing chemical burdens, such rates would also indicate a more rapid uptake of 
additional chemical burdens in the face of continuing dietary exposures. Although these growth effects are generally 
unimportant for low to moderate bioaccumulative chemicals (e.g., organic chemicals with octanol/water partition 

), such effects can be extremely important for highly bioaccumulative chemicals such 
as PCBs, dioxins, and mercury. 

To illustrate the effects of growth rates on chemical bioaccumulation in fish, consider the following simple 
bioaccumulation model presented by Barber et (1991 Eq.(31)) 

 is on average greater than its expected growth rate , then . These calculated ratios could then be 

In this equation,

 denotes the fish’s whole body concentration (:g/g) of the chemical;
-1) across the fish’s gills; is the chemical’s uptake rate (day

:is the chemical’s environmental water concentration ( g/ml); 
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 is the fish’s specific feeding rate (g/g/day);
 is the concentration (:g/g) of the chemical in the fish’s “average” prey;

 is the fish’s specific egestion rate (g/g/day);
 is a thermodynamically based partition coefficient for the chemical in egested feces;
 is a thermodynamically based partition coefficient for the chemical in the fish’s whole body;
 is the fish’s specific growth rate (day-1). 

(13) 

This model assumes that chemical exchange across the gill is by simple diffusion and that the chemical uptake from 
food and excretion to feces occur by simple thermodynamic chemical partitioning. Although the former assumption 
is well accepted (Yalkowsky et al. 1973, Thomann and Connolly 1984, Gobas et al. 1986, Gobas and Mackay 1987, 
Barber et al. 1988, Erickson and McKim 1990, Barber et al. 1991), many of the available fish bioaccumulation 
models use non-thermodynamically based approaches to describe chemical uptake from food. In particular, these 
models (Norstrom et al. 1976, Jensen et al. 1982, Thomann and Connolly 1984, Thomann 1989, Madenjian et al. 
1993) assume that fish are able to assimilate a constant fraction of the chemical they ingest. In terms of mass fluxes, 
these models assume that 

where
and (12), however, is equivalent to 

(14) 

 is the fish’s chemical uptake from food (g/day); 
 is the fish’s daily feeding rate (g/day). The formulation presented in Eq.

is the chemical’s assimilation efficiency; 

assuming that the chemical assimilation efficiency , rather than being a physiological constant, is a 
thermodynamic variable. In particular, 

where

(15) 

 is the fish’s food assimilation efficiency (Barber et al. 1991 Eq.(30)). In other words, the fish’s chemical 
assimilation efficiency is a decreasing function of its whole body concentration. At equilibrium the fish’s chemical 
assimilation efficiency would therefore be 

 are the steady state bioaccumulation factors for the fish and its prey, respectively. Assuming 
1) a nominal food assimilation efficiency of , 2) a nominal fish lipid content of 5%, and 3) the 
where  and

 at the beginning of an exposure to 

(16) 

 outlined by Barber et al. (1991) and Barber (2002), a fish’s chemical assimilation 
efficiency would therefore be expected to range from near

 andformulations for
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at equilibrium. If the fish’s and its prey’s bioaccumulation factors are approximately equal, then 
agrees with recent findings reported by Moser and McLachlan (2001a, 2001b) for dietary uptake for humans. If the 

, which 

(13). 

Micropterus salmoides) that are exposed to constant aqueous exposure 

(17) 

prey’s BAF becomes larger than that of the fish, then the fish’s chemical assimilation efficiency will increase above 
. It is more likely, however, that the fish’s BAF will exceed that of its prey, in which case the fish’s 

chemical assimilation efficiency will continue to decrease. If the fish’s BAF becomes significantly larger than that of 
its prey, the above expression can even become negative, which implies that food rather than being a net source of 
chemical becomes a net route of excretion. Refer back to Eq.

To illustrate how growth rates affect the bioaccumulation of organic pollutants in fish, we will now focus 
our discussion on largemouth bass (
concentrations at 15 Celsius. In this case, Eq.(12) is equivalent to 

where  and
(7)), the realized BAF for any size of 

 now denote the realized bioaccumulation factors for the fish and its 
prey. Using this equation with the Parker-Larkin growth model (i.e., Eq.

coefficient  for bass were back­
largemouth bass and any persistent organic pollutant (POP) characterized by its octanol-water partition 

 can be easily generated. For these simulations, daily specific feeding rates
 using routine respiratory 

(2002). 

ow

ow greater than 107

calculated from their estimated daily specific growth rate function
demand estimated from the OXYREF fish oxygen consumption database (CEAM 2002) as outlined in Barber 

Figures 14 and 15 display the realized BAFs for largemouth bass for two different scenarios. In Figure 14, 
largemouth bass are assumed to be exposed only to polluted surface waters. In this case, the bass’s BAFs actually 
correspond to bioconcentration factors (BCF). Although this exposure scenario is not realistic of actual field 
exposures, it is presented here to illustrate the effect of growth dilution. In particular, if the bass’s growth was zero, 
their realized BAF/BCF would be expected to be directly proportional to K  for all chemicals, rather than 
plateauing for chemical’s with K  . In Figure 15, on the other hand, bass are assumed to be feeding 
on contaminated prey that come to equilibrium with the surrounding water. For this figure the bass’s prey BAFs are 

(18) 

(18)

assumed to be given by the Quantitative Structure Activity Relationship (QSAR) proposed by Mackay(1982), i.e., 

Although growth dilution is still theoretically occurring in these simulations, the effect of growth dilution is 
completely masked by the bass’s dietary uptake. 

Both of these results are important since QSAR-based models (e.g., Eq. ) are perhaps the most widely 
used tools currently employed to predict chemical bioaccumulation in fish. Although Figures 14 and 15 clearly 
demonstrate that biological factors such as size and growth rates have profound effects on the ultimate levels of 
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Figure 14. Calculated BAF/BCF for largemouth bass assuming nominal growth and uncontaminated prey. 
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Figure 15. Calculated BAF for largemouth bass assuming nominal growth and contaminated prey. 
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ignored even in Eqs.(12) and (17)

above. 

Interrelationship Between Growth Rates and Mortality Rates 

body size. In particular, 

(19) 

 chemical bioaccumulation in fish, QSAR models by their very construction assume that only physico-chemical 
properties of the pollutants of concern greatly influence these levels. Because other growth rate and size-dependent 
processes such as dietary compositions and “reproductive excretion” via toxicant transfer to eggs and sperm were 

 for simplicity of discussion, it is important to realize that fish size and growth 
rates would be expected to influence the bioaccumulation patterns of fish in additional ways to those discussed 

Numerous studies (Damuth 1981, Peters and Raelson 1984, Juanes 1986, Robinson and Redford 1986, 
Boudreau and Dickie 1989, Gordoa and Duarte 1992, Randall et al. 1995, Dunham and Vinyard 1997, Steingrímsson 
and Grant 1999) have shown that the population densities of vertebrates are generally correlated with their mean 

where

(20) 

species or cohort. Although an interspecific analysis of data for a variety of fish by Randall et al. (1995) suggested a 
mean exponent close to unity, data reported by Boudreau and Dickie (1989) and Gordoa and Duarte (1992) for 
individual fish species suggest an average exponent closer to 0.75. In either case, an expression for a species’ total 

 is the population density (inds/area) of the species or cohort and  is the mean body weight of that 

(19) as followsmortality rate can be obtained by differentiating Eq. 

(1993, 1999) and Lorenzen (1996). 

 is the species “specific growth” rate. From this equation, it immediately follows that the species’ total 
mortality rate is simply  . Readers interested in detailed discussions concerning the underlying process-
based interpretation and general applicability of this result should consult Peterson and Wroblewski (1984), McGurk 

where

specific growth rate  in Eqs. (7) - (10). In particular, because
The “specific growth” rate

the species or cohort changes in time, there are at least three different possibilities for what this parameter actually 

in Eq.(20) is not automatically synonymous with the somatic or physiological 
 simply quantifies how the mean body weight of 

. However, it is also possible that the species’ 
models or represents. If the physiological growth of individuals actually determines most of the species’ or cohort’s 
mean body size dynamics, then  should obviously be identical to 

would be expected to be largely 
or cohort’s body size dynamics is primarily determined by predatory or environmentally induced mortality that is 
specific to certain size ranges within that species or cohort. In this case,
independent of . Lastly, the species’ or cohort’s mean body size dynamics could be determined by a mixture of 

rate is given by 

(21) 

these physiological and ecological processes. Of these alternatives, however, there are at least four lines of reasoning 
that would suggest that the most likely situation is in fact that . In this case, the species’ or cohort’s mortality 
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(21) describes theThe first observation that strongly suggests that  is the simple fact that Eq.
allometric dependence of estimated mortality on body weight equally well for both forage and predatory fish species 
(see Lorenzen 1996). Because physiological growth is obviously the one process that these fish have in common for 
generating mean body weight dynamics, it seems only logical to conclude . Additionally, because mortality 
rate exponents for fish in pond/cage aquaculture, where predatory and environmentally imposed mortality are 
presumably minimized, are typically not significantly different from those estimated for fish in natural ecosystems 
(see Lorenzen 1996), it again seems logical to conclude that . The remaining arguments suggesting 
that 

increasing body size. 
generally negative, which then implies that the species’ or cohort's mortality rate is a decreasing function of 

Mortality rates as decreasing functions of increasing body size are certainly consistent with intuitive notions 
concerning the survivorship and mortality for most fish species that are either benthivores, insectivores, or 
piscivores. For such species, large individuals generally have a significant competitive advantage over smaller 
individuals for both prey and spatial resources (Garman and Nielsen 1982, East and Magnan 1991). This large size 
competitive advantage, in turn, would be expected to translate into lower mortality rates for large individuals as 
compared to smaller individuals. In terms of predator-prey dynamics, size-dependent competitive abilities would be 
expected for two reasons. The first of these is based on the observation that reactive distances, swimming speeds, 
and territory sizes of fish tend to be positively correlated with their body size (Minor and Crossman 1978, Breck and 
Gitter 1983, Wanzenböck and Schiemer 1989, Grant and Kramer 1990, Miller et al. 1992, Keeley and Grant 1995, 
Minns 1995). Thus, given two differently sized predators competing for the same potential prey, one would expect 
that the larger predator is more likely to encounter that prey than is the smaller. Because prey handling times are 
generally inversely correlated with body size (Werner 1974, Miller et al. 1992), one would also expect that having 
encountered the prey, the larger predator would dispatch the prey and resume its foraging more quickly than the 
smaller predator. 

of a species-specific growth function is, however, relies heavily on the fact that the exponent

Another argument or justification for
forage fish by piscivores. Numerous food web studies have shown that there is generally a strong positive correlation 
between the body sizes of piscivorous fish and the forage fish that they consume (Parsons 1971, Lewis et al. 1974, 
Timmons et al. 1980, Gillen et al. 1981, Knight et al. 1984, Moore et al. 1985, Stiefvater and Malvestuto 1985, 
Storck 1986, Jude et al. 1987, Johnson et al. 1988, Yang and Livingston 1988, Brodeur 1991, Elrod and O'Gorman 

is based on intuitive notions concerning the predation of 

et al. 1998, Mittelbach and Persson 1998, Bozek et al. 1999) . If  and  denote the lower and upper body 
1991, Hambright 1991, Juanes et al. 1993, Mattingly and Butler 1994, Hale 1996, Madenjian et al. 1998, Margenau 

weights, respectively, of forage fish generally consumed by a population of piscivores, one would expect the 

with . 
mortality rate of fish just entering the predator’s prey window to be greater than the mortality rate of the larger fish 
leaving the predator’s prey window. Clearly, this expectation is satisfied if

Forage fish that have attained sufficient body size to escape predation and piscivores are faced with the 
common dilemma of having only finite prey resources within any given geographical area that they inhabit. When 
such resources become limiting and dispersal is possible, many of the effected individuals will emigrate from that 
specific geographical area. Such migrations, however, from the perspective of sampling community populations or 
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biomasses are indistinguishable from mortality. Consequently, one would expect that the effective “mortality” rates 
of large forage fish and piscivores to be directly related to their growth rates. Moreover, one might also expect that 
larger individuals are less likely to migrate than are smaller individuals not only because larger individuals can better 
protect established foraging territories but also because of the relative metabolic demands of dispersal. In this case, 
the “mortality” rates of larger fish would again be expected to be less than the “mortality” rates of smaller fish. 

Having justified the assertion that a species growth rate function directly determines its population 
mortality rate, we can now utilize that relationship to project short and intermediate term future population densities. 
Assume, for example, that given a cohort’s current population size and growth function at time , one wants to
project the cohort’s population density at some future time . From Eq.(20) it immediately follows that 

(22) 

(8)

(23) 

When Eq.  is now substituted into this expression, the resulting equation can be manipulated to yield 
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5. Models and Analysis Tools for Regional Assessment

This chapter summarizes different modeling approaches and analysis techniques that can be used to 
construct an integrated, multi step analysis of fish health for a watershed to regional scale assessment. Implicit in this 
discussion is the understanding that the actual implementation of such spatially explicit assessments can be 
straightforwardly facilitated with Geographical Information System (GIS) technology that not only can analyze the 
output from a network of spatially distributed models, but also can be used to formulate and execute that network of 
models. 

5.1. Projecting Land Cover Trends

Projecting Impervious Cover Trends 

Nonpoint source pollution (NPS), or pollution from diffuse sources such as urban/suburban areas and 
farmlands, is now recognized as the primary threat to water quality in the United States (USEPA 1994). NPS 
pollution threats from urban and suburban development are increasing as the U.S. population rises. Along with this 
increase in development comes an increase in impervious surfaces, areas where infiltration of water into the 
underlying soil is prevented. Roadways and rooftops account for the majority of this impervious area. 

Research in recent years has consistently shown a strong relationship between the percentage of impervious 
cover in a drainage basin and the health of the receiving stream. In a review of research on impervious cover, 
Schueler (1994) concluded that despite a range of different criteria for stream health and the use of widely varying 
methods and a range of geographic conditions, stream degradation consistently occurred at relatively low levels of 
imperviousness (10 to 20%). A recent survey of Maryland streams found that brook trout (Salvelinus fontinalis), a 
species very sensitive to water temperature, were not present in any streams where the watershed was greater than 
2% impervious cover. The strength of the relationship between stream health and impervious cover is not surprising 
since impervious cover contributes directly to hydrologic changes that degrade waterways and channels pollutants 
directly into waterways, thereby preventing the processing of pollutants in soils. In addition impervious cover is 
significantly warmer in the summer than the vegetated cover that it replaces, resulting in higher stream temperatures 
during summer months. Arnold and Gibbons (1996) strongly advocate use by planners of impervious surface 
coverage as an indicator for water resource protection in urbanizing areas. 

The goal of the Office of Research and Development (ORD) Regional Vulnerability Assessment (ReVA) 
Program is to develop and demonstrate an approach to quantify and communicate regional vulnerabilities so that risk 
management activities (both restoration and risk reduction) can be targeted and prioritized (Smith 2000). The 
geographic area of interest for this program is EPA’s Region III, which includes five states in the mid-Atlantic area 
of the U.S. Impervious cover is proposed as an indicator of aquatic conditions for subwatersheds throughout this 
region. Although there is a strong relationship between impervious cover and stream health, the utility of impervious 
cover as an indicator is a function of the ease and accuracy for estimating it. 

A number of approaches have been used for measuring and estimating impervious cover. While ground­
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based surveys can be extremely accurate, such surveys are typically prohibitively expensive for anything other than 
small areas. Readily available and higher resolution satellite imagery is providing rapidly expanding use of remote 
sensing techniques for impervious cover estimation. The National Land Cover Data 1992, developed for the Multi 
Resolution Land Characteristics Consortium, identifies urban areas based on impervious cover. A number of 
relationships between population density and impervious cover have been developed (Stankowski 1972, Graham et 
al. 1974, Hicks and Woods 2000). City planners often use land-use zoning to do rapid estimates of total impervious 
area (TIA). Both population density and land-use zoning based estimation methods provide a means for projecting 
increase in impervious cover in a watershed using either projected population growth or build-out scenarios. 
Population density data are available from the U.S. Census Bureau, but no comprehensive data base of land use 
zoning is available for the region. 

The objective of this section is to compare and evaluate the utility of different approaches for estimating 
and projecting impervious cover. The focus is on methods that would be useful in doing region-wide assessments. 
Methods evaluated include: empirical relationships using population density data; analysis of categorized, land-cover 
data; use of impervious cover coefficients and parcel level property records; and the use of a combination of data 
sources (Vogelmann et al. 1998, Vogelmann et al. 2001). 

Materials and Method 

Test Data Set Development 

An impervious cover test data set for 56, 14-digit subwatersheds in Frederick County, MD was developed 
using DOQQs from the U.S. Geological Survey (USGS) taken in 1989. DOQQs are computer-generated versions of 
aerial photographs that have been orthorectified so they represent true map distances. They are available for any area 
of the country from the USGS. The DOQQs have a 1 m2 resolution and their analysis provides a high level of 
accuracy in the determination of impervious cover at a subwatershed scale (Zandbergen et al. 1999). A point 
sampling method with a 200 m regular grid was used to evaluate the impervious area; a detailed description of the 
methodology and quality assurance assessment is provided in Bird, et al. (2000). The DOQQ sampling yielded an 
average of approximately 800 sample points per 14-digit HUC–with a total of 43,816 points in the study area. 
Quality assurance objectives for these data were to obtain a measure of the %TIA within +/- 1% for watersheds with 
a TIA of less than 10% of the total watershed area and within 10% of the TIA for watersheds with a TIA greater than 
10%. 

The greatest potential introduction of error identified in the quality assurance assessment was from an 
individual analyst’s interpretation of the images. In order to control this error, sampling points overlaid on the 
DOQQs were characterized by two independent analysts as either pervious or impervious. A third individual served 
as a quality assurance checker. The quality assurance checker imported the results of the first two analysts into a 
program that compared the two grids on a point-by-point basis. Points with discrepancies in categorization of results 
by the first two analysts were reviewed by the quality assurance checker, who made the final determination of 
assignment of categories. 

Impervious cover is not a single homogenous quantity. Generally, paved surfaces and buildings fall 
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unambiguously under the definition of impervious surfaces. Ambiguity can exist, however, even for these categories 
since there is now a pervious asphalt paving material that allows some infiltration. Other areas, such as dirt and 
gravel roads and parking lots, railroad yards and quarries that may not be coated with manmade, impervious 
materials are in many instances so heavily compacted as to be functionally impervious. Actual surface material in 
these cases is often hard to determine from the aerial photography. These features were categorized as impervious in 
our interpretation of the photography. 

Impervious Cover Estimation 

Impervious cover is a result of human settlement, and therefore, population density should be a reasonable 
predictor of it. Use of population density as a means to estimate impervious cover is attractive since it provides a 
rapid technique for generating a quantitative estimation of both present and projected land surface cover. Stankowski 
(1972), Graham, et al. (1974) and Hicks and Woods (2000) developed empirical relationships with different 
functional forms to relate population density to percent impervious cover. Stankowski (1972) developed his 
relationship using county scale data from New Jersey with population densities ranging from 120 to 13,800 
persons/mi2. The impervious cover was estimated from land use data available from the state planning office. 
Graham, et al. (1974) evaluated selected census tracts for the Washington, DC metropolitan region where population 
densities ranged from 350 to 53,300 persons/mi2 and developed impervious cover estimates ranging form 14% to 
98% using 1:50,000 aerial photography. Hicks and Woods (2000) developed their relationship based on data for the 
greater Vancouver, BC area using impervious cover estimated from land use zoning categories. All three 
relationships are summarized in Table 14. 

Table 14. Empirical relationships between population density and impervious area. 

Source Relationship 

Stankowski (1972) 

Graham et al. (1974) 

Hicks and Woods (2000) 

Land use and land cover data are frequently used as a basis for estimating impervious area. Categorized 
land use and land cover systems derived from remote sensing data define developed land cover classes based on the 
fraction of impervious cover in a specified area (Anderson et al. 1976, Vogelmann et al. 1998). Sleavin et al. (2000) 
generated percent impervious coefficients for generalized land use and land cover classes developed from 30 m 
Landsat Thematic Mapper imagery, as well as from land use and parcel size class data. The 1992 National Land 
Cover Data (NLCD 92) is a categorized land cover data set for the continental United States based on 30 m 
Thematic Mapper data from the early 1990s plus a variety of auxiliary data sources (Loveland and Shaw 1996, 
Vogelmann et al. 1998). The Frederick County, MD impervious surface data, derived from the DOQQs, were used 
to develop estimates of the percentage of impervious surface for each NLCD 92 category based on data for the entire 
county and the estimated contribution of each class to the TIA. These coefficients were then used with the land cover 
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data to see how well these values were able to estimate impervious surface values for individual watersheds. 

Researchers have also developed coefficients of impervious cover based on land use and zoning classes. 
Arnold and Gibbons (1996) reported coefficients for impervious cover based on residential lot size, industrial uses, 
general commercial use and shopping centers. Data from property records for Frederick County (Maryland Office of 
Planning 1999) were used in combination with these coefficients to estimate impervious surface area by watershed. 
Only properties listing a construction date prior to 1990 were included in this analysis since the aerial photographs 
were from 1989. 

Finally, three different data types were combined to estimate impervious cover. Data types used for this 
estimation were: 1) population density from block level census data, 2) the commercial-industrial and quarrying-
mining land cover category from NLCD 92, and 3) interstates and major US highway coverages. Population density 
served as an indicator of impervious cover generated by residential development. The residential contribution was 
estimated from the Hicks and Woods (2000) relationship. The two NLCD 92 categories provided information on the 
contributions from major manufacturing, commercial, and quarrying areas that can be more reliably detected by 
satellite imagery. These areas were assumed to be 90% impervious (the definition of the commercial-manufacturing 
category is defined as 80% or greater for the NLCD 92). The highway coverages provided information on 
impervious cover contributed by major highways (interstate and other US highways) that aren’t necessarily related to 
local residential development. Highway contribution was calculated based on the number of lanes and a 12 ft lane 
width. 

Results 

Impervious cover results from the DOQQ interpretation for Frederick County, MD are illustrated in Figure 
16. The highest intensity impervious area centers on the town of Frederick, with the watershed containing most of 
the town having 23% TIA. Only three of the Frederick County watersheds have impervious cover greater than 10%. 
The mean value is 5.1% TIA and the median is 4.6 % TIA. Data by 14-digit HUC are presented in Table 15. This 
table also indicates whether the watershed was totally contained within Frederick County or only partially located 
within the county. The area of the watershed contained within the county is also presented in the table. An ideal data 
set for testing impervious cover estimation for use as an environmental indicator would have more representatives in 
the 10 % to 20% range where stream impairment is initially observed. Accurately identifying watersheds in the 5% 
to 10% range may be even more critical, however, since these are ones that, while not yet significantly impaired, 
may benefit from good preventative planning in the near future. 

Figure 17a shows the %TIA predicted by the relationships developed by Stankowski (1972), Graham, et al. 
(1974), and Hicks and Woods (Hicks and Woods 2000). Also shown in this figure are the data for the combined 
Frederick County watersheds and the Washington, DC census tracts. Whereas the Stankowski (1972) relationship 
seriously under predicts %TIA at population densities greater than 1000 persons/mi2, the Graham et al. (Graham et 
al. 1974) relationship seriously over predicts %TIA for population densities under 500 persons/mi2. Although the 
Hicks and Woods (2000) relationship appears to provide the best fit overall, closer inspection of the data for 
population densities under 2000 person/mi2 (Figure 17b) indicates that this function 
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Figure 16. Impervious Cover Results from the DOQQ Interpretation for Frederick County, MD. 
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Table 15. Impervious Cover Interpretation of Frederick County, MD by HUC. 

14-digit HUC Impervious Cover
(% TIA) 

Area 
(Sq Mi) 

HUC within County 

02070009040124 1.6  0.9 Completely 

02070009040128 3.4  4.4 Partially 

02070009030101 2.1 11.0 Completely 

02070009030104 4.7 13.2 Completely 

02070009030102 7.8  5.5 Completely 

02070009040127 2.6  5.8 Completely 

02070009060176 2.5 21.6 Completely 

02070009060177 3.7 18.0 Completely 

02070009060201 3.3  4.7 Completely 

02070009060202 2.8  6.6 Partially 

02070008010026 2.1 10.8 Partially 

02070009060227 7.8 16.5 Completely 

02070009060226 3.5  6.9 Completely 

02070008010028 2.6 15.2 Completely 

02070009060228 2.6 18.3 Completely 

02070009050171 4.2  8.0 Partially 

02070009060204 5.2  9.4 Completely 

02070009060203 4.3  3.5 Completely 

02070009060205 3.7 18.3 Completely 

02070008010027 3.5  7.3 Completely 

02070009050170 2.3  7.3 Completely 

02070009060251 6.0 14.0 Completely 

02070009050169 6.6  8.3 Partially 

02070009060206 6.4 12.3 Completely 

02070009050168 4.9  3.7 Partially 

02070008010029 5.4 17.3 Completely 

02070008010030 4.5 12.8 Completely 

02070009060208 7.6  8.1 Completely 

Continued on next page 
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Table 15. (continued) Impervious Cover Interpretation of Frederick County, MD by HUC. 

14-digit HUC Impervious Cover
(% TIA) 

Area 
(Sq Mi) 

HUC within County 

02070009060252 7.3 19.1 Completely 

02070009060209 7.0 17.8 Completely 

02070009070280 4.6 21.1 Completely 

02070009070276 2.7 16.3 Partially 

02070008010032 8.0 10.2 Completely 

02070008010031 4.6 14.1 Completely 

02070009060210 23.0 28.3 Completely 

02070009070278 3.9 15.1 Partially 

02070008010036 3.7 15.9 Partially 

02070009070286 5.6 12.3 Completely 

02070009070283 3.0 15.8 Completely 

02070009080301 12.0 20.0 Completely 

02070009080302 14.8  5.1 Completely 

02070008010035 6.1  6.5 Completely 

02070009080305 4.9 19.4 Completely 

02070009080303 9.0 13.6 Completely 

02070009080306 5.0 17.1 Completely 

02070008010037 8.8 17.4 Partially 

02070008010052 5.2 24.0 Completely 

02070008010038 3.6 10.6 Completely 

02070009080326 5.6  7.1 Partially 

02070009080330 3.3 17.3 Completely 

02070009080327 7.2  6.6 Partially 

02070008010039 3.5  4.0 Completely 

02070008010051 4.9  5.7 Completely 

02070009080328 1.8  4.2 Partially 

02070009080308 1.5 11.5 Partially 

02070008020076 0.0  0.7 Partially 
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Figure 17. The three relationships between population density and %TIA presented in Table 14 are shown in Part a 
(top figure above) along with data collected for this study in watersheds in Frederick County, MD and by Graham 
(1974) for census tracts in Washington, DC. Part b (bottom figure above) shows the response of the Hicks and 
Woods (2000) relationship for population densities less than 2000 persons/sq mi compared to data presented on a 
linear scale. 
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 consistently underestimates %TIA within this range. This fact is important since these population densities are of 
particular interest in development of an environmental indicator. On average, the Hicks and Woods (2000) 
relationship underestimated the impervious cover for Frederick County by 2.2% 

Impervious surface coefficients developed for the NLCD 92 land cover categories for Frederick County as a 
whole are summarized in Table 16. The percentage of the category estimated as impervious is the percentage of the 
points sampled from the DOQQs located in a specific land cover class that were categorized by analysts as 
impervious. The sample size is the number of the DOQQ sampling points that were geographically located within 
the specific land cover class. The final column of Table 16 is the percentage of the sampling points in Frederick 
County that were categorized as impervious that were located in the cells of that land cover category. Figure 18 
illustrates the percentage of impervious cover points found in the Anderson, et al. (1976) Level 1 land cover 
categories. Only 23% of the sampling points categorized as impervious in Frederick County are located in cells of 
the developed land cover categories and over 50% are located in the agricultural categories. Frederick County is a 
suburban county and the land cover data does not include a category that picks up a substantial fraction of very low 
density development. To be classified as low density residential, a 30 m cell must include at least 30% impervious 
cover. Figure 19 shows the amount of developed residential land in different lot size categories (Maryland Office of 
Planning 1999) and total land in the residential cover classes from the NLCD 92 data. The amount of residential land 
identified by the NLCD 92 data is consistent with the acreage in residences on lots less than about ½ acre. Larger lot 
residential properties are not identified as residential areas by the NLCD 92 data set and are frequently classified as 
agricultural or forested. 

Table 16. Impervious Cover for NLCD 92 Land Cover Categories 

Land Cover Category Percentage of the 
Category Impervious 

Sample 
Size

 Per
Fre

cent of Impervious Area in
derick County Accounted 

low density residential 42 990 16.9 
high density residential 77 76 2.4 
commercial/industrial 57 156 3.6 

quarries/mines/gravel pits 62 117 2.9 
transitional barren 17 29 0.2 
deciduous forest 2 11159 9.1 
evergreen forest 4 697 1.1 

mixed forest 5 3400 6.9 
hay/pasture 5 23497 47.7 
row crops 8 2663 8.6 

other grasses 9 33 0.1 
woody wetland 3 368 0.4 

herbaceous wetland 1 138 0.1 
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Figure 18. The percentage of impervious cover points sampled from aerial photographs in Frederick County, MD 
located in land-cover cells summarized by Anderson Level 1 categories. 
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Figure 19. Acreage categorized as residential (combined high and low density) in the NLCD 92 data (NLDC 
residential) and by residential lot size category from property tax records for Frederick County, MD. The labels for 
data from the property tax records indicate all the residential lots that are less than the indicated number of acres per 
unit of housing – e.g., < 5 ac is the sum of all properties in the tax records that are on lots of less than 5 acres per 
housing unit. 
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Impervious surfaces were estimated for the 56 individual 14-digit HUCs in Frederick County based on the 
coefficients in Table 16. Figure 20 shows measured and estimated (from NLCD 92 coverage and these coefficients) 
%TIA for each watershed in Frederick County. Since the impervious surface coefficients were derived from the data 
for the whole county, on average the impervious cover estimates are expected to match closely the measured data. 
The mean error between estimated and measured values is 0.2% TIA. Figure 20 also indicates that using these 
coefficients, %TIA is overestimated for low impervious cover watersheds and underestimated for the more 
developed watersheds in the county. The mean absolute error for Figure 20 data is 1.4%. 

Results from the use of coefficients of impervious cover by land use class as a method for estimating 
impervious cover are illustrated in Figure 21. Generally, the estimates for impervious cover are low except in the 
over 10% impervious cover areas. The over estimates arise from large acreage, commercially zoned properties that 
have been built on but are not fully developed. The property data base does not include records for publically owned 
and other tax-exempt properties, nor does this method account for roadway areas. 

Accuracy of estimates of impervious cover based on combining the Hicks and Woods (2000) population 
density, estimates of industrial and commercial contributions from the NLCD 92 and contributions from highways 
(Interstates and other major U.S. highways) are illustrated in Figure 22. Figure 22 compares the estimated 
impervious cover using the combined data set to the measured values for Frederick County. The straight line 
indicates a one to one match between the estimated and measured %TIA values. Overall, this technique 
underestimated impervious cover by 0.8% TIA with an average, absolute error of 1.4 %TIA. This estimate was 
obtained without fitting to the test data set. For Frederick County as a whole, the residential area calculated from 
population density contributed 65% of the imperviousness, commercial/industrial land cover from the NLCD 
contributed 25%, the major highways contributed 6% and quarrying and mining contributed 4%. 

Summary and Conclusions 

Population density is a good basis for screening level estimation of impervious cover. The exponential 
relationship of Hicks and Woods (2000) captures the general shape of the relationship between population density 
and impervious cover, but somewhat underestimates the impervious cover. The other relationships do not adequately 
characterize the relationship over the full range of impervious area. 

Combining information from multiple data sources provided the best approach to calculate a reasonably 
accurate impervious cover indicator that can be calculated quickly for large areas. Use of NLCD coverage that 
identifies commercial, manufacturing, mining and quarrying areas along with road network information effectively 
augmented the population-based relationship with identification of non-residential sources of impervious cover. The 
categorized NLCD data, however, does not adequately quantify impervious cover since larger lot, suburbanized 
areas where initial degradation of water quality may be occurring are not identified as developed classes. Impervious 
area coefficients for agricultural and forested categories that account for the majority of impervious cover appear to 
be a function of population density. Use of impervious area coefficients with size of property and type of land use 
also do not appear to accurately characterize percentage impervious area. 
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Figure 20. Impervious cover for Frederick County, MD watersheds measured from aerial photographs versus that 
estimated from categorized satellite imagery and category coefficients developed from county wide data. 
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Figure 21. Impervious cover for Frederick County, MD watersheds measured from aerial photographs versus that 
estimated from property data and impervious coefficients based on lot sizes and land use types. 
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Figure 22. Impervious cover for Frederick County, MD watersheds measured from aerial photographs versus that 
estimated from a combination of data, including U.S. Census population density, manufacturing and industrial areas 
from categorized satellite imagery, and major highway networks from U.S. Department of Transportation. 

5.2. Hydrology

5.2.1. Methods for Projecting Baseflow

The Groundwater Modeling System (GMS) MODFLOW flow and RT3D transport models can be used to 
predict future baseflow rates and nitrogen loads into each reach of every drainage system within the Albemarle-
Pamlico basin, based on recharge and surficial nitrogen loading estimates provided by the BASINS NPSM (HSPF) 
model as described below. 

The GMS model runs proceed as follows: 

•	 Design a three-dimensional, finite-difference grid, aligned perpendicular and parallel to the Albemarle-
Pamlico basin axis, with uniform cell spacing size dictated by limits of available computational resources; 

•	 Assign distributed geologic properties, such as hydraulic conductivity(K), porosity(n), and storativity(S), by 
importing datasets generated by a Visual Basic geologic characterization application using USGS borehole 
log data and NCSC bathymetric data to define terrestrial aquifer structure and sub-estuary marine aquifer 
structure, respectively; 
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•	 Assign precipitation recharge (N) and nitrogen concentrations at the water table (cN), assumed uniform 
within a given 8- or 11-digit HUC, by importing an ArcView HUC shapefile containing NPSM recharge 
and water table concentration fields, and mapping the fields to GMS recharge and concentration attributes; 

•	 Assign well discharge rates by importing an ArcView county shapefile containing a discharge field, 
constructed from the USGS GWSI database and from well records made available by state environmental 
agencies, and mapping well discharge to GMS attributes; 

•	 Import the BASINS rf1 shapefile for the Albemarle-Pamlico basin, modified to include fields for streambed 
elevation, mean stream stage, and vertical streambed conductance in each reach, and map the fields to GMS 
model attributes; 

•	 Assign initial and boundary hydraulic heads by importing a grid generated in ArcInfo using USGS GWSI 
data; 

•	 Assign first-order chemical reaction rate coefficients (8) for nitrogen transformation. 

Prior to execution of the flow and transport models in predictive mode, the models must be calibrated. 
Recharge and nitrogen water table load estimates from the NPSM simulation can be assumed to known and invariant 
during the calibration procedure. Calibration involves variation of certain GMS model parameters until observed 
baseflows and stream nitrogen concentrations, obtained from the last 5-yr period of record, are matched at selected 
USGS gaging and sampling stations to within some acceptable error tolerance. Parameters that affect steady-state 
flow and transport are varied during a steady-state calibration, while those influencing transient flow and transport 
are adjusted during a subsequent transient calibration. Details of the calibration procedure are as follows: 

•	 Well discharge, streambed elevation, streambed conductance, and boundary heads are assumed to be known 
and invariant; 

•	 Hydraulic conductivity (K), porosity(n), and storativity (S) are varied in proportion to one another, 
constrained only by the subsurface geometry imposed by the Visual Basic geologic characterization model; 

•	 For the steady-state phase of calibration, only K and n are varied during execution of MODFLOW and 
RT3D, respectively; these parameters are varied until observed time-averaged baseflows and nitrogen 
concentrations at selected gaging stations are matched to within some acceptable tolerance; 

•	 For the transient phase of calibration, only S, 8, and stream stage are varied during execution of 
MODFLOW and RT3D, respectively; the parameters are changed until errors associated with matching 
baseflow and nitrogen time series average, over time, to be within some acceptable tolerance; 

•	 Constant stage conditions are maintained in every reach during steady-state flow calibration, but these 
heads are allowed to vary during the transient flow calibration. 
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Observed baseflows are obtained from daily streamflow data using the HYSEP baseflow separation code, with 
observed nitrogen contributions from baseflow estimated according to nitrogen signatures characteristic of surface 
water and groundwater within the reach drainage. USGS data that will likely prove useful for estimating such 
signatures include: 

•	 a series of surface-water samples collected at primary and secondary USGS surface-water sites during the 
rise and recession stages following a precipitation event, and analyzed for CFCs and tritium to determine 
residence time and surface water source; 

•	 the amount of nitrate in surface water derived from ground-water discharge estimated on the basis of the 
chemical characteristics of ground water and from recharge rates; and 

•	 relative streamflow contributions from surface runoff and ground-water discharge determined from CFC 
and tritium measurements according to the chemical signatures associated with ground water and surface 
recharge. 

Following calibration, the models can be run in predictive mode using actual precipitation input and nitrogen 
recharge values estimated from HSPF using the most likely future land-use scenario. Ideally, Monte Carlo methods 
can be used to quantify uncertainty in future baseflow and nitrogen load predictions caused by uncertainty in 
geologic structure at the unresolved catchment scale. However, synthesis of multiple realizations, particularly over 
the 28,000-mi2 Albemarle-Pamlico drainage basin, would quickly overwhelm our current computational resources. 
Future extensions of the BASE research should include such Monte Carlo simulation to assess the spatial 
distribution of prediction error, and help to pinpoint locations where measurement of catchment scale geologic 
structure would most improve the assessment of ecosystem sustainability. 

5.2.2. Predicting Regional Hydrology - HSPF

HSPF (Hydrocomp Simulation Program-Fortran) is a comprehensive watershed simulation model that has 
its origins in the Stanford Watershed Model developed by Crawford and Linsley (1966). HSPF is frequently cited in 
the literature as one of the first comprehensive watershed models and is designed to simulate all water quantity and 
water quality processes that occur in a watershed, including sediment transport and movement of contaminants. 
HSPF can be applied to most watersheds that possess the requisite meteorologic and hydrologic data. Although 
usually classified as a lumped parameter model, it can simulate spatial variability by dividing the basin into 
hydrologically homogeneous segments and using different meteorologic input data and watershed parameters for 
each segment. HSPF includes both fitted parameters as well as parameters that can be measured in the watershed. 

HSPF simulates watershed hydrology as a series of flows and storages. In general, each flow is an outflow 
from a storage and is described mathematically as a function of the current storage amount and physical 
characteristics of the watershed system. Although the overall model is physically based, flows and storages are 
conceptually represented in a simplified manner. As mentioned above, the model also employs the use of calibration 
parameters for certain conceptually aggregated processes. 
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HSPF represents a basin of interest as a series of land segments and in-stream reaches/reservoirs. Although 
the boundaries of these units are established according to the user's needs, they are generally defined by similar 
hydrologic characteristics. Land segments that allow enough infiltration to influence the water budget are considered 
pervious; otherwise they are considered impervious. Pervious land segments move water along three paths: overland 
flow, interflow and groundwater flow. Imprevious land segments move water by overland flow and evaporation, and 
transport various water quality constituents (pollutants) directly to the stream channels. 

In-stream hydraulic and water quality processes are simulated by reach. The outflow from a reach or 
reservoir can be distributed to one or more other reaches or reservoirs to represent realistic flow patterns. Flow 
routing is accomplished by a modified version of the kinematic wave equation. Evaporation, precipitation and other 
fluxes that take place at the water’s surface are also simulated by the model. 

The modeling capabilities of HSPF have recently been integrated with the BASINS GIS (Geographical 
Information System) modeling system supported by the Office of Water. 

5.2.3. Predicting Regional Hydrodynamics & Sedimentation - EFDC

To supply the current velocities, sedimentation rates, and other water quality conditions relevant for 
assessing the health of stream and river fish populations and communities, a three-dimensional, finite-difference, 
hydrodynamic, water quality and sediment transport model, EFDC (Environmental Fluid Dynamics Code), can be 
set up using existing data to model seventh order and higher streams, rivers, and reservoirs in the Albemarle-Pamlico 
basin. 

EFDC can be used to model a wide variety of geometrically and dynamically complex water bodies such as 
stratified estuaries, rivers, lakes, and coastal regions. It solves the three-dimensional, vertically hydrostatic, free 
surface, turbulent averaged equations of motion for a variable density fluid (Hamrick 1992, Hamrick 1996, Hamrick 
and Wu 1997). The physics programmed in EFDC and many aspects of the computational finite difference scheme 
are equivalent to the widely used Blumberg-Mellor model (Blumberg and Mellor 1987) and the U.S. Army Corps of 
Engineers' Chesapeake Bay model (Johnson et al. 1993). The model uses a sigma (or stretched) vertical coordinate 
and Cartesian or curvilinear orthogonal horizontal coordinates. Dynamically coupled equations for the transport of 
turbulent kinetic energy, turbulence length scale, salinity and temperature are also solved. The two turbulence 
transport equations implement the Mellor-Yamada level 2.5 turbulence closure scheme (Mellor and Yamada 1982) 
as modified by Galperin et al. (1988). An optional bottom boundary layer module allows for wave-current boundary 
layer interaction using an externally specified, wind-generated, surface-gravity wave field. EFDC also 
simultaneously solves an arbitrary number of Eulerian transport-transformation equations for dissolved and 
suspended constituents, and simulates drying and wetting in shallow areas using a mass conservative scheme. In 
addition, it includes: 1) vegetation resistance formulations for flow simulations in vegetated water bodies (Hamrick 
and Moustafa 1995), 2) a near field mixing zone model that is fully coupled with the far field transport of salinity, 
temperature, sediment, and contaminant and eutrophication variables, 3) hydraulic structure representation and 
Lagrangian particle tracking, and 4) accepts radiation stress fields from wave refraction-diffraction models, which 
allows simulation of longshore currents and sediment transport. The following quotation from the EFDC User 
Manual (Hamrick 1996) summarizes the computational scheme incorporated in EFDC. 
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“The numerical scheme employed in EFDC to solve the equations of motion uses second order 
accurate spatial finite difference on a staggered or C grid. The model's time integration employs a 
second order accurate three time level, finite difference scheme with an internal-external mode 
splitting procedure to separate the internal shear or baroclinic mode from the external free surface 
gravity wave or barotropic mode. The external mode solution is semi-implicit, and simultaneously 
computes the two-dimensional surface elevation field by a preconditioned conjugate gradient 
procedure. The external solution is completed by the calculation of the depth averaged barotropic 
velocities using the new surface elevation field. The model's semi-implicit external solution allows 
large time steps which are constrained only by the stability criteria of the explicit central difference 
or upwind advection scheme used for the nonlinear accelerations. Horizontal boundary conditions 
for the external mode solution include options for simultaneously specifying the surface elevation 
only, the characteristic of an incoming wave (Bennett and McIntosh 1982), free radiation of an 
outgoing wave (Bennett 1976, Blumberg and Kantha 1985) or the normal volumetric flux on 
arbitrary portions of the boundary. The EFDC model's internal momentum equation solution, at the 
same time step as the external, is implicit with respect to vertical diffusion. The internal solution of 
the momentum equations is in terms of the vertical profile of shear stress and velocity shear, which 
results in the simplest and most accurate form of the baroclinic pressure gradients and eliminates 
the over determined character of alternate internal mode formulations. Time splitting inherent in 
the three time level scheme is controlled by periodic insertion of a second order accurate two time 
level trapezoidal step. The EFDC model is also readily configured as a two-dimensional model in 
either the horizontal or vertical planes.” 

“The EFDC model implements a second order accurate in space and time, mass conservation 
fractional step solution scheme for the Eulerian transport equations at the same time step or twice 
the time step of the momentum equation solution (Smolarkiewicz and Margolin 1993). The 
advective step of the transport solution uses either the central difference scheme used in the 
Blumberg-Mellor model or a hierarchy of positive definite upwind difference schemes. The 
highest accuracy upwind scheme, second order accurate in space and time, is based on a flux 
corrected transport version of Smolarkiewicz's multidimensional positive definite advection 
transport algorithm (Smolarkiewicz 1984, Smolarkiewicz and Clark 1986, Smolarkiewicz and 
Grabowski 1990) which is monotone and minimizes numerical diffusion. The horizontal diffusion 
step, if required, is explicit in time, while the vertical diffusion step is implicit. Horizontal 
boundary conditions include time variable material inflow concentrations, upwinded outflow, and 
a damping relaxation specification of climatological boundary concentration. For the heat transport 
equation, the NOAA Geophysical Fluid Dynamics Laboratory's atmospheric heat exchange model 
(Rosati and Miyakoda 1988) is implemented. The Lagrangian particle transport-transformation 
scheme implemented in the model utilizes an implicit tri-linear interpolation scheme (Bennett and 
Clites 1987). To interface the Eulerian and Lagrangian transport-transformation equation solutions 
with near field plume dilution models, internal time varying volumetric and mass sources may be 
arbitrarily distributed over the depth in a specified horizontal grid cell. The EFDC model can be 
used to drive a number of external water quality models using internal linkage processing 
procedures described in Hamrick (1994).” 
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The EFDC model has been used for a study of high fresh water inflow events in the northern portion of the 
Indian River Lagoon, Florida, and a flow through high vegetation density-controlled wetland systems in the Florida 
Everglades. The model has been used for discharge dilution studies in the Potomac, James and York Rivers. Salinity 
intrusion studies include the York River, Indian River Lagoon and Lake Worth. Sediment transport studies include 
the Blackstone River, James River, Lake Okeechobee, Mobile Bay, Morro Bay, San Francisco Bay, Elliott Bay, 
Duwamish River and Stephens Passage. Power plant cooling studies include Conowingo Reservoir, the James River 
and Nan Wan Bay. Contaminant transport and fate studies include the Blackstone and Housatonic Rivers, James 
River, San Francisco Bay, Elliott Bay and the Duwamish River. Water quality eutrophication studies include 
Norwalk Harbor, Peconic Bay, the Christina River Basin, the Neuse River, Mobile Bay, the Yazoo River Basin, 
Arroyo Colorado, Armand Bayou, Tenkiller Reservoir, and South Puget Sound. The Peconic Bay water quality 
application is particularly noteworthy. The model was calibrated using a one year data set and subsequently verified 
by simulation of an eight year historical period having extensive field data. The model was then executed for 
alternative 10 year management scenarios to develop a Comprehensive Conservation and Management Plan for the 
estuary system. 

5.2.4. Predicting Riparian Dynamics - REMM

The Riparian Ecosystem Management Model (REMM) was developed by the USDA to simulate ecological 
processes in riparian zones (Altier et al. In press). Riparian zones in REMM are based on the three zone riparian 
buffer system described by Welsch, 1991. As a best management practice, the three zone system consists of an outer 
grass strip (zone 3), a middle conifer forest strip (zone 2), and an inner (adjacent to the stream) hardwood forest strip 
(zone 1). Within REMM, the riparian zone need not follow the BMP model of three zones and, thus, may be used to 
describe the riparian buffer system under both natural and managed conditions. 

REMM brings together the following four components to simulate ecological processes within the buffer 
zone: hydrology (surface and subsurface), sediment transport, nutrients (C, N, and P), and vegetation (growth and 
resource allocation). Together, these components interact to simulate the effects of riparian buffer systems on 
multiple water quality parameters. For example, REMM may be used to simulate the sequestration of nutrients (both 
in the riparian vegetation and soil) and sediment from water that flows through the riparian zone. REMM may also 
be used as a management tool for assessing the effect of riparian buffer systems on water quality, as part of a system 
of agricultural best management practices (BMP’s). This model is particularly suited for coastal plain riparian 
ecosystems, which comprises a large proportion of the land area in the Albemarle-Pamlico drainage basin. With 
minimal modification, the model is also usable in the Piedmont, Blue Ridge, and Ridge and Valley ecoregions of the 
basin, with equal success. 

A detailed description of the four main components of REMM is presented in the model documentation 
(Altier et al. In press). In general, the model uses algorithms to simulate the interactions between hydrology, 
sediment, nutrients, and vegetation using a combination of mass balance and rate controlled calculations. The 
hydrology component encompasses surface and subsurface water flow and models surface runoff, vertical and lateral 
subsurface flow, interception, evapotranspiration, plant water uptake and evaporation directly from the soil/litter 
surface layers. Erosion calculations utilize the universal soil loss equation (USLE) approach but also take into 
account routing, transport capacity and deposition. Nutrients are modeled by accounting for interactions between 
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plant biomass and the soil and through the association between nutrients and sediment. Vegetation types include 
herbaceous (annuals or perennials) and deciduous or coniferous woody vegetation. Vegetation type thus has a large 
impact upon the cycling of nutrients through the soil and litter layers. 

In order to parameterize REMM, data can be gathered from the following sources: soil (STATSGO); 
topography (DEM, 30 or 90 m); land use scenarios (other BASE researchers); climate (HSPF in BASINS); surface 
hydrology (other BASE researchers); sediment and nutrient loading (other BASE researchers); and the condition of 
the riparian zone (US-EPA EMAP and USGS NAWQA). Simulations by REMM can then predict the ability of the 
riparian ecosystem to remove nutrients and sediments prior to entering the stream channel. Because sediment and 
nutrient loadings are primary determinants of the quality and quantity of stream fish habitat and of water quality in 
down-stream rivers and reservoirs, REMM , or models like it, must be considered an integral component of any 
framework aimed at assessing fish health. 

Parameters for Upland Watershed Description 

As soils develop, the primary rock or parent material is broken down into smaller and smaller constituent 
mineral particles. Near surface mineral soil is made up of varying amounts of sand, silt and clay (terms that describe 
particle size - clay <0.002 mm, silt 0.002-0.05 mm, and sand 0.05-2 mm). The relative proportions of these particle 
size classes are described by a factor termed soil texture. Water infiltration, water holding capacity, drainage, 
hydraulic conductivity and other soil properties are determined primarily by soil texture and are modified by the 
amount of organic matter present in the soil surface horizons. In general, sandy soils have good drainage and 
aeration but poor water holding capacity. Clayey soils have high water holding capacities but may be prone to water 
logging and poor drainage. The texture class of a particular soil is not naturally modified in the short term and may 
be thought of as a defining characteristic of soils on a spatially explicit basis. Thus, the development of a soil texture 
data base for the region will be highly important for use with the REMM model due to the direct link between soil 
texture and factors such as hydrology and erosion. Soil texture data will also be modified by the use of slope data for 
the watershed. The greater the slope in a region, the more susceptible the area is to erosion and thus sediment in 
surface runoff. 

Another factor that is important to consider when characterizing the condition of the upland areas of a 
watershed is land use. Areas that are highly impacted by development or agriculture often exhibit changes in soil 
texture, soil structure, and hydraulic conductivity that are quite different from the original soil conditions. Thus land 
use also drastically affects the rate of water infiltration and water interception by covering the soil surface with 
structures or materials that are impervious to water. In addition, land use within the watershed is the primary source 
of non-point source pollutants (nutrients, sediments, and pesticides). The proximity of different land use types to the 
riparian zone may greatly modify the potential for these pollutants to move through the riparian area towards the 
stream. Therefore, land use as well as soil parameters are included in the characterization of the watershed for the 
parameterization of REMM. 

5.3. Biological Endpoint Models

Because of the complexity of influences structuring fish assemblages, mathematical models have been used 
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to gain a better understanding. Roell and Orth (1998) used a model of species interactions to predict the effect of a 
pest control chemical on a stream fish assemblage. DeAngelis et al. (1997) developed a model for the effects of 
alternative hydrologic regimes on Everglades ecosystems. Jager et al. (1997) developed an individual-based, 
spatially-explicit, stage-structured model to predict in-stream flow effects on chinook salmon in regulated rivers. The 
process-based approach used in these models allows for the exploration of multiple environmental settings and 
ecological communities, and provides the predictive capability that is necessary to explore management options and 
future stressor scenarios. 

5.3.1. AQUATOX

AQUATOX is a general ecological risk assessment model that simulates the fate and transport of 
conventional pollutants, such as nutrients and sediments, in surface waters in association with their effects on aquatic 
ecosystems. Aquatic ecosystems are considered as a series of trophic levels, e.g., attached and planktonic algae, 
submerged aquatic vegetation, invertebrates, and forage, bottom-feeding, and game fish. Interactions between these 
components be may varied from that of a simple food chain to that of a complex food-web. The model can be 
implemented for a wide variety of surface water environments including: streams, small rivers, ponds, lakes, and 
reservoirs. The model is designed to evaluate the likelihood of past, present, and future adverse effects from various 
stressors including: toxic organic chemicals, nutrients, organic wastes, sediments, and temperature. These stressors 
may be simulated individually or collectively (Park 2000a, b). 

The fate portion of AQUATOX is specifically designed to model the chemical and physical behavior of 
organic toxicants. Processes considered by the model include: 1) partitioning among organisms, suspended and 
sedimented detritus, suspended and settled inorganic sediments, and water, 2) volatilization, 3) hydrolysis, 4) 
photolysis, 5) ionization, and 6) microbial degradation. Constant, dynamic, and multiplicative loadings can be 
specified for atmospheric, point- and nonpoint sources. Loadings of pollutants can be turned off at the click of a 
button to obtain a control simulation for comparison with the perturbed simulation. 

Any ecosystem model consists of multiple abiotic and biotic state variables or compartments. In 
AQUATOX the biotic state variables may represent trophic levels, guilds, or species. AQUATOX can simulate 
either detrital-based or algal-based food chains and foodwebs. Ecosystem forcing functions are assumed to include 
temperature, light, and nutrients. The effects portion of the model includes: chronic and acute toxicity to the various 
organisms modeled; and indirect effects such as release of grazing and predation pressure, increase in detritus and 
recycling of nutrients from killed organisms, dissolved oxygen sag due to increased decomposition, and loss of food 
base for animals. 

5.3.2. BASS

BASS (Bioaccumulation and Aquatic System Simulator) is a Fortran 95 simulation model designed to 
simulate the population and bioaccumulation dynamics of age-structured fish communities using a temporal and 
spatial scale of resolution of a day and a hectare, respectively. BASS currently ignores the migration of fish into and 
out of this simulated hectare. The duration of a species’ age class can be specified as either a month or a year. This 
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flexibility enables users to simulate small, short-lived species such as daces, live bearers, and minnows with larger, 
long-lived species such as bass, perch, sunfishes, and trout. The community’s food web is specified by defining one 
or more foraging classes for each fish species based on either body weight, body length, or age. The user then 
specifies the dietary composition of each of these foraging classes as a combination of benthos, incidental terrestrial 
insects, periphyton, phytoplankton, zooplankton, and/or other fish species including its own. Presently, the standing 
stocks of all nonfish prey are handled only as external forcing functions rather than as simulated state variables. See 
Barber (2001) 

Although BASS was specifically developed to simulate the bioaccumulation of chemical pollutants within a 
community or ecosystem context, it can also be used to simulate population and community dynamics of fish 
assemblages that are not exposed to chemical pollutants. For example, BASS could be used to simulate the 
population and community dynamics of fish assemblages that are subjected to altered thermal regimes associated 
with various hydrological alterations or industrial activities. BASS could also be used to simulate the population and 
community dynamics of fish assemblages that are subjected to introductions of exotic species or stockings of 
recreational sport fishes. 

BASS is an extremely flexible model in that 

! there are no restrictions to the number of chemicals that can be simulated; 
! there are no restrictions to the number of fish species that can be simulated; 
! there are no restrictions to the number of cohorts that fish species may have; 
! there are no restrictions to the number of feeding classes that fish species may have; 
! there are no restrictions to the number of foraging classes that fish species may have. 

BASS’s input data needs are broadly classified into three categories: simulation control parameters, 
chemical parameters, and fish parameters. Simulation control parameters provide information that is applicable to 
the simulation as a whole, e.g., length of the simulation, the ambient water temperature, nonfish standing stocks, and 
output options. Chemical parameters specify not only the chemical's physico-chemical properties (e.g., the 
chemical's molecular weight, molecular volume, n-octanol/water partition coefficient, etc.) but also exposure 
concentrations in the environment (i.e., in water, sediment, benthos, insects, etc.). Fish parameters identify the fish's 
taxonomy (i.e., genus and species), feeding and metabolic demands, dietary composition, predator-prey 
relationships, gill morphometrics, body composition, initial weight, initial whole body concentrations for each 
chemical, and initial population sizes. 

BASS’s output includes:


! Summaries of all model input parameters and simulation controls.

! Tabulated annual summaries for the bioenergetics of individual fish by species and age class.

! Tabulated annual summaries for the chemical bioaccumulation within individual fish by species


and age class. 
! Tabulated annual summaries for the community level consumption, production, and mortality of 

each fish species by age class. 
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!	 Plotted annual dynamics of model variables as requested by the user as a function of age or size 
classes. 

Using the results of Section 4.2, one could straightforwardly identify the dominant species of the major 
habitat types (e.g., rocky pools, vegetative pools, mixed substrate pools, clear rocky riffles/runs, muddy low flow 
runs, swamps, etc.) within each fish association cluster of the Albemarle-Pamlico basin. These species lists could 
then be used to construct either actual or average community representations for each major habitat/association 
cluster combination. In general, each of these major habitat/associations communities would be represented by 4-8 
species that account for at least 80-90% of the habitat's total fish biomass. Having identified the species composition 
of these major habitat/association cluster combinations, one could then construct a generalized food web for each 
community based on the published natural histories of its dominant species. Finally, given the necessary data for 
determining initial conditions for fish species comprising these communities (i.e., initial body sizes and population 
densities) and for establishing the standing stocks of nonfish food resources (i.e., benthic invertebrates, insect drift, 
zooplankton, etc.), BASS could be used to simulate several different aspects of fish health for the Albemarle-
Pamlico basin. These might include: 1) growth rates and projected population sizes of important recreational and 
food species such as largemouth bass, crappie, sunfish, and catfish as related to the availability of lower trophic level 
resources that, in turn, are influenced by water quality and sedimentation, 2) growth rates and projected population 
sizes of important recreational and food species as related to temperature and hydrology, and 3) bioaccumulation 
dynamics of dioxin, mercury, and complex pesticide mixtures. 

5.3.3. Habitat Suitability Models

Early in the 1980's the U.S. Fish and Wildlife Service began development of a planning and evaluation 
technique known as the Habitat Suitability Index (HSI). The intent of these HSI models was to provide wildlife 
managers and decision-makers with a numerical index for evaluating the impacts of water or land use changes on 
fish and wildlife habitats. These models formulate quantitative relationships between key environmental variables 
and habitat suitability that integrate life history information of specific species and their habitat requirements for 
food, cover, reproduction, and survival. Each HSI model provides a numerical index of habitat suitability on a 0 to 
1scale and assumes that there is a positive relationship between the index and carrying capacity of the habitat being 
evaluated. Although HSI models should be considered as hypotheses of species-habitat relationships rather than 
proven statements of cause and effect, they provide an objective approach for improved decision-making regarding 
actual or expected habitat impacts associated with water quality changes and land use practices. Because the goal of 
HSI models is to assess the impacts of water quality and land use changes on fish and wildlife populations indirectly 
via habitat considerations, HSI models are, in ecological risk assessment terminology, measurement rather than 
assessment endpoint models. 

Two features of HSI models make them potentially useful tools for regional assessments. The first of these 
features is the fact that the habitat variables used in HSI calculations can be either measured or model-generated for 
any particular region of concern. For example, variables for a stream fish HSI typically include: 

average, maximum, or minimum current velocity (food, cover, reproduction)

average, maximum, or minimum pH (growth, survival)
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average, maximum, or minimum water temperature (growth, survival, reproduction)

average, maximum, or minimum dissolved oxygen (survival, reproduction)

turbidity (survival)

% designated aquatic vegetation (food, cover, reproduction)

% designated substrate type (food, reproduction)

% riparian cover (food)

% shade (cover)

% pools (food, cover)

% runs (food, cover)

Stream gradient

average stream depth


average stream width


The second feature of HSI models that make them amenable to regional assessments is their mathematical 
simplicity. These two features make implementation of HSI models within a GIS framework a very straightforward 
undertaking. 

Table 17 summarizes HSI models that have been developed for various freshwater and marine fish that 
could be used directly to assess fish habitat relationships in the Albamarle-Pamlico basin or that could be used to 
pattern the development of new HSI models. 

Table 17. Summary of available Habitat Suitability Models. 

Species Common Name HSI Model 

Acipenser brevirostrum 
Alosa aestivalis 
Alosa pseudoharengus 
Alosa sapidissima 
Ameiurus melas 
Brevoortia tyrannus 
Catostomus catostomus 
Catostomus commersoni 
Cynoscion nebulosus 
Cyprinus carpio 
Dorosoma cepedianum 
Esox lucius 
Esox masquinongy 
Etheostoma gracile 
Ictalurus punctatus 
Ictiobus bubalus 
Ictiobus cyprinellus 
Leiostomus xanthurus 

Shortnose sturgeon 
Blueback Herring 
Alewife 
American Shad 
Black Bullhead 
Menhaden 
Longnose sucker 
White Sucker 
Spotted Seatrout 
Carp 
Grizzard Shad 
Northern Pike 
Muskellunge 
Slough Darter 
Channel Catfish 
Smallmouth Buffalo 
Bigmouth Buffalo 
Spot 

Crance (1986)

Pardue (1983)

Pardue (1983)

Stier and Crance (1985)

Stuber (1982)

Christmas et al. (1982)

Edwards (1983b)

Twomey et al. (1984a)

Kostecki (1984)

Edwards and Twomey (1982a)

Williamson et Nelson (1985)

Inskip (1982)

Cook and Solmon (1987)

Edwards et al. (1982a)

McMahon and Terrell (1982)

Edwards and Twomey (1982b)

Edwards (1983a)

Stickney and Cuenco (1982)
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Lepomis auritus Redbreast Sunfish Aho et al. (1986) 
Lepomis cyanellus Green Sunfish Stuber et al. (1982b) 
Lepomis gulosus Warmouth McMahon et al. (1984c) 
Lepomis macrochirus Bluegill Stuber et al. (1982a) 
Lepomis microlophus Redear Sunfish Twomey et al. (1984b) 
Menidia beryllina Inland Silverside Weinstein (1986) 
Menticirrhus americanus Southern Kingfish Sikora and Sikora (1982) 
Micropogonias undulatus Atlantic Croaker Diaz and Onuf (1985) 
Micropterus dolomieui Smallmouth Bass Edwards et al. (1983a) 
Micropterus punctulatus Spotted Bass McMahon et al. (1984b) 
Micropterus salmoides Largemouth Bass Stuber et al. (1982c) 
Morone chrysops White Bass Hamilton and Nelson (1984) 
Morone saxatilis Striped Bass Bain and Bain (1982), Crance (1984) 
Notropis cornutus Common Shiner Trial et al. (1983a) 
Oncorhynchus clarki Cutthroat Trout Hickman and Raleigh (1982) 
Oncorhynchus gorbuscha Pink Salmon Raleigh and Nelson (1985) 
Oncorhynchus keta Chum Salmon Hale et al. (1985) 
Oncorhynchus kisutch Coho Salmon McMahon (1983) 
Oncorhynchus mykiss Rainbow Trout Raleigh et al. (1984) 
Oncorhynchus tshawytscha Chinook Salmon Raleigh et al.(1986a) 
Paralichthys albigutta Gulf Flounder Enge and Mulholland(1985) 
Paralichthys lethostigma Southern Flounder Enge and Mulholland(1985) 
Perca flavescens Yellow Perch Krieger et al. (1983) 
Pleuronectes vetulus English Sole Toole et al. (1987) 
Polyodon spathula Paddlefish Hubert et al. (1984) 
Pomoxis annularis White Crappie Edwards et al. (1982c) 
Pomoxis nigromaculatus Black Crappie Edwards et al.(1982b) 
Pylodictis olivaris Flathead Catfish Lee and Terrell (1987) 
Rhinichthys atratulus Blacknose Dace Trial et al. (1983c) 
Rhinichthys cataractae Longnose Dace Edwards et al. (1983b) 
Salmo trutta Brown Trout Raleigh et al. (1986b) 
Salvelinus fontinalis Brook Trout Raleigh (1982) 
Salvelinus namaycush Lake Trout Marcus et al. (1984) 
Sciaenops oscellatus Red Drum Buckley (1984) 
Semotilus atromaculatus Creek Chub McMahon (1982) 
Semotilus corporalis Fallfish Trial et al. (1983b) 
Stizostedion vitreum Walleye McMahon et al. (1984a) 
Thymallus arcticus Arctic Grayling Hubert et al. (1985) 
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5.4. Modeling Issues

5.4.1. Models as Ecological Indicators

Although EMAP's Indicator Development Strategy (Barber 1994) correctly suggested that the output of 
dynamic simulation models that are parameterized with monitoring data could be used as ecological indicators, there 
has been little or no effort to date to explore either the feasibility or the utility of such methods. Because of financial 
and logistical constraints, most traditional monitoring programs, including EMAP, have focused only on structural 
measures of system condition, e.g., fish or zooplankton densities, concentration of chlorophyll a, Sechi depth, water 
concentration of toxics, etc. There are assessment needs, however, for which functional measures of system fluxes or 
flows might be more useful indicators of the system's overall condition. In such cases, dynamic simulation models 
could to be use to estimate the needed system measures. Dynamic simulation models could also be used to 
enumerate time series of structural indicators of system condition that cannot be repeatedly monitored for fiscal or 
logistical reasons. 

5.4.2. What is a Good Model?

The question of what constitutes a “good” model is neither a trivial nor straightforward question since there 
are multiple ways to analyze how a model corresponds to an observational dataset. For example, let  and 
denote the measured and predicated values of a system output of interest. Perhaps the most obvious measures of 
goodness of fit might be the norm 

(24) 

In other words, how close does the model come to matching the observed values pointwise? An alternative norm, 
however, might measure how well the model predicts changes in the observed data. In this case, the norm 

(25) 

would be a better measure for evaluating the model's goodness of fit. Although measures like Eq.(24) are used much 
more frequently than measures like Eq.(25), there is no a priori reason to do so, particularly if . 
Consequently, a “good” model is not necessarily the one that gives the best prediction in terms of closeness to 
reality, for this might be just an accident. If data are not there to provide good estimates for model parameters and 
boundary conditions, then the bottom line is simply that the data are not there. A “good” model is really one for 
which the right answer can be guaranteed to lie within its quantified uncertainty range. It is data, and data alone, that 
will reduce this uncertainty range through a priori or posteriori reduction of parameter and input uncertainty 
intervals. 
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Kow

5.4.3. Uncertainty 

of this type are equivalent to 

(26) 

Another complicating factor that is generally ignored when comparing model output to observed data is the 
fact that the data being used for model evaluation is itself a physical model of the phenomena that the mathematical 
model is designed to describe. Observational data has its own implicit and explicit assumptions as well as its own 
limitations. In some cases, predicted model results can be better than measured results (e.g., measured vs. predicted 

’s for extremely hydrophobic chemicals). 

There are many heuristic ideas concerning model uncertainty. One of the most common, and yet the most 
difficult to address, is the notion of uncertainty as a probability statement. For example, what is the probability that a 
prediction of a model will be observed in the field? This is an intriguing question since most models are by 
assumption, construction, or definition the most probable or expected description of the system of interest. Questions 

(26) would be zero for any 
prediction or observation. 

particular time and spatial location. Despite the difficulty in aligning the temporal and spatial coordinates of the 
model and the observed data, such probability statements are meaningless if one assumes that model outputs 
represent a continuous random variable, or more precisely a function of continuous variables (i.e., parameters, 
forcing functions, and initial conditions that have associated distributions). In particular, because the probability of 
any one “value” of a continuous random variable is by definition zero, it follows that Eq.

where  and  denote a particular model prediction and field observation for a 

On the other hand, probability statements of the form 

(27) 

variables. 

over some specified time interval  or spatial coordinates are entirely meaningful. Such probabilities 
could be evaluated empirically if the statistical distributions of all model parameters, forcing functions, and initial 
conditions were known under the assumption that the model’s structure is a “reasonable” representation of the actual 
processes that it is intended to simulate. By model structure we mean 1) number of state variables, 2) the 
connectance between those state variables, and 3) the “appropriate” functions describing the interactions between 
state variables and other state variables, system inputs, and system outputs. 

Perhaps a more useful alternative to this probability approach is the construction of confidence limits on 
selected model outputs. If more than one output is of interest, however, the next question that must be addressed is 
how to generate simultaneous confidence limits. Generation of such confidence limits are not an easy proposition 
since one needs to know or assume covariances between the model parameters, forcing functions, and state 
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Ramifications of Uncertainty 

Model uncertainty analysis can be, and has been, used for a number of ends. On the positive side, 
uncertainty analysis can be used to focus future research and model development. Understanding what processes and 
parameters generate the greatest range in prediction and which of those processes and parameters are the least well 
characterized is essential for determining optimal strategies for data acquisition and research direction. For example, 
the statistical distributions for most parameters of many environmental models are poorly known or characterized. 
Consequently, with limited resources it is important to determine whether new algorithm development and process 
research is more important than better characterization of existing model parameters and processes. Ideally, the 
answer to such questions should be based on knowing what activities have the most effect (per dollar) in lowering 
the uncertainty of key model predictions. 

Understanding the factors that contribute to model uncertainty is also essential for objective verification/ 
validation of models. For example, validation of a model that generates a wide range of prediction for a key process 
or output of interest may be virtually impossible if one has access to only 1 or 2 validation datasets. In such cases, if 
additional datasets are either unavailable or unattainable, model verification/validation would have to be undertaken 
indirectly. Indirect model verification activities could focus on other model outputs for which additional 
observational data were available or on extensive peer review of the model's theoretical foundations, assumptions, 
structure, implementation, and application. 

On the negative side of things, uncertainty analysis has often been used to discredit models without a full 
appreciation of what such analyses really are telling us. This is particularly true in the case of environmental 
regulation when the regulatory and regulated communities are using different models for their respective analyses. In 
such cases, there has been a strong tendency to argue that the model with the smaller “uncertainty” is by definition 
the better model. Although such assertions on the surface may seem entirely reasonable, there is no a priori reason to 
believe that the “better science-based model” in point of fact has the smaller model uncertainty for any specific 
application. Such paradox arises directly from the fact that model uncertainty is not a one dimensional property of a 
model. Rather, it is the product of several different properties of the model and its parametric data that collectively 
determine the model's bounds of prediction. These factors may be broadly grouped under the headings of model 
sensitivity, statistical variability of parameters, and “true” scientific uncertainty. 

5.4.3.1. Mathematical Sensitivity

There are four major classes of mathematical sensitivity regarding a model’s behavior. These are the 
model’s sensitivity to parameter changes, forcing functions, initial state variables, and structural configuration. The 
first three of these classes are generally defined in term the following partial derivatives 

(28) 

where  is a system output of interest;  is some state parameter;  is some external forcing function; and 
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is the initial value of some state variable of interest. In general, the output  may be either a state variable, a flux, 
or a function of a state variable or flux. Structural sensitivity, however, generally cannot be formulated in this 
manner since this form of model sensitivity typically concerns the number and connectivity between the system’s 
state variables. Examples of questions regarding a model's structural sensitivity would include: 

1. How does model output change using 4 segments vs. 10? 

2. How does model output change using 10 compartments vs. 7? 

3. How does model output change when the connectivity between components change? 

4. How does model output change when a process of interest is formulated using the function 
rather than ? Although this particular question could be formulated in term of partial 
derivatives if the functions under consideration were by some definition mathematically convergent, in 
general no such formalism is possible. 

It should be noted that structural sensitivity is related to the issue of model complexity for which there are 
at least 2 “fundamental” rules. These are: 

1. If complexity is added to a model in a way that increases the range of prediction for key model outputs, 
then the point of diminishing return for model complexity (at least as far as making that prediction goes) is 
reached when the range of prediction starts to flatten out. It can also be shown that potential bias due to 
over-simplification has also been reduced to near-zero at this point. 

2. Model complexity does not, on its own, guarantee that the model will give the “right answer”. It only 
helps to guarantee that the “right answer” will lie within the quantified uncertainty margins. 

Many environmental models (e.g., watershed models like HSPF) can not be parameterized completely using first 
principles and application-independent parameteric datasets. Such models must be calibrated to known conditions in 
order to parameterize certain processes that they simulate. If such models are too complex, they may have too many 
parameters to be calibrated uniquely. On the other hand, if such models are too simple (yet can be well calibrated), 
they may not be capable of simulating valuable aspects of system fine detail. This inability, in turn, may introduce 
serious bias into the model's predictions. Thus, if a calibrated model is required to simulate fine detail (e.g., 
groundwater/surface water interaction, response to extreme climatic events, etc.), then it will have uncertainty by 
virtue of parameter nonuniqueness (and all of the other uncertainties mentioned above). 

Because model sensitivity as defined above is simply a mathematical characteristic of a model, model 
sensitivity in and of itself is neither good nor bad. If the system being modeled is insensitive, then model sensitivity 
is obviously undesirable. On the other hand, sensitivity is desirable if the system being modeled is itself sensitive. 
Even though increasing model sensitivity may generate very large confidence limits for system outputs of interest, it 
is important to acknowledge that model sensitivity and uncertainty are not one and the same (Summers et al. 1993, 
Wallach and Genard 1998). Model uncertainty, or at least one of its most common manifestations, is the product of 
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both the model’s sensitivity to particular components and the statistical variability associated with those components. 

There are at least three key points to remember when addressing issues of model sensitivity. These are 

1. Sensitivity with respect to parameters, initial conditions, and forcing functions is a fixed property of a 
model. To change these aspects of uncertainty, the model’s structure must be changed. 

2. Sensitivity is a major factor for calibrating models, i.e., how can one change parameters or forcing 
functions to have model output match a set of observations. 

3. Unqualified questions regarding the sensitivity of generalized models such as 3MRA, BASS, EXAMS, 
WASP, etc. are generally meaningless. The only meaningful sensitivity analyses of such models are those 
preformed for specific applications. Any of these models can be sensitive or insensitive depending on the 
particular application of concern. 

Readers interested in issues and techniques related to model sensitivity and uncertainty should consult the following 
papers: Giersch (1991), Elston (1992), Summers et al. (1993), Håkanson (1995), Norton (1996), Loehle (1997), and 
Wallach and Genard (1998). 

5.4.3.2. Statistical Variability of Parameters, Forcing Functions, & Initial Conditions 

The statistical variability of a model's parameters, forcing functions, and initial conditions refines one’s 
perceptions regarding the model's realizable sensitivity. Consider, for example, the following results for a parameter 
sensitivity analysis. 

(29) 

where  and  denote a very small and very large real number, respectively. In terms of model uncertainty, the 
real question of interest is what is the statistical distribution of  ? Therefore, assume for the sake of discussion that 
the actual distribution of  is described by the following graph. 
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processes are represented by power functions, i.e., 

(30) 

In this case, one would probably conclude that although the model may exhibit some very sensitive behavior in its 
global parameter space, in its operational or anticipated parameter space the model is, in fact, very insensitive. 

Actual distributions of all of a model’s parameters, forcing functions, and state variables are seldom, if 
ever, known. If the distributions of parameters, forcing functions, or state variables are poorly known, more research 
will obviously provide a better characterization of the needed distributions. However, there will always be a limit of 
diminishing returns when making such investments. 

The covariance structure between parameters, forcing functions, and state variables is another factor that 
can greatly alter one's perception of a model's realizable sensitivity. For example, many biological and physical 

(30), 
i.e., 

(31) 

When such relationships are fitted using standard regression techniques after logarithmic transformation of Eq.

 andthe resulting estimates for
 appropriately, the resulting 

 are always negatively correlated with one another. Consequently, if one were 
to analyze this model's parameter sensitivity to  without covarying the exponent
analysis, at the very least, would be biased and at the worst would actually tell one little, if anything, about the 
model's realized or expected sensitivity. 

Another interesting problem arises for models that must be calibrated to estimate parameters for certain 
lumped, empirically based processes. Generating the actual, or even the approximate, distribution of such parameters 
is generally a very complex task since the parameter's distribution for any given set of model calibrations is 
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obviously conditioned on the particular datasets used to parameterize the rest of the model. The parameter's “true” 
distribution must, therefore, be constructed using Bayes Theorem and knowledge of the distributional properties of 
the model's other parameters. This task is much easier if the model is not particularly sensitive to the calibration 
parameter of interest. If this is not the case , however, predictions may become quite uncertain and very dependent 
on the a priori parameter distribution rather than on any constraints enforced by the calibration process. 

All of the above concepts will greatly influence one's notions concerning the expected behavior of any 
given model. To illustrate this fact, let the vector  denote the parameters of a model. If one now conceptually treats 
any given model output of interest as a vector function , the model's average prediction for the 

(32) 

output of interest would be given by the following definition of mathematical expectation 

where

These are: 

expected behavior, one must quantify the distributions of the model’s parameters, forcing functions, and initial 
conditions which is not equivalent to executing the model “mindlessly” a large number of times and calculating 
sample means. 

5.4.3.3. Scientific Uncertainty - Model Structure, Process Representation, etc. 

If we acknowledge that the parameters, forcing functions, and initial conditions of our environmental 
models have associated statistical distributions, then we are, in fact, acknowledging that the predictions of those 
models have associated errors or equivalently statistical distributions of prediction. When making any type of 
prediction that admits to prediction error, it is only natural then to ask how can predictions be made less uncertain? 
Consequently, when models are used for environmental regulation or decision-making, the question that is often 
asked is how can one reduce the model's uncertainty? Based on the preceding materials, two fundamental facts 
should be obvious. First, because the mathematical sensitivity of a model is a fixed property of the model, prediction 
error related to model sensitivity cannot be reduced except by changing the model structure itself. However, if model 
processes should be sensitive, then they should be sensitive, end of story. The second fundamental fact is that one 
can better characterize the distributions of model parameters, forcing functions, and initial conditions just so far. 
Once the statistical moments of a variable's distribution are “adequately” estimated more sampling will not 
significantly improve those estimates. 

The only dimension of model uncertainty that can be effectively reduced is what can be identified as the 
model's scientific or conceptual uncertainty. This aspect of model uncertainty is in fact closely related to the notion 
of structural sensitivity discussed above. There are at least three major dimensions of this source of uncertainty. 

1) Model Structure - That is, how many components are needed to satisfy implicit or stated model 
objectives? Furthermore, how should these components be connected? 

 is the cumulative joint density function of the model’s parameters. Thus, in order to quantify a model’s 
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2) Process Representation - What functions or algorithms should be used to describe model processes and 
their interactions? The answer to this question will often depend both on the state of the science and overall 
model objectives. 

3) Application Issues - What are the implicit temporal and spatial scales of the model and the object of its 
application? 

Remember, all models are abstractions or simplifications of real world phenomena. Good models may often 
be more the result of ignoring those things that are not relevant to the model’s objectives rather than including as 
much detail as possible. 
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6. Prototype Assessment - Contentnea Creek Watershed 

To illustrate how water quality and biological endpoint models can be sequentially linked to assess different 
dimensions of fish health, this chapter presents a demonstration of this process for which the aim is to assess the 
ecological responses of fish communities in the Contentnea Creek watershed of the Albemarle-Pamlico basin to 
sediments and nutrients. 

In Section 6.1 calibration of the HSPF (Hydrologic Simulation Program Fortran) hydrologic model to the 
Contentnea Creek watershed is presented. Although HSPF is a lumped parameter model that is only moderately 
physically-based, it has been widely used for TMDL development. The art of effectively using HSPF, however, 
requires a great deal of experience in fitting the adjustable parameters in the calibration process. Due to resource and 
time constraints, a modeler may not have the opportunity to fully explore various parameter suites or place 
confidence bounds on model predictions, thereby addressing the critical issue of uncertainty that will arise as 
TMDLs are generated, scrutinized, and challenged. Here we present the automated parameter optimization software 
PEST (for Parameter Estimation) in combination with HSPF for the parameterization of four neighboring 
watersheds in the Contentnea River basin of North Carolina. 

In Section 6.2 a procedure for calibrating HSPF to simulate sediment dynamics is presented. The use of 
nonlinear parameter estimation techniques using the PEST software is demonstrated by incorporating TSS data into 
the model calibration process. Recognizing that no parameter set estimated through the calibration process is unique, 
the model's predictive uncertainty arising from parameter uncertainty using the PEST predictive analyzer is then 
considered. 

Finally, in Section 6.3 the aquatic ecosystem simulation model AQUATOX is parameterized and applied to 
Contentnea Creek using the hydrologic and sediment trends predicted by the above HSPF calibrations. 

6.1. Hydrological Patterns

In spite of the fact that calibration of lumped and distributed parameter watershed models is a difficult and 
time-consuming task, it is general modeling practice for such models to be calibrated manually. While a number of 
studies have reported on the use of various parameter estimation methodologies in the calibration of watershed 
models (e.g., Kuczera 1983, Wang 1991, Duan et al. 1992, Sorooshian et al. 1993, Yapo et al. 1998, Thyer et al. 
1999), the use of computer-assisted watershed model calibration outside academic circles is not widespread, and is 
sometimes even discouraged on the basis that the use of such techniques erodes the modeler’s ability to bring his/her 
expertise to the task of model calibration (e.g., Lumb et al. 1994). 

There can be little doubt that attempts to calibrate watershed models using nonlinear parameter estimation 
software meet with difficulties that are not found to the same extent in the calibration of other types of 
environmental models. Included amongst these difficulties are: 1) the highly nonlinear (with respect to adjustable 
parameters) nature of such models; 2) the potential for local minima to exist in whatever mathematical formulation is 

97 



chosen as a measure of model-to-measurement misfit (normally called the objective function); 3) the number of 
parameters requiring adjustment in many such models and hence the nonuniqueness with which they can be 
estimated; 4) the large data sets that must be handled; 5) the large amounts of noise associated particularly with 
constituent and sediment data; and 6) the lack of expertise in parameter estimation methods that exists in the 
watershed modeling community. 

A related issue to that of model calibration, and one that is rarely addressed in the literature, is that of 
estimating the uncertainty associated with predictions made by a model once it has been calibrated. The fact that 
most model parameters are nonunique, even after calibration constraints have been imposed, raises the spectre that 
predictions made by a calibrated model may also be nonunique; see for example, Beven (2000). Integrity in the 
deployment of environmental models as a basis for environmental management requires that the extent of such 
predictive uncertainty be explored (National Research Council 2001). 

The present exercise demonstrates the use of nonlinear parameter estimation and predictive uncertainty 
analysis in the calibration and deployment of a model that simulates streamflow in neighboring watersheds. A 
number of different applications of these methodologies are discussed in the context of exploring, and partially 
overcoming, many of the difficulties noted above. It should be noted, however, that it is not the purpose of this paper 
to compare the merits and weaknesses of different parameter estimation and predictive analysis algorithms. Rather, 
this study reveals some of the powerful and innovative data-processing achievements that can be made with 
relatively little trouble in applying readily available software in everyday modeling contexts. 

Methods 

The Contentnea Creek basin, a coastal plain watershed, is located in the Neuse River basin in North 
Carolina (Figure 23). Rainfall in the region averages 127 cm per year (Giese et al. 1997). The mean annual minimum 
and maximum temperatures are approximately 8 Celsius and 22 Celsius, respectively; the mean monthly minimum 
temperature is 15 Celsius (Wilson, NC). The physiography is relatively uniform throughout the four modeled 
watersheds, with relatively low relief. The soils are well-drained sands and sandy loams developed on sediments of 
marine origin. 

Models were built for four, non-overlapping watersheds of the Contentnea Creek basin, viz. Contentnea 
Creek above Hookerton, Moccasin Creek, Nahunta Swamp and Little Contentnea Creek; areas of these watersheds 
are 311924, 100208, 52815 and 57692 acres, respectively. Each model was calibrated using daily streamflow 
records from gauging stations situated at their respective outlets (operated and maintained by the U.S. Geological 
Survey). When a gauging station was not located at a watershed pour point, the watershed boundary was corrected to 
reflect the appropriate contributing area. The models were built as part of a wider study dedicated to predicting 
alterations to water quality within the Contentnea Creek basin as a result of increasing urbanization, changing 
farming practices and climatic change (Johnston 2001). 
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Figure 23. Contentnea Creek watershed study area and surroundings. The Contentnea subwatershed is located within
the Neuse River basin of North Carolina.

The primary land covers within all watersheds are forest, agriculture, grassland and urban. Land use
classifications were taken from the MRLC national land cover dataset (Vogelmann et al. 2001) with selected
thematic map scenes and a composite of data acquired between 1990 and 1994. Of these four land use classes, the
land use with the largest difference in hydrological characteristics is the urban land use class. The increased amount
of impervious cover comprising this land use type results in increased flashiness of streamflow (i.e., higher flows
immediately after rain and possibly lower flows during dry times) in addition to a higher potential for increased
chemical constituent and sediment loading into streams that drain the basin.

Software

Simulation of hydrologic processes within the watersheds comprising the Contentnea Creek study area was
undertaken using version 12 of HSPF (Bicknell et al. 2001). Each watershed was simulated using four HSPF
PERLNDs, one IMPLND and a RCHRES (a PERLND is a pervious land segment, an IMPLND is an impervious
land segment and a RCHRES is a free-flowing reach or mixed reservoir). The four PERLNDs were used to represent
the four major land use types mentioned above. The IMPLND was used for the simulation of urban impervious
areas. The RCHRES was used to simulate flow of water in the stream reach that drains each watershed.



Because the major hydrological difference between land use types is that between pervious and impervious 
land, initial model deployment was such that all four PERLNDs within each modeled watershed were assigned the 
same hydrologic parameters, except for the FOREST parameter that governs the amount of evapotranspiration taking 
place during winter. Parameters related to the dimensions of the system (e.g., land use areas, lengths of overland 
flow paths, average slopes) were assigned in accordance with known watershed geometry and topography. 

Model calibration was undertaken using PEST (Doherty 2001a) in conjunction with a suite of utility 
software written to support the use of PEST in the surface water modeling context (Doherty 2001b); the principal 
member of this suite is TSPROC, a time-series processor optimized for use in the calibration context. PEST is a 
model-independent parameter estimator with advanced predictive analysis and regularization features. Its model-
independence rests on the fact that it is able to communicate with a model through the latter’s own input and output 
files, thus allowing easy calibration setup with an arbitrary model. This capability allows the model that is to be 
calibrated to be encapsulated in a batch or script file if desired. Hence both model pre- and postprocessing software 
(such as TSPROC) can be used as part of the calibration process. 

PEST implements a particularly robust variant of the Gauss-Marquardt-Levenberg method of parameter 
estimation. While this method requires that a continuous relationship exist between model parameters and model 
outputs, it can normally find the minimum in the objective function in fewer model runs than any other parameter 
estimation method. This is important where model run times are lengthy, or even moderate. (In the present case 
model runs took about 1 minute on a Pentium III 550 MHz machine.) The Gauss-Marquardt-Levenberg method has 
been accused of being too easily trapped in local objective function minima; see, for example, Abbaspour et al. 
(2001). In the present instance, this problem was circumvented by formulating a calibration objective function that 
included not just flows, but processed flow data as well. Also, parameter nonuniqueness was accommodated during 
model calibration and predictive uncertainty analysis using the methods described below. 

TSPROC is able to read time-series data from a variety of sources including ASCII files and USGS 
Watershed Data Management (i.e., WDM) files. It can: 1) undertake temporal interpolation of one time series to 
another; 2) carry out mathematical manipulations of arbitrary complexity between one or more time series; 3) 
calculate various derived quantities from time series including exceedence times and volumetric/mass accumulation 
between one or many arbitrary dates and times; and 4) compute indices of biotic health based on continuous high or 
low values beyond a threshold value. Also, it facilitates the use of both raw and processed time series data in the 
calibration process by automatically generating PEST input files for calibration runs involving some or all of these 
quantities. Hence, use of TSPROC eliminates many of the problems associated with the handling and processing of 
large data sets that accompany the use of nonlinear parameter estimation techniques in the surface water-modeling 
context. 

The remainder of this section briefly describes some of the methodologies used to calibrate HSPF and to 
analyze the uncertainty of predictions made by HSPF, employing PEST in conjunction with TSPROC and using the 
Contentnea Creek drainage area as an example. The methods described herein can be easily extended to other 
models and other watersheds. 

Calibration of a Single Watershed Model 
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Calibration of each of the watershed models discussed above was undertaken by adjusting certain model 
parameters to obtain as good a match as possible between model outputs and gauged flows over the period 1970 to 
1985. Adjusted parameters, and their role in HSPF, are listed in Table 18. All of these parameters pertain to the 
HSPF PERLND module. As was mentioned above, the same values for these parameters were assigned to all four 
PERLNDs representing the four dominant land use types within each watershed. The third column of Table 18 lists 
the initial values assigned to the pertinent parameters prior to calibration adjustment, these values being considered 
reasonable for these watersheds (USEPA 1999, 2000a). The fourth column of Table 18 lists bounds on parameter 
values imposed through the calibration process. As is documented in Doherty (2001a), PEST is able to impose 
bounds on adjustable parameter values in a way that enhances numerical stability of the parameter estimation 
process as these bounds are imposed. 

Table 18. HSPF parameters, their functions, initial values and constraints imposed during the calibration process. 

Parameter 
Name Parameter function Initial value Bounds* 
LZSN 2 - 15 in 
UZSN 0.01 - 2 in 

INFILT 
Related to the infiltration capacity of the
soil 0.08 in/hour 0.001 - 0.5 in/hr 

BASETP 
The fraction of potential ET that can be

0.01 - 0.2 

storage 

LZETP the density of deep-rooted vegetation. 0.5 
INTFW 2 1.0 - 10.0 
IRC -1 0.001 - 0.999 day-1 

-1 0.001 - 0.999 day-1 

DEEPFR 
Fraction of groundwater inflow that goes
to inactive groundwater 0.1 

the watersheds of concern. 

(33) 

and 

Lower zone nominal storage 5.0 in 
Upper zone nominal storage 0.5 in 

sought from baseflow. 0.1 

AGWETP 

Fraction of remaining potential ET that
can be satisfied from active groundwater 

0.05 0.001 - 0.2 
Lower zone ET parameter - an index to 

0.1 - 0.9 
Interflow inflow parameter 
Interflow recession parameter 0.4 day

AGWRC Groundwater recession parameter 0.95 day

fixed 

* taken from (USEPA 2000a) 

For most of the model calibration runs documented herein the DEEPFR parameter was fixed at 0.1. This 
low value was assumed to be reasonable since loss of water to deep aquifers is considered unlikely to occur in any of 

In order to reduce the nonlinearity of the parameter estimation problem (and hence render it numerically 
more stable), PEST was actually used to estimate transformed interflow and groundwater recession parameters that 
are related to the native HSPF recession parameters depicted in Table 18 by the following relationships: 
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(34) 

(35) 

where  is the weight assigned to a flow observation;
is the day of the year 

st January). 

(35) is such that low flows are provided 

The third factor in Eq.(35)

represents. 

was about 3×106

6 

4.6×105 

These transformed parameters approach infinity as the native parameters approach 1. All adjusted parameters were 
log-transformed during the parameter estimation process undertaken by PEST to further increase the linearity of the 
problem and thereby reduce the chances of numerical instability. 

To estimate parameter values for HSPF, PEST was used to minimize an objective function comprised of 
three components. These were the weighted differences between: 1) model-generated and observed flows, 2) 
monthly volumes calculated on the basis of modeled and observed flows, and 3) exceedence times for various flow 
thresholds calculated on the basis of modeled and observed flows. 

The relative weights assigned to each of these three observation groups was such that the contribution made 
to the total objective function by each of them was about the same. Within the first of the above groups, weights 
assigned to individual flow observations were calculated using the formula: 

 is the flow magnitude; is a factor used to make the 
contribution to the objective function from each observation group about the same; and 
(counting from 1

If observation weights are calculated as the reciprocals of the observations themselves, it can be shown that 
this is mathematically equivalent to calibration against the logs of the observations. In calibrating a hydrologic 
model, such a strategy ensures that high flows do not dominate the parameter estimation process simply because of 
their large numerical value. In the present instance, the second factor in Eq.
with an even greater weight than that provided through inverse magnitude weighting. This was done in order to 
focus the calibration process on these low flows, thus hopefully enhancing the calibrated models’ ability to furnish 
accurate predictions under low-flow conditions. These conditions are the focus of part of the present investigation 
since they have the potential to impose risks on the fish population of the creeks. 

 provides a means of partial discrimination against flows measured during the 
summer months when rainfall is likely to show a high degree of spatial heterogeneity. This can result in 
discrepancies between rainfall supplied to a model and rainfall that actually fell in the watershed that the model 

For the initial parameter values listed in Table 18, the objective function for each of the watershed models 
, the contribution from each of the three observation groups (i.e., flows, monthly volumes and 

exceedence times) being about 1×10 each. For the Contentnea Creek model calibrated against flows recorded at 
Hookerton (henceforth referred to as the Hookerton model), PEST was able to reduce this objective function to 

in about 100 model runs. Optimized parameter values are shown as “set 1” in Table 19. A graphical 
comparison between modeled and measured flows through part of the calibration period, between modeled and 
observed monthly volumes over the entirety of the calibration period, and between modeled and observed 
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exceedence times pertaining to the whole of the calibration period are shown in Figures 24a–c. Note that the 
restriction of graphed flows in Figure 24a to only a part of the calibration period was done for the sake of clarity. 
Graphs over the remainder of the calibration period are similar. Note also that the flow axis is logarithmic in this plot 
in order to afford a better comparison between flows under both high and low flow conditions. Calibration results for 
the other watershed models were similar to those documented above for the Hookerton model. 

Table 19. Estimated parameter values. Parameters sets 2 to 5 were computed using PEST’s regularization 
functionality. 

Parameter 
Name Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 
LZSN  2  2  2  2  2  2  
UZSN  2  1.79  2  2  1.76  2  
INFILT 0.0526 0.0615 0.0783 0.034 0.0678 0.0687 
BASETP 0.2 0.182 0.199 0.115 0.179 0.2 
AGWETP 0.0011 0.0186 0.00232 0.0124 0.0247 0.0407 
LZETP 0.5 0.5 0.2 0.72 0.5 0.5 
INTFW 10 3.076 1 4.48 4.78 2.73 
IRC 0.677 0.571 0.729 0.738 0.759 0.32 
AGWRC 0.983 0.981 0.972 0.986 0.981 0.966 
DEEPFR 0.1 0.1 0.1 0.1 0.1 0.1 

Parameter Nonuniqueness 

Is it possible to calibrate a rainfall-runoff model against a flow time series by adjusting only 4 or 5 
parameters if the model is designed in such a way as to ensure maximum parameter sensitivity and minimum 
correlation between parameters; see, for example, Jakeman and Hornberger (1993). Correlation is the term used to 
describe the phenomenon whereby two or more parameters can be varied in harmony in such a way as to have 
virtually no effect on the calibration objective function. In the calibration process described in the previous section, 
nine HSPF parameters were adjusted in order to achieve an acceptable fit between model outcomes and measured 
flows (though adjustment for some parameters ceased when they hit their bounds). It would thus appear that there is 
some redundancy in the parameterization of the model, probably resulting in at least some degree of correlation 
between the various parameters appearing in Table 18. 
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Figure 24a. Measured (bold line) and modeled (light line) flows (in ft3/sec) over part of the calibration period. 

0.E+ 00 

1.E+ 09 

2.E+ 09 

3.E+ 09 

4.E+ 09 

5.E+ 09 

6.E+ 09 

7.E+ 09 

8.E+ 09 

1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986


Figure 24b. Measured (bold line) and modeled (light line) monthly volumes (in ft3) over calibration period. 
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Figure 24c. Measured (bold line) and modeled (light line) flow exceedence fractions over the calibration period. 
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To determine if there were other sets of parameters that could be considered to adequately calibrate the 
model, PEST was used in regularization mode. When run in this mode, the user supplies PEST with a default system 
condition expressed in terms of preferred values for parameters and/or preferred values for mathematical 
relationships between parameters. PEST is then used to calibrate the model to within a preferred model-to-
measurement fit tolerance (defined through a limiting measurement objective function below which the model is 
deemed to be calibrated), while simultaneously minimizing a regularization objective function calculated on the 
basis of the misfit between optimized parameter values and their user-supplied default values or relationship values. 

In order to find a number of different parameter sets that calibrate the Hookerton model, a number of 
different default system conditions were defined in terms of preferred values for the parameters listed in Table 18. In 
all cases these preferred values lay within the bounds depicted in the fourth column of this table. A limiting 
measurement objective function of 5×105 was supplied for all PEST runs. This is slightly above that which it is 
possible to achieve without any regularization conditions being imposed, as was established during the previous 
calibration exercise; it is also such as to allow a visually pleasing fit between measurements and model outcomes. 
The model was then re-calibrated a number of different times, with PEST’s regularization functionality ensuring that 
each calibrated parameter set departed to the smallest extent possible from the default parameter set supplied for that 
run. Four of the parameter sets determined in this way are listed as sets 2 to 5 in Table 19. In all cases the fit between 
model outcomes and raw and processed observation data was commensurate with that depicted in Figures 24a-c. 
Figure 25 shows the comparison of modeled and measured flows for 1983 using parameter sets 2 to 5 from Table 19. 
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Figure 25. Measured (bold line) and modeled (light lines) flows (in ft3/sec) over part of the calibration period. 

The nonuniqueness of parameters estimated through this calibration process is readily apparent from these 
results. However, the extent of this nonuniqueness is not as bad as it could have been if LZSN had not consistently 
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hit its lower bound and UZSN had not mostly hit its upper bound. The imposition of these bounds thus left PEST 
with two less parameters to estimate, thus reducing the amount of parameter redundancy. However, PEST’s 
insistence on lowering LZSN to its 2 inch lower bound and raising UZSN to its 2 inch upper bound is noteworthy; 
perhaps PEST’s tendency to alter these parameters to values outside of their respective ranges indicates that they 
may play a role that is at least partly different from that which their names suggest. Also note that the extreme 
sensitivity of parameter AGWRC as its value approaches 1.0 disguises the fact that there is more nonuniqueness 
associated with its estimation than is indicated by Table 19. Estimates for the value of the transformed parameter 
AGWRCTRANS defined in Eq.(34) vary between 35.7 and 74.1. 

Finally, it is worthy of remark that the methodology demonstrated herein could be used to undertake a kind 
of calibration-constrained Monte Carlo analysis as a basis for model predictive uncertainty analysis. Parameter sets 
lying within the allowable ranges shown in Table 19 could be generated at random. Then, for each such generated 
set, the model could be recalibrated using PEST in regularization mode in order to determine a parameter set that 
calibrates the model, while departing minimally from the randomly-generated parameter set. Model predictions 
would then be made using all such calibrated parameter sets. 

Model Validation 

As discussed above, the Contentnea Creek models were all calibrated using flows recorded over the period 
1970 to 1985. Flows recorded over the period 1986 to 1995 were then used for validation of the calibrated models. 
Figure 26a shows a comparison between observed and model-generated flows for the Hookerton model over part of 
the validation period. Observed and model-generated monthly volumes and observed and model-generated 
exceedence fractions pertaining to the whole of the validation period are shown in Figures 26b and 26c. In these 
figures predictions made on the basis of parameter sets 2 to 5 listed in Table 19 are provided as grey lines. Bold lines 
represent measured flows, or quantities derived directly from them. 

Inspection of Figures 26a and 26b reveals that the fits between prediction and observation are not entirely 
without merit. Hence, at least for the types of predictions discussed thus far (all based on flow), even though the 
model calibration process resulted in a nonunique parameter set, predictions made by the calibrated model appear to 
be sensitive to the same combinations of parameters as those that can be estimated through calibration. In general 
this is more likely to occur when a model is used to make predictions that are of the same type as those against 
which it was calibrated. Where a model is used to make predictions of different types from those against which it 
was calibrated, or where model inputs are significantly different under predictive conditions from those that 
prevailed under calibration conditions, opportunities arise for predictions to be sensitive to parameters, or parameter 
combinations, that are not well determined through the calibration process. In such circumstances predictive 
uncertainty may be high. This occurred to some extent in the period around 1st September 1993 when flows were 
very low. It is during such periods of climatic extremes that conditions are most likely to deviate from those 
encountered under calibration conditions, and hence when the reliance on individual parameters, or on combinations 
of parameters, that are different from those for which the information content of the calibration data set was greatest 
is most likely to occur. This is further discussed below. 
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Figure 26a. Measured (bold line) and modeled (light line) flows (in ft3/sec) over part of the validation period at
Hookerton. Parameters were estimated through simultaneous calibration of all four watershed models. 
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Figure 26b. Measured (bold line) and modeled (light lines) monthly volumes (in ft3) over the validation period. 
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Figure 26c. Measured (bold line) and modeled (light lines) flow exceedence fractions over the validation period. 
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Simultaneous Calibration of Multiple Watershed Models Using Identical Parameter Values 

From the forgoing discussion it is apparent that parameter uniqueness cannot be expected in the calibration 
of our simple watershed, even though many simplifications were made in order to reduce the number of parameters 
requiring estimation, including constraints imposed on parameters to ensure that they are assigned reasonable values 
(possibly at the cost of goodness of fit in the case of LZSN). Calibration of the other three watershed models led to 
similar conclusions. 

In an attempt to reduce the degree of nonuniqueness in parameter estimates extra information was 
introduced into the calibration process. It was mentioned above that the same land use categories are featured in all 
of the watershed models that are the focus of the present investigation. It is thus to be hoped that parameters 
assigned to the PERLNDs representing these land use types are consistent across the different watersheds. If they are 
not, then this constitutes evidence that there are limitations in the ability of the model to simulate watershed 
processes either because of poor model construction or because of limitations in the ability of a lumped parameter 
model such as HSPF to simulate complex natural systems, or both. The issue of whether anything can be done in 
practice about either of these conditions is a matter for conjecture. 

In expanding Popper’s (1959) exposition of the scientific method to the application of numerical simulation 
models in environmental management, Beck (1987) noted that environmental models can only be used to test 
hypotheses, and that any given hypothesis can only be rejected, not accepted, on the basis of model usage. In 
following that principle, the hypothesis that all four watershed models can be assigned identical hydrologic 
parameter values for each land use type was tested. Rejection of this hypotheses can take place if a good fit between 
model outcomes and corresponding field measurement in all watersheds cannot be achieved using a reasonable set of 
hydrologic parameter values that are identical for all models. 

Note the sharp distinction between this method of comparing parameters used by different models in 
neighboring watersheds and that employed by Yokoo et al. (2001). The latter authors attempted to establish 
regression relationships between model parameters on the one hand and observable watershed characteristics on the 
other. However, these relationships were sought only after calibration of the individual models had taken place in a 
manner that was quite independent of the regression relationships being sought. Given the nonuniqueness of 
watershed model parameterization that is illustrated above, such a methodology is flawed, for too much is left to 
chance in estimating parameters as an outcome of the calibration process. In the present instance, the posited inter-
model parameter relationships (i.e., parameter equality in this case) are built into the calibration process. If an 
acceptable calibration does not occur with these relationships directly incorporated into the calibration process, then 
the hypothesis of parameter equality must be rejected. In contrast, given the extent of parameter nonuniqueness 
illustrated above, the failure of a separate and independent calibration of each watershed to yield identical parameter 
values does not provide sufficient basis for rejection of the hypothesis that parameter values for all watersheds are 
the same. 

A composite model was constructed through inclusion of all watershed models in a single batch file. PEST 
was used to calibrate this composite model as if it were a single model. TSPROC acted as postprocessor for all four 
models, enabling daily flow rates, monthly volumes and exceedence times for all four watersheds to be used in the 
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calibration process. Nine parameters were then estimated, viz. those listed in Table 18 under the constraint that all 
watershed models employ the same parameter values. 

Parameter values estimated as an outcome of this process are those labeled as “set 6” in Table 19. The fit 
between model outcomes and field measurements was, however, a little disappointing in all four watersheds. Figure 
27 shows modeled and observed flows for the Hookerton model over 1983 (this being part of the 1970-1985 
calibration period). The fit is not as good as that depicted in Figure 24b, particularly at low flows. The failure at low 
flows is unfortunate because, as was discussed above, the calibration process was to a degree focussed on low flows. 
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Figure 27. Measured (bold line) and modeled (light line) flows (in ft3/sec) over part of the calibration period.
Parameters were estimated through simultaneous calibration of all four watershed models. 

As a result of our attempt to calibrate multiple models simultaneously with identical parameter values, can 
we reject the hypothesis that all of these parameters are the same? Our attempt to answer this question raises yet 
another question. The fit between model outcomes and field measurements illustrated in Figure 27 is not entirely 
inadequate over the complete time series. However, our ability to make accurate predictions at low flows would 
probably be seriously degraded if we were to insist on using identical parameters for all watershed models. 
Nevertheless, the extent of misfit illustrated in Figure 27 (and also apparent from an inspection of the outputs of the 
other watershed models) may not be bad enough to reject the parameter set if used for other purposes, for example to 
parameterize an ungauged watershed in the same area for a preliminary analysis of its rainfall-runoff characteristics. 
For this latter application, the more watersheds that are involved in the simultaneous calibration exercise, the more 
robust the parameter estimates are likely to be. The idea of prediction-specific parameters that follows from this 
argument, together with the inherent nonuniqueness of parameters estimated through the calibration process, brings 
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into question the idea that the model construction, calibration and deployment process should ever yield a unique set 
of parameter values. Rather, model calibration should be viewed as a form of data interpretation. The manner in 
which data is most appropriately interpreted depends very much on the context in which that interpretation takes 
place as set by the environmental management issue that the model is being used to address. 

Simultaneous Calibration of Multiple Watershed Models Using Regularization 

In the previous section it was established that the ability of the Hookerton model to simulate low flows was 
seriously compromised by insisting that its parameters adopt values that allow the calibration of other watershed 
models as well. Nevertheless, the hydrologic response of neighboring watersheds should not be ignored, for there is 
information content in the assertion that variation of parameter values between the watersheds that are the subject of 
the present investigation should be minimal. As was discussed above, the extent of parameter nonuniqueness (and 
hence the element of luck associated with parameter estimates) is such that cross-watershed parameter similarity will 
be an unlikely outcome of the calibration of individual watershed models unless that concept is included directly in 
the calibration process. 

By using PEST in regularization mode in the simultaneous calibration of all four watershed models a 
parameter similarity condition can, in fact, be introduced to the parameter estimation process without compromising 
the level of model-to-measurement fit achieved through that process. Recall from the discussion in a previous 
section that PEST’s regularization functionality is such that the user sets the objective function below which the 
model is deemed to be calibrated. In attempting to attain that objective function, PEST varies parameter values in 
such a way as to minimize the departure of these values from their preferred condition; however, attainment of the 
desired level of model-to-measurement fit is still PEST’s primary goal. 
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Figure 28. Measured (bold line) and modeled (light line) flows (in ft3/sec) over part of the calibration period. Model
parameters were estimated through simultaneous calibration of all watersheds using regularization. 

In applying regularization to the simultaneous calibration of all four watershed models a preferred condition 
of cross-watershed parameter equality was imposed (in contrast to the previous use of regularization where the 
preferred condition pertained directly to parameter values themselves). Because the limiting measurement objective 
function used in the parameter estimation process was set suitably low, a good fit between model outputs and field 
measurements was obtained for all watersheds. For the Hookerton model, the fits resemble those illustrated in 
Figures 24a-c; see Figure 28. Estimated parameter values for all watersheds are listed in Table 20. PEST’s 
regularization functionality is such that any parameter differences between watersheds that are apparent in Table 20 
are there because they have to be there in order to obtain the high level of fit illustrated in Figure 28. (For 
comparison purposes, parameters estimated through independent watershed calibration are shown italicized in 
brackets in Table 20. Inter-watershed variation is obviously much greater for these parameters.) 

The regularization process, when used in this way, while reducing parameter nonuniqueness considerably, 
does not necessarily eliminate it. This is because there may be other sets of parameters that result in just as good a fit 
between model outcomes and field measurements, and which also result in inter-watershed variation that is no 
greater than that depicted in Table 20. Nevertheless, the regularization process has been used to inject a vital piece of 
knowledge into the parameter estimation process that would have otherwise been neglected (that is, the notion that 
inter-watershed parameter variability should be minimal). Furthermore, it allowed the inclusion of this information 
to take place in a way that did not detract from the primary purpose of the model, viz. to provide as accurate a 
simulation as possible of flows (particularly low flows), volumes and exceedence times in each watershed. 
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Table 20. Parameters estimated by PEST through simultaneous watershed calibration using its regularization 
functionality. Parameters estimated through independent model calibration are shown italicized in brackets. 

Parameter Contentnea at Moccasin at 
Name Hookerton Lucama Nahunta Swamp Little Contentnea 
LZSN 2.29 (2.00) 2.01 (2.00) 2.58 (3.244) 2.00 (2.00) 
UZSN 2.00 (2.00) 2.00 (2.00) 2.00 (2.00) 1.55 (1.93) 
INFILT 0.0533 (0.0526) 0.0317 (0.0194) 0.0706 (0.117) 0.0276 (0.00518) 
BASETP 0.163 (0.20) 0.182 (0.118) 0.157 (0.20) 0.166 (0.114) 
AGWETP 0.0201 (0.00108) 0.0269 (0.0493) 0.0222 (0.00358) 0.0268 (0.00814) 
LZETP 0.50 (0.50) 0.50 (0.50) 0.50 (0.50) 0.50 (0.50) 
INTFW 1.21 (10.0) 1.00 (1.00) 1.17 (1.406) 1.31 (3.253) 
IRC 0.533 (0.670) 0.506 (0.794) 0.512 (0.220) 0.499 (0.799) 
AGWRC 0.988 (0.984) 0.967 (0.980) 0.976 (0.967) 0.942 (0.956) 
DEEPFR 0.1 (fixed) 0.1 (fixed) 0.1 (fixed) 0.1 (fixed) 

Predictive Analysis 

Attention has been drawn to the fact that where a model attempts to make predictions under conditions that 
are different from those prevailing under calibration conditions, the margin of uncertainty surrounding such 
predictions is likely to be larger than that surrounding predictions made under similar conditions to those prevailing 
at calibration. The same applies to the prediction of system fine detail (e.g., temporal or spatial detail, depending on 
the type of model). Even under calibration conditions, a model is unlikely to replicate every nuance of an 
environmental system’s response over the whole of the calibration period, for the cost of fitting certain observations 
at certain times very well is often a loss of ability to fit other observations at other times quite as well. 

This phenomenon is exemplified in the Hookerton model’s failure to accurately predict the low flows that 
occurred over the few days centered on 1st September 1993. Figure 26a shows that all of the calibrated models for 
this watershed underpredict flow over this time, a particularly worrying phenomenon since the calibration process 
attempted to optimize the model’s ability to predict such low flows. Also apparent from Figure 26a is the fact that 
there is some uncertainty surrounding flow predictions made over this time, this following from the range of 
predictions displayed in that figure, all of which were made with well calibrated models. 

Multiple re-calibration using PEST’s regularization functionality in conjunction with different default 
parameter values is one way of exploring model predictive uncertainty. A model can be calibrated many times, with 
a different parameter set estimated each time; predictions can then be made using all estimated parameter sets. 
However, a far more efficient way to explore predictive uncertainty is to first identify a specific prediction whose 
uncertainty requires exploration, and then to find a parameter set that maximizes/minimizes that prediction while 
maintaining the model in a calibrated state (as defined by an upper objective function limit below which the model is 
deemed to be calibrated). This can be accomplished using PEST’s predictive analysis functionality. Like nonlinear 
parameter estimation, predictive analysis, as implemented by PEST, is an iterative procedure involving many model 
runs; however, notwithstanding the fact that it is a numerically intensive process, it is by far the most efficient means 
available for exploration of the uncertainty surrounding a specific prediction made by a calibrated model. The 
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algorithm underpinning PEST’s predictive analysis functionality requires no linearity assumption on the part of the 
model; it is based on the theory presented by Vecchia and Cooley (1987); see either that reference, or Doherty 
(2001a), for further details. 

Total flow volume over the period 29th August to 3rd September 1993 was identified as the specific model 
prediction which PEST was used to maximize, and then minimize, while maintaining the model in a calibrated state 
relative to measured flows, volumes and exceedence times spanning the period 1970 to 1985; the limiting calibration 
objective function was the same as that used above in exploring the role of regularization in estimating parameter 
sets that deviate minimally from a set of user-supplied preferred values. Figure 29a shows predictions made by the 
two calibrated models (i.e., that for which the key prediction is maximized and that for which it is minimized) over 
1993, while Figure 29b shows model-to-measurement fits for these two models over part of the calibration period. In 
each of these figures the dashed light-colored curve represents the output of the minimization model, whereas the 
full light-colored curve represents the output of the maximization model. Because the predictive period is actually 
within the validation period, measured flows are also shown in Figure 29a (bold line) for comparison with model 
predictions. 

The range of uncertainty accompanying the prediction of flows on and near 1st September 1993 is apparent 
from an inspection of Figure 29a. As Figure 29b demonstrates, both the model used for prediction maximization and 
that used for prediction minimization fit measured flows well under calibration conditions. However, as is expected, 
the model that was calibrated for prediction minimization tends to produce lower flows through the time window of 
the calibration period illustrated in Figure 29b than that calibrated for prediction maximization. Calibrated 
parameters for the minimization and maximization models are sets 7 and 8, respectively, in Table 21. 

Table 21. Estimated parameter values. All parameter sets were estimated using PEST’s predictive analysis 
functionality. 

Parameter 
Name Set 7 Set 8 Set 9 Set 10 
LZSN 2 2 2 2 
UZSN 1.9 2 1.58 1.91 
INFILT 0.0675 0.03 0.0871 0.029 
BASETP 0.2 0.2 0.2 0.2 
AGWETP 0.0169 0.001 0.022 0.001 
LZETP 0.5 0.5 0.5 0.5 
INTFW 4.73 10 5.44 10 
IRC 0.587 0.671 0.65 0.833 
AGWRC 0.98 0.99 0.979 0.995 
DEEPFR 0.1 (fixed) 0.1 (fixed) 0.166 0.262 

Model Complexity 

It is unfortunate that even with the predicted flow maximized over the 6 day period of interest, the model­
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generated flow is less than the flow that was actually observed over this period. The range of predictive uncertainty 
would have been wide enough to include measured flows if the limiting objective function (i.e., the objective 
function below which the model is deemed to be calibrated) was set higher than it actually was during the predictive 
analysis process described above, thus giving PEST more room to move in seeking parameter values that maximize 
the predicted flows while still calibrating the model. However, the model’s failure to include measured flows in its 
predictive uncertainty range can also be construed as a lack of ability on the part of the model to replicate all of the 
temporal fine detail of the system’s behavior, a topic that was briefly discussed above. (Whether it is actually 
necessary for a model to replicate such fine detail depends on the uses to which the model will be put.) 

In general, if a model is to simulate system fine detail, it must be endowed with an appropriate level of 
complexity. The introduction of complexity to a model is generally accompanied by the introduction of extra 
parameters. It has already been demonstrated that, even though the Hookerton model can be quite adequately 
calibrated with the number of adjustable parameters already at its disposal, those parameters cannot be uniquely 
estimated. Hence, even if it increases the model’s ability to replicate system fine detail, the introduction of more 
parameters is likely to increase the extent of parameter nonuniqueness. 

In order to introduce more complexity into the model, the DEEPFR parameter, which for all runs 
documented up until now had been fixed at a low value in accordance with current understanding of the system, was 
allowed to vary. PEST was then used to adjust this parameter, along with the parameters that it had already been 
adjusting, in order to minimize and maximize flow at Hookerton over the period 29th August to 3rd September 1993 
while, once again, maintaining the model in a calibrated state over the period 1970 to 1985. Figure 30a shows flows 
over 1993 predicted by the maximization and minimization models, while Figure 30b shows flows during 1983 (part 
of the calibration period) produced by the two models. Estimated parameters for minimization and maximization of 
flow are listed as set 9 and set 10, respectively, in Table 21. 

As an inspection of Figure 30a reveals, measured flow volume over the 6 day period spanning 29th August 
to 3rd September 1993 is now just within the margin of predictive uncertainty of the model, the latter now being 
wider (both upwards and downwards) as a result of the introduction of the extra complexity. This illustrates an 
extremely important (and seldom recognized) aspect of model usage in environmental simulation. In general, while 
it is true that system fine detail can often be replicated only if the necessary complexity is introduced into a model, 
the heightened extent of parameter correlation and insensitivity that results from the addition of that complexity 
often results in high levels of uncertainty surrounding the predictions of that system fine detail made by the model. 
Hence, just because a model can simulate complex processes, this does not mean that it will simulate them with any 
precision. If the appropriate level of complexity is included in the model, all that can be guaranteed is that true 
system behavior will lie somewhere within the uncertainty limits of predictions made by that model. The introduction 
of complexity into a model endows the modeler (by using the model in conjunction with a predictive analyser such 
as PEST) to calculate these uncertainty limits and thereby to know the limits (and only the limits) of future real 
world behavior. The need for predictive uncertainty analysis in conjunction with model deployment (especially if a 
model is deployed to investigate system fine detail) is thus paramount. 
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Figure 29a. Model-generated (light lines) and measured (bold line) flows in ft3/sec over 1993. Model parameters 
were estimated using PEST’s predictive analysis functionality. 
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Figure 29b. Model-generated (light lines) and measured (bold line) flows in ft3/sec over part of the calibration
period. Model parameters were estimated using PEST’s predictive analysis functionality. 
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Figure 30a. Model-generated (light lines) and measured (bold line) flows in ft3/sec over 1993. Model parameters 
were estimated using PEST’s predictive analysis functionality with DEEPFR adjustable. 
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Figure 30b. Model-generated (light lines) and measured (bold line) flows in ft3/sec over part of the calibration
period. Model parameters were estimated using PEST’s predictive analysis functionality with DEEPFR adjustable. 
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It is interesting that PEST actually increased, rather than decreased, DEEPFR in order to raise the low flows 
within the predictive window. Part of the reason for this is that, under calibration conditions, the model-predicted 
total flow volume was slightly above the observed total flow volume with DEEPFR fixed at 0.1. Hence, the model 
needed to lose water. To the extent that the original DEEPFR setting of 0.1 prevented it from easily losing water, 
other parameters had to be adjusted to compensate for this so that water could be lost in other ways. Obviously they 
did a good job, because the fit between model outputs and field data under calibration conditions was very good. 
However, the cost of this load shifting to other parameters may have been the estimation of inappropriate values for 
these other parameters. Furthermore, while it may have helped in some ways, it cannot be said that the inclusion of 
DEEPFR as an adjustable parameter is not more of a parameter fiddling device than a reflection of reality. As has 
been mentioned above, losses to deep groundwater are expected to be minimal in this watershed. Other possible 
reasons for the volumetric discrepancy between modeled and observed flows may include inaccuracies in spatial 
rainfall interpolation, inaccurate calculation of potential evaporation, variation of impervious area as development 
occurred during the calibration period, and other reasons as well. Loss of water to unknown deep aquifers (as 
represented by DEEPFR) may thus be a surrogate for some or all of these processes. 

The Effect of Urbanization 

One of the reasons for construction of the Contentnea basin watershed models is to assess the effects of 
urbanization on the aquatic ecosystem. While there are many changes that occur as a result of urbanization, we focus 
on just one, viz. the hydrologic effect of urbanization on low flows. With increased impervious land in a watershed, 
a stream is expected to become more flashy, having higher peak flows during significant rain events and lower fair­
weather flows due to the smaller amount of infiltration and reduced subsurface recharge. 

If flow becomes low enough the adverse effects on the health of fish can be considerable. When flows 
become so low that no aeration occurs, dissolved oxygen can drop close to the level at which it is harmful to fish 
(generally accepted to be 4 to 5 ppm). In summer, in-stream temperatures rise as a result of sun exposure and higher 
atmospheric temperatures. This can also stress fish and lead to algal growth that, in turn, can further deplete 
dissolved oxygen. Furthermore, the possibilities offered to fish for refuge from stress are rapidly diminished as flow 
is lowered. 

A flow of 30 ft3/sec was selected as the threshold of concern. The model was then used to explore the effect 
of urbanization on increasing the number of days for which flow is likely to be below this threshold. Because the 
model cannot be expected to predict flows exactly (especially low flows, as has been demonstrated above), a direct 
model prediction of the number of days for which flow is below this threshold under conditions of increased 
urbanization would be almost meaningless. Hence the following strategy was adopted in order to make low-flow 
predictions following urbanization with as much accuracy as possible: 

1) The model was run over the period 1970 to 1995 based on current land use. It was also calibrated over 
this period. To increase the model’s predictive ability at low flows, an extra observation was added to the 
calibration data set; the model was used to match, as accurately as possible, the observed time for which 
flows were below 30ft3/sec over the calibration period. 
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2) The model was then run over the same period using the same historical inputs but with impervious area 
increased from 1.7% to 5% of the Hookerton model watershed. A time series representing the difference 
between model-generated non-urbanized and urbanized daily flows was then generated. This difference 
provides a measure of the effect of urbanization on streamflow. 

3) The flow difference time series calculated above was added to the observed flow time series over the 
calibration period to generate a kind of high fidelity model-predicted streamflow showing the effects of 
urbanization. The fact that model-generated flow differences were used in the predictive process, rather 
than model-generated flows themselves, does much to mitigate the effects of the model’s inability to 
replicate system response in fine temporal detail. 

4) The amount of time for which the high-fidelity streamflow (calculated as above) was below 30ft3/sec was 
computed. This estimate was then maximized/minimized while maintaining the model in a calibrated state 
(according to point 1 above) using PEST’s predictive analyser. 

All of the calculations required to generate the high fidelity streamflow (and to accumulate the time for 
which this flow was below the critical threshold) were carried out following each model run using the time series 
processor TSPROC discussed above. Furthermore, each model run as undertaken by PEST in the course of carrying 
out this complex predictive analysis process required that two HSPF runs, together with TSPROC-based processing, 
be carried out. The model as run by PEST was thus comprised of a batch file containing the commands to run HSPF 
twice in succession followed by TSPROC. TSPROC was also used to generate PEST input files for this complex 
problem. 

On the basis of historical flows it is easily calculated that, over the period between 1970 and 1995, a total of 
17.3 days was spent with flow below 30ft3/sec. Model-predicted days below this threshold for a more urbanized 
watershed range from 9 days to 14 days (these being the limits calculated using PEST’s predictive analyser). The 
fact that the number of low-flow days will actually decrease, rather than increase, as a result of urbanization reflects 
the fact that sporadic rain falling on impervious areas during summer months is able to rapidly top up river flow on 
most occasions before the latter reaches the 30 ft3/sec threshold. Because the model was used to calculate flow 
alterations rather than flows themselves, and because this result was subject to rigorous uncertainty analysis using 
PEST’s predictive analyser, a high degree of confidence surrounds this prediction. It should be noted, however, that 
this method of analysis presumes that future climate will not depart from past climate. This will quite possibly not be 
the case. Unfortunately, however, under an assumption of altered climatic inputs, the analysis of differential flows 
discussed above that led to the calculation of results of reasonably high integrity is not possible. The development of 
other methods of differential flow analysis suitable for deployment in a calibration/predictive analysis setting for 
scenarios that involve climatic change awaits further research. 

Conclusions 

Though focused on a particular environmental management problem, the purpose of this work has been to 
demonstrate new methodologies for environmental data processing based on the use of numerical simulation models 
in conjunction with sophisticated parameter estimation and predictive analysis software. 
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It has been demonstrated that even after imposition of a set of simplifying assumptions that are necessary 
for the construction of a numerical simulator of real-world behavior, it may not be possible to estimate model 
parameters uniquely through the calibration process, even when these parameters are constrained to take on 
reasonable values. Furthermore, the greater the level of system detail that a model attempts to replicate, the greater 
will normally be the number of parameters that require estimation, and the less likely it becomes that such 
parameters can be uniquely estimated. 

Parameter nonuniqueness may result in predictive nonuniqueness when a model is deployed to predict the 
environmental effects of altered land management. The extent of this predictive nonuniqueness may not be so large 
as to negate the effort required for model development. In general, the more broad-scale the type of prediction made 
by a model, the more likely is that prediction to be made with a high degree of certainty. However, where a model is 
required to predict the temporal fine detail of system response, and/or where model inputs are significantly different 
under predictive conditions from what they were under calibration conditions, the margin of uncertainty surrounding 
at least some of those predictions may be quite large. If these predictions are important then integrity demands that 
the magnitude of this uncertainty be analysed using, for example, the type of software discussed herein. 

Whenever possible, a modeler’s knowledge and intuition should play an important role in the parameter 
estimation process. In many instances this can be accomplished by supplying a default system state from which 
model parameters should depart only to the extent necessary to calibrate the model. This can be accomplished by 
using the regularization techniques discussed herein. Where knowledge of an area is insufficient to define a unique 
default system state, a number of such states can be generated (e.g., using a random number generator) while 
adhering to the bounds imposed by reality. Repeated model re-calibration can then be undertaken in such a way as to 
deviate to the smallest extent possible from each one of them. Predictions should then be made using each such 
parameter set. In this way a kind of calibration-constrained Monte-Carlo analysis can be undertaken. 

Finally, this work demonstrates that an environmental model cannot be used to furnish the elusive “answer 
at the back of the book” regarding the effects of a particular environmental management scenario on future system 
behavior. Modeling is simply a form of data processing. When used creatively in a way that is tuned to the 
environmental issue at hand, in conjunction with sophisticated parameter estimation and predictive analysis software 
such as that described herein, a model can be used to undertake powerful and comprehensive data interpretation in a 
way that is most relevant to that issue. Together, the model and the parameter estimator allow the modeler to pose 
hypotheses, and then to test them. If a model can be parameterized in such a way that it is able to match field 
measurements acceptably well using parameters that are acceptably realistic, then the hypothesis that is encapsulated 
in the model structure, inputs and boundary conditions cannot be rejected. This does not mean, however, that other 
hypotheses can also not be rejected. Thus, when all available data are processed to the maximum possible extent 
using state-of-the-art simulation and parameter estimation software, a modeler may still be left with a high degree of 
uncertainty concerning the predicted outcomes of some environmental management scenarios. An integral part of 
modeling practice must be to quantify this uncertainty. 

6.2. Total Suspended Sediment Loadings

The use of advanced nonlinear parameter estimation techniques in the calibration and predictive analysis of 
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watershed models was documented by Doherty and Johnston (2002). Use of these techniques was restricted solely to 
the processing of streamflow data and to the estimation of parameters that govern hydrologic output. Here we 
document the use of nonlinear parameter estimation methods in estimating parameters associated with the erosion 
and sediment transport components of the watershed model HSPF (Hydrologic Simulation Program Fortran 
(Bicknell et al. 2001)). The sporadic and noisy nature of sediment data makes the estimation of these parameters a 
much more difficult procedure than the estimation of hydrologic parameters. This difficulty is exacerbated by the 
insensitivity of model output to some of these parameters over at least part of their allowable range, as well as the 
sometimes extremely nonlinear nature of the relationship between these parameters and model output. Parameter 
correlation is also a problem: it is often possible to vary two or more parameters simultaneously with very little 
effect on model output. When high correlation and parameter insensitivity combine, estimation of individual 
parameters is virtually impossible. 

The result of low parameter sensitivity and high parameter correlation is parameter non-uniqueness, even 
after reality checks have been placed on values using expert knowledge of the physical or chemical processes 
simulated. Uncertainty in the estimated values of model parameters can then lead to uncertainty in the values of 
predictions made by the model. This, in turn, leads to the necessity to analyze the uncertainty associated with model 
predictions. We also address the issue of model predictive uncertainty analysis regarding in-stream sediment 
transport. 

The principal member of the PEST suite is TSPROC, a time-series processor optimized for use in the 
calibration context. PEST is a model-independent parameter estimator with advanced predictive analysis and 
regularization features. Its model-independence rests on the fact that it is able to communicate with a model through 
the latter’s own input and output files, thus allowing easy calibration setup with an arbitrary model. Such a model 
can be encapsulated in a batch or script file if desired. Hence model pre-and post-processing software (such as 
TSPROC) can be used as part of the calibration process. 

PEST implements a particularly robust variant of the Gauss-Marquardt-Levenberg method of parameter 
estimation. While this method requires that a continuous relationship exist between model parameters and model 
output, it can normally find the minimum of the objective function in fewer model runs than any other parameter 
estimation method. This is important when model run times are lengthy, or even moderate. 

TSPROC is able to read time-series data from a variety of sources including ASCII files and USGS 
Watershed Data Management (WDM) files. It can undertake temporal interpolation of one time series to another, 
carry out mathematical manipulations of arbitrary complexity between one or more time series, compute time series 
statistics, and calculate various quantities derived from time series including exceedence times, and volumetric/mass 
accumulation between one or many arbitrary dates and times. It also facilitates the use of both raw and processed 
time series data in the calibration process by automatically generating PEST input files for calibration runs involving 
some or all of these quantities. Use of PEST and TSPROC in calibrating the hydrologic component of the Hookerton 
model (and its three neighboring watershed models) is fully documented in Doherty and Johnston (2002). 

When there is a strong correlation between stream discharge and sediment load, the sediment-rating curve 
can be a powerful tool for the analysis of stream sediment transport. Discharge acts as a surrogate for sediment load 
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over those periods for which TSS measurements are not available, which, in most cases, is the majority of the period 
of record. If a rating curve can be determined with sufficient accuracy, the total sediment transported from a 
watershed over a given period of time can be evaluated by first calculating daily sediment concentrations from daily 
stream discharges using the sediment rating curve and then summing daily sediment concentrations times daily flows 
over the period of interest. If it is further assumed that the amount of bed sediment is the same at the end as at the 
beginning, then total transported sediment is the total amount of sediment eroded or washed from the watershed. 
This quantity is an estimate of long-term erosion and transport. While such a calculation is conceptually possible, 
there is a considerable associated uncertainty. Uncertainty exists in parameters that describe the sediment-rating 
curve, and there are issues with the assumption that streambed sediment storage does not change over the analysis 
period. Although situations of rapid buildup and loss of bed sediment are rare, they do occur and are impossible to 
verify without ancillary data. 

An alternative means of calculating the total amount of sediment exported from a watershed is that afforded 
by the use of a calibrated model. Use of a model has the advantage that it can be applied to all sediment size classes 
(including silt and clay). Estimates of sediment export made using a model will also be subject to a large amount of 
uncertainty. However, it is possible (and also desirable) to quantify this uncertainty in the application of the model. 
The ability to quantify the degree of predictive uncertainty associated with sediment calculations in a mathematical 
model, rather than simply an empirical relationship, is preferred to regression methods for many environmental data 
processing contexts. 

HSPF simulation of suspended sand concentration has a number of important repercussions for the 
calibration of HSPF using TSS data. As long as sand is available in bed storage, no direct relationship can be made 
between the amount of suspended sand in the stream and the erosional characteristics of any contributing PERLND 
or IMPLND. The amount of suspended sand is a function solely of the velocity (and hence current discharge rate) of 
the stream. Any sand that is delivered in excess of stream sand carrying capacity will be deposited to the bed. 
Similarly, if a shortfall in stream sand transport potential exists, the difference will be filled with any available sand 
storage. Under these circumstances, measurements of suspended sand only provide information pertaining to the 
estimation of those parameters that govern the relationship between stream discharge and stream sediment carrying 
capacity. That is, the calibration process can only be used to infer the sediment rating curve (or rather the sand rating 
curve) of the stream. 

In contrast, if there is no sand in the bed of a stream, any suspended sand carried by the stream will be the 
direct result of erosion taking place within the PERLNDs and IMPLNDs . In such a case measurements of 
suspended sand concentration can provide information for estimation of parameters governing watershed erosion. 
However, this condition is most likely to prevail in upland watersheds drained by young streams than in lowlands 
drained by more mature streams. 

Transport of silt and clay is simulated differently than sand transport. No carrying capacity is defined for 
these size classes. A threshold approach is adopted whereby silt and clay are scoured from the streambed if the shear 
stress exceeds the critical shear stress for scouring (HSPF parameter TAUCS). Silt and clay are deposited if the 
shear stress is less than the critical shear stress for deposition (HSPF parameter TAUCD). Shear stress is calculated 
from a number of internal quantities that depend on stream discharge, slope and geometry. 
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Sediment eroded from PERLNDs and IMPLNDs is routed to RCHRES suspended storage. It is then 
deposited at a rate determined by sediment settling velocity if the shear stress is below TAUCD. During periods of 
high flow when a RCHRES receives most of its suspended sediment, sediment can be quickly transported from the 
system. Because of this, and the fact that there is no means available to achieve an equilibrium sediment level at any 
flow rate (as is assumed when using the sediment rating curve concept), HSPF simulation of suspended silt and clay 
normally results in large variations of these quantities over short periods of time. Suspended silt and clay 
concentrations rise quickly with high flow rates, resulting in active scouring and sediment influx, and quickly fall as 
suspended sediment settles or is transported from the system. 

Normally TAUCS is set above TAUCD. In a given parameterization there is a zone where neither 
deposition nor scouring occur. If it happens that streamflow is within this zone, these parameters become insensitive 
in the estimation and calibration process. The chance of this situation occurring is increased when the shear stress 
output time series (RCHRES HYDR TAU) is not evaluated explicitly. A modeler should have knowledge of this 
important quantity relative to the TAUCS and TAUCD values. Typically, TAUCS is set such that only storm events 
go over this value, and similarly, TAUCD is set so that most baseflow occurs below this threshold (T. Jobes, Pers. 
Comm.). The absence of scouring can also be disguised when silt and clay enter the system during periods of high 
surface runoff and transport of detached sediment storage. Under these circumstances TAUCS and its associated 
parameter M (erodability coefficient) are very insensitive. The same can occur with TAUCD and W (settling 
velocity) when transport of suspended sediment out of the system substantially reduces the impact of deposition rate 
on suspended sediment concentration. 

Estimation of RCHRES silt and clay transport parameters is also difficult because of their correlation with 
PERLND/IMPLND erosion parameters. Suspended sediment concentrations can be increased by incrementing the 
storage and/or washoff rate of detached sediment on the watershed in addition to in-stream transport parameters that 
can be altered. In some instances these problems can be overcome by supplying values for these parameters from 
outside of the calibration process. However, if a value thus supplied results in rapid scouring or deposition of 
streambed sand/clay (as can easily happen), then there is no alternative but to adjust its value during the calibration 
process. 

Similar considerations apply to the amount of sand and silt stored in bed sediments as those that were 
discussed above with respect to sand bed storage. There exist parameter sets that scour all silt and clay from the bed 
in a short time span or add an unrealistic mass of silt/clay in association with large rainfall events. One way to 
prevent this is to set TAUCD very low and TAUCS very high so that virtually no interaction between the stream and 
its bed takes place. While this ensures that bed silt/clay storage remains unchanged during calibration, so that 
observations of stream silt/clay loads can be used to infer PERLND/IMPLND sediment supply parameters, it may 
not result in a realistic simulation of system behavior. 

The algorithms used by HSPF to compute suspended sediment concentration for both the sand and silt/clay 
fractions rely on the calculation of in-stream variables such as shear stress and stream velocity. Calculation of these 
quantities depends as well on the cross-sectional geometry of the reach as supplied in the RCHRES FTABLE (which 
provides the relationship between discharge, surface area, depth and volume). Only one FTABLE is specified for 
each stream reach, hence quantities derived from this and other parameters that are used in the calculation of 
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sediment transport are necessarily lumped. Since the representation of a stream or river reach in HSPF is highly 
simplified, the shear stress calculated within the RCHRES exists no place in particular, even though the geometry is 
known to be variable. Furthermore, it is possible to construct an FTABLE that appears suitable but results in 
counter-intuitive quantities for stream depth and shear stress. This problem is exacerbated by the piecewise linear 
nature of the FTABLE, resulting in artifacts such as the constant velocity calculated for the entire first segment in 
the FTABLE. This in turn affects the calculation of suspended sediment concentrations for sand and silt/clay. 
Parameter values supplied from outside the parameter estimation process based on the physics of sediment scour, 
transport and deposition may not always result in a good fit of observed suspended sediment concentrations to model 
predictions. Such parameter estimates are also prone to a high degree of nonuniqueness, relating as well to predictive 
nonuniqueness. 

The Study Area 

Contentnea Creek basin, a Coastal Plain tributary of the Neuse River, is located in North Carolina (refer 
back to Figure 23). Rainfall in the area averages 127 cm per year (Giese et al. 1997). The mean annual maximum 
temperature is approximately 10 Celsius, while the mean monthly minimum temperature is 30 Celsius. The 
physiography is relatively uniform throughout the basin, with relatively low relief. The soils are well-drained sands 
and sandy loams developed on sediments of marine origin. The primary land covers within the basin are forest, 
agriculture, grassland and urban, with the first two land use types accounting for nearly 70% of the area of the basin. 

As described by Doherty and Johnston (2002), parameter estimation of four separate model simulations was 
completed for neighboring watersheds situated within this basin. These models were developed as part of a study 
dedicated to predicting alterations to water quality within the Contentnea Creek basin as a result of increasing 
urbanization and climatic change (Johnston 2001). The present investigation focuses on the most downstream 
watershed model segment with the best available total suspended solids data on record, Contentnea Creek above 
Hookerton. This basin is labeled Contentnea in Figure 23 but will be referred to as the Hookerton model to be 
consistent with Doherty and Johnston (2002). This is also consistent with the USGS name for the gauging station at 
this location. The area of this watershed is about 100,000 acres. 

Methods 

Simulation of watershed hydrologic and sediment erosion/transport processes was undertaken using HSPF 
v.12 (Bicknell et al. 2001). The watershed was simulated using four HSPF PERLND units, one IMPLND and a 
RCHRES (a PERLND is a pervious land segment, an IMPLND is an impervious land segment and a RCHRES is a 
free-flowing reach or mixed reservoir). The four PERLNDs were used to represent the four major land use types 
mentioned above. The IMPLND was used for the simulation of urban impervious areas (this comprising less than 
2% of the total area of the watershed). The RCHRES simulates flow of water and constituents in the river system 
draining the watershed, providing dynamics at the pour point of the watershed. 

Model calibration was undertaken using PEST (Doherty 2001a) in conjunction with a suite of utility 
software written to support the use of PEST in the surface water modeling context (Doherty and Johnston 2002). 
Total suspended sediment (TSS) samples were collected at irregular intervals at the Hookerton Gauging Station 
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that have a bearing on the present investigation. 

potential suspended sand 

(36) 

since 1975. In the present study, data gathered after the end of 1995 were ignored so that the time period used for 
calibration of the sediment component of the model would coincide with that used for calibration of the hydrologic 
component of the model (Doherty and Johnston 2002). Unfortunately, partitioning of TSS samples into sediment 
size classes was not feasible; hence only total sediment data were available for use in model calibration. 

Figure 31 shows TSS data plotted on both linear and logarithmic scales. In Figure 32 TSS data are 
compared with flow data. In Figure 32 TSS measurements are superimposed on flow measurements. While there are 
occasions when TSS readings appear to have been made during periods of high flow, many of the TSS 
measurements were taken during periods of comparatively low flow. The dataset as a whole does not provide a 
suitable basis for model hand calibration during those periods when erosion and sediment movement are most active. 
Such is the case with many suspended sediment datasets. 

The lower part of Figure 32 depicts the sediment-rating curve, showing the relationship between TSS and 
stream discharge. The increase of TSS with flow rate is apparent in this figure. However, a high degree of scatter 
would exist around any regression line fitted to these data, such as when using ESTIMATOR. See, for example, 
Cohn et al. (1989) and Cohn and Gilroy (1991). In HSPF sediment eroded from a PERLND is directed to a 
RCHRES. There, the delivery of sediment downstream (or to storage within the bed of a stream) is simulated using 
the SEDTRN group of the RCHRES block. No attempt is made herein to evaluate the erosion and sediment transport 
algorithms employed by this group. Nevertheless, a few comments will be made on those aspects of the algorithms 

The amount of sand in suspension in a flowing stream is calculated by HSPF in a different manner than for 
silt and clay fractions. Three options are provided by HSPF for suspended sand calculation: the Toffaleti equation, 
the Colby method, and the power function method. In all cases HSPF first calculates the 
concentration based on the velocity of the stream. If the existing suspended sand concentration exceeds this 
potential, sand is deposited; if it is less than this potential, sand is scoured from the bed of the stream to the extent 
available. In the present study the power function method was employed, though in a slightly modified form. 

A small alteration was made to the algorithm that describes sand transport in a HSPF RCHRES. In the 
power function option, potential sand carrying capacity (PSAND) of the stream is calculated using the equation: 

where

by the following equation: 

(37) 

are parameters to be determined during the calibration process. For this study, this equation was replaced 
 is the average streambed velocity over the RCHRES during a particular time step and  and 

where
problem over the first FTABLE segment mentioned previously. It also resembles the sediment-rating curve 

(37) is the average stream discharge over the time step. Use of Eq.  eliminates the constant velocity 
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Figure 31. TSS data gathered over the period 1975 to 1995 at Hookerton Gauging Station. 
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Figure 32. The top part of this figure shows TSS measurements superimposed on stream flow measurements. TSS is 
plotted against flow in the lower part of the figure. 
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 description of stream sand content. It is possible that higher order terms are preferred in the relationship between 
PSAND and ROM as employed by Cohn et al. (1989). Use of the above Eq.(37) also required minimal alteration to 
HSPF, as no new parameters were required. Inspection of Figure 32 suggests that it is unlikely that the scatter 
around the rating curve of best fit would be substantially reduced by the introduction of higher order terms. 

As was discussed above, the Hookerton Model is comprised of four PERLND units and an IMPLND all 
linked to a single RCHRES. In order to reduce the number of parameters requiring estimation, all four PERLNDs 
were initially assigned the same hydrologic parameters (the PWATER group of the HSPF PERLND module), except 
for the FOREST parameter that governs the amount of evapotranspiration taking place during winter. Parameters 
related to the dimensions of each PERLND (e.g., land use areas, lengths of overland flow paths, average slopes) 
were assigned in accordance with watershed known geometry and topography. PWATER parameters estimated for 
the PERLNDs through the calibration process are listed in Table 22. Values for IMPLND parameters were assumed 
rather than estimated, since this did not affect the calibration process due to the very small size of the IMPLND 
relative to the PERLNDs. See Doherty and Johnston (2002) and Section 6.1 for full details of the calibration process. 

Table 22. HSPF PWATER parameters estimated during the calibration process. Other parameters were assigned 
values independently of the calibration process. See Doherty and Johnston (2002) for details. 

Parameter Parameter function One set of estimated values 
name from Doherty and Johnston

(2002) 
LZSN Lower zone nominal storage 2.0 in 
UZSN Upper zone nominal storage 2.0 in 
INFILT Related to the infiltration capacity of the soil 0.0526 in/hr 

BASETP 
The fraction of potential ET that can be sought
from baseflow. 0.20 

AGWETP 
Fraction of remaining potential ET which can be 
satisfied from active groundwater storage 0.00108 

LZETP 
Lower zone ET parameter - an index to the 
density of deep-rooted vegetation. 0.50 

INTFW Interflow inflow parameter 10.0 
IRC Interflow recession parameter 0.677 day-1 

AGWRC Groundwater recession parameter 0.983 day-1 

A similar strategy was adopted for the estimation of PERLND sediment parameters (group SEDMNT). The 
relevant SEDMNT parameters are listed in Table 23 along with a brief description. During the calibration process 
KRER, JRER, JSER and JGER were assigned identically for all PERLNDs except for the forest PERLND where 
KRER was assumed zero. KSER and KGER were similar for agricultural and urban PERLNDs, with grasslands a 
fifth of that value (for KSER) and a fourth of the value in forests (for KGER). Agricultural/urban parameter values 
are reported with the calibration results in Table 25. Sediment parameters for the IMPLND were not estimated in the 
calibration process. 
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Table 23. PERLND SEDMNT parameters estimated during the calibration process. 

Parameter Parameter function 
name 
KRER Coefficient in the sediment detachment equation 
JRER Exponent in the sediment detachment equation 
KSER Coefficient in the sediment removal equation 
JSER Exponent in the sediment removal equation 
KGER Coefficient in the sediment scour equation 
JGER Exponent in the sediment scour equation 

Table 24 lists the RCHRES transport parameters estimated through the calibration process (group 
SEDTRN). KSAND and EXPSAND pertain to the transport of suspended sand. In order to reduce the number of 
parameters requiring estimation, M for clay was assumed equal to M for silt while TAUCD for clay was assumed to 
be 0.8 times that of silt. TAUCS for clay was estimated separately from that of silt. To ensure that TAUCS is always 
greater than TAUCD, the ratio of these two parameters (named TAUCRAT) was estimated, instead of TAUCS 
directly. For each sediment type a lower bound of 1 was placed on this ratio. 

Table 24. RCHRES SEDTRN parameters estimated during the calibration process. 

Parameter Name Parameter function 
KSAND Coefficient in Eq.(37) for sand carrying capacity 
EXPSND Exponent in Eq.(37) for sand carrying capacity 
TAUCD (silt) Initial shear stress for deposition of silt 

TAUCRAT (silt) Ratio of TAUCS to TAUCD for silt 

M (silt) Erodibility coefficient of silt 

TAUCD (clay) Initial shear stress for deposition of clay 

TAUCRAT (clay) Ratio of TAUCS to TAUCD for clay 

M (clay) Erodibility coefficient of clay 

In carrying out the parameter estimation process, PEST minimizes an objective function comprised of the 
sum of squared weighted deviations (i.e., residuals) between model output and corresponding field measurements; 
see Doherty (2001a) for more details. When estimating the parameters listed in Tables 23 and 24, the parameter 
estimation problem was set up in such a way that three types of observations contributed to the objective function. 
These are now discussed in detail. 
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TSS Measurements 

The 103 TSS measurements illustrated in Figures 31 and 32 comprised one subgroup of the observation 
dataset used in the parameter estimation process. The weight assigned to each was calculated as the inverse of the 
measurement itself, thereby preventing the handful of very large TSS measurements from dominating the inversion 
process. Suspended sediment concentrations calculated by HSPF were time-interpolated to measurement dates and 
times TSPROC to allow a direct comparison to be made between field TSS measurements and their model-generated 
counterparts. 

TSS Statistics 

Whether calibrated by hand or with the help of nonlinear parameter estimation software, it is unrealistic to 
expect that a set of parameters can be derived that produce a good fit between each individual TSS measurement and 
its model-generated counterpart. Often the best that can be hoped for is the estimation of a set of parameters that 
reproduce the statistical properties of the measured dataset. Toward this end, two statistical observations were 
included in the observation dataset used by the parameter estimation process: the mean and standard deviation of the 
TSS observations. The model outputs corresponding to these measurement statistics were calculated on the basis of 
model-generated sediment concentrations time-interpolated to the dates and times of sediment observations. That is, 
each was calculated on the basis of the 103 model-generated counterparts to field TSS measurements. This allows a 
direct comparison to be made between two aspects of the character of the respective TSS datasets, with the modeled 
dataset undergoing a selection process identical to that to which field TSS dataset was subjected. 

In formulating the objective function to be minimized, the mean and standard deviation observations were 
assigned equal weights. These weights were chosen such that, at the beginning of the parameter estimation process 
(where the model uses initial parameter values selected by the user) the contribution made to the overall objective 
function by the residuals pertaining to these two observations together was equal to the contribution made to the 
objective function by all of the TSS residuals. This strategy ensured that neither the statistical observations nor the 
native TSS observations dominated the parameter estimation process. Thus PEST was able to take both of these 
observation types into account, reducing the residuals associated with each of them if possible when upgrading 
parameter values. 

RCHRES Bed Composition 

Three extra observations were included in the calibration dataset, all of which were provided with a 
measured value of zero. The first was the difference between the amount of sand in the bed of the RCHRES at the 
beginning of the calibration period and that at the end of the calibration period. The second and third observations 
pertained to similar differences taken for silt and clay. Inclusion of these as components of the calibration dataset 
prevented the occurrence of large amounts of scouring or deposition by the model over the calibration period, this 
being in accord with direct observations of the condition of the watershed. Each of these observations was provided 
with the same weight. The weight was such that the contribution made to the overall objective function by the 
residuals associated with these three bed sediment difference observations was roughly the same as that contributed 
by native TSS data on the one hand, and the statistics pertaining to TSS data on the other hand, at the 
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commencement of the parameter estimation process. 

Simultaneous Calibration against Head and Flow 

An attempt was made to estimate both flow and transport parameters as part of the same calibration process 
by including discharges (and postprocessed discharges as discussed by Doherty and Johnston), as well as TSS 
measurements (and postprocessed TSS measurements as discussed above) in the calibration dataset, and estimating 
all of the parameters listed in Tables 22, 23, and 24 simultaneously. As is documented in Doherty and Johnson and 
Section 6.1, calibration of the hydrologic parameters listed in Table 22 against a single discharge time series leads to 
nonunique estimates of these parameters. Joint estimation of flow and sediment parameters on the basis of both flow 
and discharge data was undertaken to test whether inclusion of sediment data in the calibration process would reduce 
the range of uncertainty of at least some of the hydrologic parameters. 

It was found that PEST’s performance was somewhat disappointing during runs of this type due to the 
deleterious effects of low sensitivity and high correlation of some parameters. The adverse effects of parameter 
insensitivity and correlation are always worse when there are a large number of parameters to estimate than when 
there are only a few. In the present case these problems were overcome through judicious use of PEST’s user-
intervention functionality, by which troublesome parameters were temporarily held at their current values at critical 
stages of the parameter estimation process, leaving PEST free to adjust the other parameters. However, this can be a 
labor-intensive process. Hence, it was decided to estimate sediment parameters using a model for which the 
hydrologic parameters had already been estimated using the methodology discussed in Doherty and Johnston (2002). 
The hydrologic parameter values used in the present study are listed in the third column of Table 22. 

Sediment Parameter Values 

Sediment parameters estimated by PEST using the methodology outlined above are listed in the first 
column of Table 25. Convergence to this set of parameter values took place within 5 optimization iterations; no 
numerical difficulties were encountered by PEST. 

As is discussed in Doherty (2001a) and Section 6.1, as a by-product of the Gauss-Marquardt-Levenberg 
method of parameter estimation, PEST is able to calculate the uncertainty associated with each estimated parameter. 
While uncertainty calculation by this means is based on a linearity assumption that is grossly violated in most 
modeling contexts, the uncertainty values achieved as a result of this process do serve to indicate the confidence 
levels that can be placed on parameters determined through model calibration. However, in the present instance the 
uncertainty calculation was impossible due to singularity of the parameter covariance matrix resulting from 
parameter nonuniqueness. The fact that the parameters listed in Tables 23 and 24 could not be estimated uniquely on 
the basis of the TSS data depicted in Figures 31 and 32 comes as no surprise. If desired, other sets of calibration-
constrained sediment parameters, different from those in the first column of Table 25, but which calibrate the model 
just as well as these parameters, could have been estimated in the same manner as that in which multiple hydrologic 
parameter sets were calculated by Doherty and Johnston. This was not done in the present study; nevertheless, as is 
documented in the next section, the effects of sediment parameter nonuniqueness on model predictive nonuniqueness 
were explored using PEST. 
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Table 25. Sets of estimated parameter values. Units for many of these parameters are complex due to the exponential 
term in the equations that contain them. 

Parameter name Best-fit parameter set Parameter set for 
minimized prediction 

Parameter set for 
maximized prediction 

KRER 35.0 35.0 35.0 
JRER 1.0 1.0 1.0 
KSER 1.01 0.5 1.93 
JSER 3.005 2.73 3.73 
KGER 0.33 0.27 0.40 
JGER 4.49 5.00 3.74 
KSAND 3.58 3.93 3.32 
EXPSND 0.49 0.43 0.55 
TAUCD (silt) 0.103 kg/m2 0.102 lb/ft2 0.106 lb/ft2 

TAUCRAT 
(silt) 2.29 2.30 2.27 
M (silt) 0.0037 kg/m2/hr 0.0039 lb/ft2/day 0.00416 lb/ft2/day 
TAUCD (clay) 0.083 kg/m2 0.082 lb/ft2 0.085 lb/ft2 

TAUCRAT 
(clay) 3.045 3.038 3.02 
M 
(clay) 0.0037 kg/m2/hr 0.0038 lb/ft2/day 0.00416 lb/ft2/day 

In the course of undertaking the parameter estimation process, PEST calculates the composite model-output 
sensitivity to each adjustable parameter, this being the sensitivity of that parameter to the model-generated 
counterparts to observations taken as a whole. If the composite sensitivity of a parameter is very low or zero, that 
parameter cannot be estimated through the inversion process. In a highly nonlinear parameter estimation problem 
such, as that documented herein, some parameters can be locally insensitive; unfortunately, even local insensitivity 
makes estimation of the pertinent parameters very difficult. 

The composite sensitivities calculated by PEST for the parameters KRER and JRER were both zero. These 
parameters describe the ability of rain to detach sediment from the soil matrix. Detached sediment is then transported 
to a stream by overland flow if the sediment carrying capacity of overland flow is sufficient. This capacity is 
determined by parameters KSER and JSER. If these latter parameters are such that all detached soil cannot be 
transported overland, then the detachment parameters become insensitive since KSER and JSER determine sediment 
export rather than KRER and JRER. This was the case for the current PEST run. However, if another set of initial 
parameter values had been chosen to begin the parameter estimation process, the opposite may have been the case as 
sediment export would then have been limited by the capacity of rainfall to detach sediment, rather than by the 
capacity of overland flow to transport it. The situation becomes even more complicated when it is considered that, 
on the basis of in-stream TSS measurements alone, it is impossible to distinguish detachment from scouring as the 
mechanism for sediment production. Hence, estimation of the scour parameters KGER and JGER at the same time 
as the other sediment parameters mentioned above is virtually impossible. 

It is thus apparent that, even without the problems incurred by the necessity to simultaneously estimate 
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RCHRES SEDTRN parameters, estimates of PERLND SEDMNT parameters will always be accompanied by a large 
margin of uncertainty. 

Comparison of Model Output with Measurements 

In undertaking the parameter estimation process, PEST had little difficulty in reducing the discrepancies 
between TSS statistics (i.e., mean and standard deviation as discussed above) and their model-calculated 
counterparts to almost zero. Similarly, PEST was able to ensure that the amounts of sand, silt and clay stored in the 
stream bed were unchanged over the calibration period. However, not surprisingly, a perfect fit could not be 
obtained between individual TSS measurements and the corresponding model output. 

The top part of Figure 33 shows measured TSS values joined by straight line segments (dark lines). Model-
calculated TSS values interpolated to measurement dates and times are joined by grey lines. This connection of 
measurements using linear segments is not meant to imply linearity of TSS concentrations between measurement 
times; it is simply a graphical means of conveying the character of the dataset, and of allowing a comparison to be 
made with the character of corresponding model output. It is apparent from Figure 33 that, as expected, the point-by-
point matching of the two datasets is far from excellent. However, as was specifically sought through appropriate 
formulation of the objective function, the mean and standard deviation of the two datasets are very close, thus 
ensuring that modeled TSS values, when interpolated to the same dates and times as measured TSS values, have the 
same look when plotted and inspected. 

In the bottom part of Figure 33, measured TSS values are superimposed on the complete model-generated 
TSS time series. Though far from perfect, the fit is easily as good as that which could have been achieved by manual 
calibration. Furthermore, the inclusion of bed storage information in the objective function ensured that this fit was 
not achieved at the cost of unnatural erosion or deposition of the stream bottom. 

Predictive Analysis - General Considerations 

Given the lumped nature of the parameters employed by a model such as HSPF, and given the fact that 
these parameters can be estimated with only a high degree of nonuniqueness through the calibration process, 
determination and documentation of a unique set of parameter values that purport to represent the erosion and 
transport characteristics of a watershed is a questionable activity. A more fruitful way to use a model such as HSPF 
in the investigation of sediment erosion and transport processes is to dispense with the idea of parameter uniqueness 
altogether. Instead, it is better to acknowledge that there is a (possibly large) range of parameter values that can 
result in acceptable fits between model output and field data (especially when the best fit that can be achieved is not 
very good), and that are in accord with outside knowledge of these values based on an understanding of the 
processes that they represent. It follows that there is also a (possibly large) range of parameter values that should be 
used when the model is deployed to make a prediction, and that there is thus a high potential for predictive 
nonuniqueness. Hence, no prediction should be made by a model without some attempt being made to quantify the 
magnitude of uncertainty associated with that prediction. Such predictive uncertainty analysis can be undertaken 
with the help of PEST’s predictive analyzer. 
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Figure 33. The top graph allows a comparison between TSS measurements and model output to be made on a point-
by-point basis. In the bottom graph TSS measurements are superimposed on the model-generated TSS time series. In 
both of these graphs the model output is depicted in grey. 
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As is documented in Doherty (2001a) and Section 6.1, PEST’s predictive analyzer can calculate the 
maximum and minimum value that a model prediction can take, while ensuring that parameters used by the model 
are such as to maintain that model in a calibrated state. Thus, in calculating the range of model predictive 
uncertainty, the calibration and prediction processes are combined. The user supplies a limiting objective function 
above which the model is deemed to be uncalibrated. PEST then adjusts parameter values in order to maximize or 
minimize the user-specified model prediction, while ensuring that estimated parameter values are such that the 
calibration criterion is not violated; the use of PEST’s parameter bounds functionality ensures that parameters 
remain within acceptable ranges during this process. 

The value selected for the limiting objective function depends on the types of observations used in the 
calibration process and the weights assigned to them. On the basis of the calibration strategy discussed in the 
previous section, PEST was able to lower the objective function to a value of 4.2×104. For the purpose of analyzing 
model predictive uncertainty, the limiting objective function threshold was set at 4.8×104; this resulted in a model-to-
measurement fit that is only slightly different from that achieved at the objective function minimum. Given the 
tightness of this limit, the extent of predictive uncertainty may have been underestimated in the process described 
below. 

The prediction 

The prediction in the present example is the total amount of sediment exported from the system over the 
period spanning 1975 to 1995, i.e., over the total calibration period. Used in this way, HSPF acts as a temporal 
interpolator of the sporadic TSS measurements taken over the study period, thus assuming a role not too different 
from that of a sediment rating curve in performing calculations of this type. However, as has already been discussed, 
the advantage of using a model rather than a regression line to undertake such interpolation is that the model 
incorporates, at least to some extent, the mechanics of the operative processes. This, in turn, should enhance a 
modeler’s ability to undertake predictive uncertainty analysis through using a tool such as PEST’s predictive 
analyzer in conjunction with the model, for a model has the capacity to perform calculations for conditions that are 
different from those occurring during the calibration period using equations based on physical principles to perform 
extrapolation to the new conditions. Nevertheless, the model also relies on curve fitting for the assignment of 
parameters through the calibration process; furthermore, some of these parameters occur in equations that employ 
power functions of discharge (or quantities related to discharge). This could result in the calculation of 
inappropriately high uncertainty ranges when the model is used to predict sediment concentrations at flows that are 
much higher than those at which TSS measurements were made. 

The total mass of sediment exported from the watershed over the model calibration period calculated using 
the best-fit parameters listed in the first column of Table 25 was 1.13×106 tonnes. Maximized and minimized 
sediment masses calculated using PEST’s predictive analysis functionality in the manner discussed above, were 
1.5×106 tonnes and 7.9×105 tonnes, respectively. Parameters giving rise to these predictions are listed in columns 2 
and 3 of Table 25. Visually, the fit between model output and field measurements over the calibration period for the 
maximization and minimization parameters is not too different from that depicted in the top part of Figure 33 for the 
best-fit parameters. The major differences between the respective model-calculated TSS time series, however, 
occurred at extreme flow events where no TSS measurements were made. Figure 34 compares TSS measurements 
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Figure 34. Observed and model-generated TSS values over the calibration period. The total exported suspended 
mass over the calibration period is minimized in the top graph and maximized in the bottom graph. 
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with the model-generated TSS time series for minimized (top picture) and maximized (bottom picture) total 
sediment export. 

Conclusions 

The use of nonlinear parameter estimation and predictive analysis methods in conjunction with a watershed 
simulation model to process suspended sediment data has been demonstrated. In common with most studies of this 
type, the data available for processing was sparse and unrepresentative of extreme system conditions. It was also 
noisy in the sense that it spanned a large range of measurement magnitudes, and was not directly amenable to fitting 
with the output of a process-based model. On the other hand, the data was not of such poor quality that its 
information content was zero. Thus, environmental management of the watershed in which the data was gathered 
demands that it be processed, and that the results of this processing be incorporated into any predictions made of 
future watershed behavior under the same or altered land use practices. 

Unlike many investigations based on computer simulation of environmental processes, use of a model in 
the present study was not based on the premise that a unique parameter set could be established that could then be 
used by the model to make all future predictions. Rather, it was freely acknowledged that for a variety of reasons, 
including improper knowledge of watershed sediment processes and the availability of only a noisy and inadequate 
dataset, it would not be possible to ascribe to the model a set of parameters that would allow it to make precise 
predictions of sediment-related quantities. Hence, the calibration process was seen as a means of imposing a 
complex set of constraints on parameter values used by the model; that is, no parameter set could be used by the 
model to make a prediction unless the parameters comprising that set were reasonable (while accepting the fact that 
the lumped nature of these parameters may broaden the bounds of what is considered reasonable), and unless that 
parameter set results in a satisfactory fit between model output and field measurements under historical conditions. 
A total of 13 adjustable parameters pertaining to watershed sediment erosion and transport were estimated. Unique 
estimation of all parameters on the basis of the limited dataset displayed in Figures 31 and 32 is impossible, even 
with the application of expert knowledge. As discussed by Doherty and Johnston (2002), if environmental models 
are to be used correctly, the idea that a single unique parameter set exists and can be estimated should be abandoned. 
The calibration process can do no more than impose a set of complex constraints on parameter values to ensure that 
the parameters derived enable the model to replicate observed system behavior as well as possible. 

Once parameter nonuniqueness is accepted as a fact of life, use of a model to make predictions of system 
behavior, or to process data in order to derive secondary quantities of interest to watershed managers (as was done in 
the present investigation) must include an analysis of the uncertainty associated with model output. A further, 
perhaps more subtle, outcome of the acceptance of parameter nonuniqueness, is recognition of the fact that the 
model prediction process cannot be entirely separated from the model calibration process. This is because, in 
attempting to ascertain the uncertainty associated with key model predictions, the modeler must, with the help of 
tools such as PEST’s predictive analyzer, vary parameters in such a way as to establish the range of uncertainty of 
those predictions while simultaneously ensuring that constraints imposed by the calibration process are respected. 

We conclude by reminding the reader that it was not our purpose to present the results of a detailed study of 
sediment erosion and transport processes operating in the Contentnea Creek system, for it is readily accepted that 
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parameters presented herein are in need of further refinement. Rather, the purpose of this study was to explore, and 
then document, the use of nonlinear and predictive analysis methods in processing TSS data of the type depicted in 
Figures 31 and 32 to exemplify the type of processing methodology that is now readily available to all modelers. It is 
hoped that use of the techniques described herein will free the modeler from the heavy burden (often thrust upon 
him/her by those with a poor understanding of environmental modeling) of having to make a definitive prediction of 
some aspect of watershed behavior. Rather, the use of software such as PEST, in combination with complex, 
process-based models such as HSPF, allows the modeler to process all available data to the maximum possible 
extent and, in the course of doing this, quantify the limits with which it is possible to predict system behavior. This 
represents a new, and much needed, addition to contemporary modeling practice. 

6.3. Expected Fish Health Trends Using AQUATOX

Physical and chemical nonpoint source stressors and the resulting habitat degradation are the primary 
stressors to the eastern stream fishes (e.g., Richter et al. 1997). The impact of these anthropogenic stressors on 
stream ecosystems is generally reflected in the diversity and composition of fish assemblages (e.g., Karr 1981). The 
complexity of the response of ecological populations and communities to anthropogenic stressors makes prediction 
of this response difficult. Process-based models can be useful for ecological assessment of such complex systems. 

This analysis uses a process-based model, AQUATOX (ver. 1.69), to assess the effect of nonpoint source 
pollutants on aquatic biota. AQUATOX is a model for ecological risk assessment that can represent the effects of 
both toxic chemicals and conventional pollutants on the aquatic ecosystem (Park 2000a). The model uses a daily 
timestep to simulate the physical environment (e.g., flow, light, and sediment) and the chemical environment (e.g., 
nutrients, oxygen, carbon, and pH). The dynamics of biotic components such as detritus, algae, benthic invertebrates 
and fish can be simulated. Although the model has been applied to lake settings (Park 2000b), no examples of stream 
applications have been published. 

Here, the model is applied to a southeastern coastal plain stream site, the Contentnea Creek in North 
Carolina. The model is used to assess sensitivity of four fish groups to six habitat factors -temperature, nutrients, 
sediment, oxygen, pH, and detrital loading. This analysis allows us to evaluate the utility of the AQUATOX model 
for assessment of stream ecosystems. 

Methods and Materials 

The model was applied to Contentnea Creek at the site of the U.S. Geological Survey (USGS) gage at 
Hookerton in the coastal plain ecoregion of east-central North Carolina. The length of the site is 200 m, which is the 
standard sampling site length used by the state of North Carolina. Values for latitude (35.4423), channel slope 
(0.00012), mean stream width (31.4 m), inflow pH (6.5), and oxygen concentration (6.8 mg/L) were taken from the 
USEPA reach file 1 database (USEPA 1998). Values of light intensity (i.e., mean 378 Ly/d and range 447 Ly/d) 
were taken from the U.S. Department of Energy National Renewable Energy Laboratory solar radiation database for 
Raleigh, NC. Mean evaporation was set to zero, which is appropriate for stream applications (Park, pers. comm.). 
Carbon dioxide was set at a constant default loading of 0.7 mg/L. Detrital input was specified at a constant loading 
of 28 mg/L organic matter, of which 5% was assumed to be particulate and 75% was estimated to be refractory 
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(Cuffney 1988). The default remineralization parameters are considered widely applicable (Park 2000a), so they 
were not changed for this site. 

Daily values of flow (m3/d), temperature (C), nutrients (mg/L), and sediment (mg/L) were read in directly 
from output of the HSPF watershed model (USEPA 2000b). The application and calibration of the HSPF model to 
this watershed has been described above in Section 6.1. In AQUATOX, Manning’s equation for natural streams was 
selected as the method to calculate dynamic mean depth (m) from the input flow data. 

Two groups of algae and three groups of benthic invertebrates were included in the model (Figure 35). 
Default parameter sets in AQUATOX were used to model algal dynamics, and a constant input of 0.005 g/m2 of 
each algae type was assumed (all biomass units are wet weight). Default parameter sets for representative benthic 
invertebrates were used to characterize invertebrate groups: chironomid for gatherers, mayfly for filterers, and 
stonefly for predators. The benthic invertebrate groups correspond to invertebrate communities reported for the 
coastal plain (Smock and E. Gilinsky 1992). 

In s ect ivor e-p is civor e 
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Gen er a lized 
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Pr ed a t or y 
In  ver teb  ra  te  

Figure 35. Diagram of feeding relationships. Solid arrows represent strong feeding preferences and dotted lines 
represent weak preferences. 

Four fish groups identified by Paller (1994) for the coastal plain ecoregion were included in the model 
(Figure 35). Default values were used for the excretion:respiration ratio (0.05), the gametes:biomass ratio (0.09), and 
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the minimum prey for feeding (0.2); all of these parameters were the same for all fish species. Biomass of the fish 
groups showed less than a 1% change in response to an order of magnitude increase in carrying capacity parameters, 
which are used only during spawning, so AQUATOX default values were used. 

Parameters for temperature response slope, optimum temperature, maximum temperature, and specific 
dynamic action were taken from the Wisconsin Bioenergetics model (Hanson et al. 1997 Appendix A). Dace values 
were used for both surface-water and benthic insectivores; bluegill adult values were used for generalized 
insectivores; and largemouth bass values were used for insectivore-piscivores (Table 26). The minimum adaptation 
temperature was taken as the lower lethal temperature from Leidy and Jenkins (1977 Table 13) using sunfish values 
for the generalized insectivores fish group, black bass values for insectivore-piscivores, and minnow values for 
surface-water and benthic insectivore groups (Table 26). 

Bluegill and largemouth bass mortality rates from Leidy and Jenkins (1977) were used to parameterize the 
generalized insectivore and insectivore-piscivore groups, respectively (Table 26). Mortality for surface-water and 
benthic insectivores was assumed to be an order of magnitude greater. Respiration parameters were taken from the 
OXYREF database (CEAM 2002) for representative species. Maximum consumption parameters for the generalized 
insectivores and insectivore-piscivores were calculated from Hanson et al. (1997), using an average fish weight 
taken from sampling data available from the USGS National Water Quality Assessment Program. Half-saturation 
and maximum consumption parameters for surface-water and benthic insectivores were adjusted in calibration 
(Table 26). 

Table 26. Selected input parameters of fish groups used for AQUATOX simulations. 

Surface-water Benthic Generalized Insectivore-
Parameter (units) insectivores insectivores insectivores piscivores 
Maximum consumption (g/g/d) 0.36 0.25 0.073 0.056 
Respiration rate (1/d) 0.015 0.009 0.006 0.006 
Half-saturation (g/m2) 0.05 0.05 0.75 5 
Temperature Response Slope 2.4 2.4 2.3 2.65 
Optimum temperature (C) 29 29 22 27.5 
Maximum temperature (C) 32 32 33.8 37 
Minimum adaptation temperature 
(C)  10  10  2.5  10  
Mortality rate (1/d) 0.01 0.01 0.002 0.001 
Gamete mortality (1/d) 0.01 0.01 0.8 0.1 

Feeding interactions among biota are represented in the AQUATOX model by preference values (Figure 
35). These relationships were specified based on information from Smock and Gilinsky (1992), Carlander (1977a), 
and Benke et al. (2001). Constant values were used for the egestion fraction of algae and detritus by invertebrates 
(0.5), invertebrates by invertebrates (0.15), detritus by fish (0.2), invertebrates by fish (0.16), and fish by fish (0.05). 

The model was run with time series data for a six-year period 1989-1995. Algae and benthic invertebrates 
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were initialized at their carrying capacities, benthic invertebrate groups were initialized at 10 mg/L, and fish groups 
were initialized at 5 mg/L. A sensitivity analysis to temperature, nutrients, sediment, oxygen, pH, and detrital 
loading was conducted by sequentially increasing or decreasing each of these driving variables by 10% and then 
assessing the change in biomass for each fish group. 

Results and Discussion 

The total fish biomass from the calibrated simulation was within the range reported for coastal plain 
streams, 5-37 g/m2 (Sheldon and Meffe 1995). Percentage occurrences of the different fish groups were consistent 
with those reported by Paller (1994). Total biomass of invertebrates was similar to that reported by Smock et al. 
(1989) for a coastal plain stream in Virginia; they noted that their results were applicable to other streams in the 
ecoregion. It was not possible to verify the seasonal patterns produced by the model because fish sampling data were 
not available at such a frequency. 

Fish groups in AQUATOX appeared most sensitive to temperature (Figure 36a). Sensitivity to temperature 
is a result of the response of fishes to optimum temperature parameters. Generalized insectivores, the fish group with 
the lowest optimum temperature, showed a decrease in response to increased water temperature. It appears that the 
insectivore-piscivore group decreased in biomass as a result of the decrease in generalized insectivores, which are its 
most-preferred food source. The responses of surface-water and benthic insectivores were very similar to each other 
because they had been parameterized with the same optimum temperature. 

Biomass of all fish groups showed very low sensitivity to nutrients; 10% increases in nutrients resulted in 
less than 2% changes in the biomass of the fish groups (Figure 36b). The role of nutrients in the model is to support 
photosynthesis. The model uses a multiple-limitation concept, so this result indicates that nutrients are not limiting 
for this study site. Algae may be more limited by light and stable substrate than by nutrients in the coastal plain 
(Smock and E. Gilinsky 1992). 

Biomass of all fish groups also showed very low sensitivity to sediment (Figure 36c). Low sensitivity of 
fish groups to sediment is most likely due to the lack of direct effects of sediment on higher taxa in the AQUATOX 
model. The model includes two effects of sediment on the aquatic ecosystem: increased shading that can reduce light 
input and affect algal production and increased sedimentation that can increase the burial benthic detritus. The model 
results indicates that fishes are not sensitive to these two effects. However, certain known direct effects of sediment 
on fishes and invertebrates, such as interference with feeding or spawning (Newcombe and MacDonald 1991), are 
not represented in the model. 

Biomass of the four fish groups also showed a low sensitivity to a 10% decrease in oxygen (Figure 37a). In 
the model, oxygen does not affect biota directly until the oxygen concentration is less than 1.0 mg/L, at which time 
total mortality occurs. Indirect effect of oxygen on detrital decomposition occurs at levels less than 4 mg/L, but these 
levels did not occur in this analysis. 
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Figure 36. Response of biomass of the four fish groups to a 10% increase in (a) temperature, (b) nutrients, and (c) 
sediment. 
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Figure 37. Response of biomass of the four fish groups to a 10% decrease in (a) oxygen, (b) detrital loading, and (c) 
pH. 
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The fish groups showed moderate sensitivity to a 10% decrease in detritus loading (Figure 37b). The 
generalized insectivores, that consume detritus, were most affected. The insectivore-piscivore group was also 
affected since it feeds on the generalized insectivore group. Benthic insectivores were affected very little because 
they have access to the sedimented detritus. 

Biomass of the four fish groups showed a very low sensitivity (<1%) to a 10% decrease in pH (Figure 37c). 
In this analysis, the pH stayed within the range 5-8.5; in the model pH does not affect decomposition within this 
range. The pH can affect nitrification in the model, but levels of ammonia in this simulation were relatively low so 
this effect did not occur. 

The AQUATOX model provides a good representation of the aquatic ecosystem. Detrital and nutrient 
processes appear to be well-represented, and unlike some other aquatic ecological models, there are feedbacks to 
algae from both chemicals and fish. It is easy to use the AQUATOX model, and also to use time series outputs from 
a watershed model as driving variables. AQUATOX, however, does not represent interactions between the stream 
ecosystem and the flood plain, which are particularly important in the coastal plain ecosystem (Cuffney 1988). Also, 
it was difficult to verify seasonal patterns in the model results, since data were not collected in a temporal fashion at 
the study site. Certain limitations, such as lack of multiple age classes and spatial dimension, will be addressed in 
future versions of AQUATOX (Park, pers. comm.). Currently, the model is useful for assessing the response of the 
fish groups to only certain types of stressors. Its utility should be determined further by model applications in other 
study areas and ecoregions. 
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7. Prospectus for Future Regional Assessments

When the BASE research program was originally conceived and initiated in 1999, the research product 
presented herein was planned as a prototype computer software modeling tool and case study of fish health across 
the entire Albemarle-Pamlico basin rather than simply a conceptual framework and general discussion of fish health 
issues within the Albemarle-Pamlico basin. BASE’s failure to realize its original programmatic goal is can be 
attributed to both logistical and technological factors. 

With regard to logistical considerations, the most important factor that hampered the program’s overall 
research efforts was the lost of key federal staff. In particular, approximately 9 FTE were assigned to the BASE 
research program in FY99. However, during FY00 and FY01 BASE lost 4.5 of its 9 FTEs to retirement and staff 
accepting federal positions outside of ERD/NERL. With regard to technical considerations, three factors that should 
be mentioned are: 1) the availability of appropriate models that satisfy assessment and modeling objectives; 2) 
availability of complete input datasets for models that were judged appropriate for assessment and modeling 
objectives; and 3) the availability of GIS and other software frameworks that could implement regional 
parameterization, execution, and output analysis of multiple interacting models. 

Although the REMM and HSPF models were initially assumed to be adequate models for describing the 
interaction of riparian and hydrologic processes for the Albemarle-Pamlico basin, the contrary was discovered to be 
true due to the inherently different and non-scalable, spatial scales of these models. In particular the field scale focus 
of the REMM riparian model simply could not be scaled or made to interact with the integrated/lumped watershed 
processes represented in HSPF. Similarly, the geologically based Groundwater Modeling System (GMS) 
MODFLOW, described in Section 5.2.1, could not be interfaced with HSPF despite the overwhelming importance of 
groundwater discharges to surface flow across the Albemarle-Pamlico basin. It would appear that the only way to 
resolve such modeling issues would be to develop new model codes, either de novo or from state-of-the-art revisions 
of existing codes, with the explicit objective of dynamic integration of conceptually related, process-based models. 

Other models that were considered to be appropriate for regional fish health assessments could not be 
completely  parameterized for the Albemarle-Pamlico basin. Notable in this regard was the BASS bioaccumulation 
and community model. Although BASS could have been parameterized for most of the fish species that are the 
ecological dominants in the habitat groups/communities identified in Section 4.1, BASS could not be objectively 
parameterized for the food webs within these communities since monitoring data detailing these communities’ 
invertebrate stocking stocks, that are the foundations of these food webs, were either fragmentary or wholly lacking. 
Similarly, the lack of comprehensive, regional contaminant datasets precluded water quality/fate and transport 
modeling that might have been focused on mercury, dioxins, pesticides, or other persistent organic pollutants (POPs) 
that are known to be of concern in the Albemarle-Pamlico basin. To overcome such problems, dynamic simulation 
models must be considered was environmental indicators in the same light as are individual field measurements or 
composite multivariate indices. Model developers and users must interact and have input into major biological and 
physical monitoring programs to insure that such data collections can be used not only to assess the current condition 
of resources of concern but also to evaluate the vulnerability and sustainability of those resources to different future 
environmental use scenarios. 
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Even if BASE had access all of the appropriate modeling components and their requisite datasets, the 
availability of GIS and other software frameworks that could have implemented the regional parameterization, 
execution, and output analysis of these models would have been a significant impediment toward achieving a 
transparent assessment technology. As asserted by one peer reviewer “... formal adoption of a modeling system 
framework is absolutely necessary if this work is to continue.  The framework will serve two critical purposes; first, 
it will provide a computer-based blueprint for moving the work forward (this includes providing a clear picture of 
status and basis for making research project decisions in a consistent and prioritized manner); and second, it will 
provide the means by which the technology configured for the case study can be smoothly evolved to serve both 
future research and assessments in different river basins.” Importantly, the selection of such a framework is not a 
trivial issue since several efforts are already under way inside and outside of the USEPA. 
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