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ABSTRACT 

SPARC (SPARC Performs Automated Reasoning in Chemistry) chemical reactivity models were 

validated on more than 5000 ionization pKas (in the gas phase and in many organic solvents including 

water as a function of temperature), 1200 carboxylic acid ester hydrolysis rate constants (as a function 

of solvent and temperature), 350 E1/2 reduction potential (as a function of solvents, pH and temperature), 

and 250 gas phase electron affinities. Physical properties have been developed and validated using more 

than 8000 physical property data points on many properties such as vapor pressure (as a function of 

temperature), boiling point (as a function of pressure), solubility, activity coefficients, Henry’s constant 

and Kow (as a function of solvent and temperature) , etc.  However, the true validity of the SPARC property 

models is the ability of the SPARC basic models to be extended to calculate numerous chemical/physical 

properties (as a function of solvent, temperature, pressure, pH, etc.) without modification or extra 

parameterization to any of the SPARC basic models. 
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FOREWORD 

Recent trends in environmental regulatory strategies dictate that EPA will rely heavily on 

predictive modeling to carry out the increasingly complex array of exposure and risk assessments 

necessary to develop scientifically defensible regulations. In response to this need, researchers at ERD-

Athens have developed a predictive modeling system SPARC (SPARC Performs Automated Reasoning 

in Chemistry) that calculates a large number of physical and chemical properties from pollutant 

molecular structure across all classes of industrial organic chemicals.  SPARC execution involves the 

classification of molecular structures and the selection and execution of appropriate “mechanistic” 

models, such as induction, resonance, and field effects to quantify reactivity.  The basic mechanistic 

models in SPARC were designed and parameterized to be portable to any type of chemistry or organic 

chemical structure.  This expanded prediction capability allows one to choose, for exhaustive 

validating, the reaction parameters for which large and reliable data sets do exist to validate against.  

The SPARC models have been validated on more than 12,000 data points for many properties.  The 

verification and validation of the SPARC models will be presented in this report.  

Rosemarie C. Russo, Ph.D. 

Director 


  Ecosystems Research Division 

Athens, Georgia 
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SUMMARY 

The major differences among behavioral profiles of molecules in the environment are 

attributable to their physicochemical properties.  For most chemicals, only fragmentary knowledge 

exists about those properties that determine each compound’s environmental fate.  A chemical-by-

chemical measurement of the required properties is not practical because of expense and because trained 

technicians and adequate facilities are not available for measurement efforts involving thousands of 

chemicals.  In fact, physical and chemical properties have only been measured for about 1 percent of the 

approximately 70,000 industrial chemicals listed by the U.S. Environmental Protection Agency's Office 

of Prevention, Pesticides and Toxic Substances [1]. 

Although a wide variety of approaches are commonly used in regulatory exposure and risk 

assessments, knowledge of the relevant chemistry of the compound in question is critical to any 

assessment scenario.  For volatilization, sorption and other physical processes, considerable success has 

been achieved in not only phenomenological process modeling but also a priori estimation of requisite 

chemical parameters, such as solubilities and Henry's constant.  Granted that considerable progress has 

been made in process elucidation and modeling for chemical processes, such as photolysis and 

hydrolysis, reliable estimates of the related fundamental physicochemical properties (i.e., rate and 

equilibrium constants) have been achieved for only a limited number of molecular structures.  The 

values of these latter parameters, in most instances, must be derived from measurements or from the 

expert judgment of specialists in that particular area of chemistry. 

Mathematical models for predicting the transport and fate of pollutants in the environment 

require reactivity parameter values--that is, the physical and chemical constants that govern reactivity.  

Although empirical structure-activity relationships that allow estimation of some constants have been 

available for many years, such relationships generally hold only within very limited families of 
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chemicals.  On the other hand, we are developing computer programs that predict chemical reactivity 

strictly from molecular structure for virtually all organic compounds.  Our computer system called 

SPARC (SPARC Performs Automated Reasoning in Chemistry) uses computational algorithms based 

on fundamental chemical structure theory to estimate a large array of physical/chemical parameters.  See 

Table 1 for current SPARC physical property and chemical reactivity parameter estimation capabilities. 

In every aspect of SPARC development, from choosing the programming environment to 

building model algorithms or rule bases, system validation and verification were important criteria.  The 

basic mechanistic models in SPARC were designed and parameterized to be portable to any type of 

chemistry or organic chemical structure.  This extrapolatability impacts system validation and 

verification in several ways. First, as the diversity of structures and the chemistry that is addressable 

increases, so does the opportunity for error. More importantly, however, in verifying against the 

theoretical knowledge of reactivity, specific situations can be chosen that offer specific challenges.  This 

is important when verifying or validating performance in areas where existing data are limited or where 

additional data collection may be required.  Finally, this expanded prediction capability allows one to 

choose, for exhaustive validating, the reaction parameters for which large and reliable data sets do exist 

to validate against. The SPARC models have been validated on more than 12,000 data points.  The 

verification and validation of the SPARC models will be presented in this report.  
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 Table 1. SPARC current physical and chemical properties estimation capabilities 
Physical Property & Molecular 
Descriptor 

Status Reaction 
Conditions 

Molecular Weight Yes 
Polarizability Yes Temp 
α, β H-bond Yes 
Microscopic bond dipole Yes 
Density Yes Temp 
Volume Yes Temp 
Refractive Index Yes Temp 
Vapor Pressure Yes Temp 
Viscosity Mixed Temp 
Boiling Point Yes Press 
Heat of Vaporization Yes Temp 
Heat of formation UD Temp 
Diffusion Coefficient in Air Mixed Temp, Press 
Diffusion Coefficient in Water Mixed Temp 
Activity Coefficient Yes Temp, Solv 
Solubility Yes Temp, Solv  
Gas/Liquid Partition Yes Temp, Solv 
Gas/Solid Partition Mixed Temp, Solv 
Liquid/Liquid Partition Yes Temp, Solv 
Liquid /Solid Partition Mixed Temp, Solv 
GC Retention Times  Yes Temp, Solv 
LC Retention Times Mixed Temp, Solv 
Chemical Reactivity 
Ionization pKa in Water Yes Temp, pH 
Ionization pKa in non-Aqueous Solution. Mixed Temp, Solv 
Ionization pKa in Gas phase Mixed Temp 
Microscopic Ionization pKa Constant Yes Temp, Solv, pH 
Zwitterionic Constant Yes Temp, Solv, pH 
Molecular Speciation Yes Temp, Solv, pH 
Isoelectric Point Yes Temp, Solv, pH 
Electron Affinity Mixed 
Ester Carboxylic Hydrolysis Rate Constant Yes Temp , Solv 
Hydration Constant Mixed Temp , Solv  
Tautomer Constant Mixed Temp, Solv, pH 
E½ Chemical Reduction Potential Mixed Temp, Solv, pH 

Mixed: Some capability exists but needs to be tested more, automated and/or extended. 
Yes: Already tested and implemented in SPARC  
UD: Under Development at this time 
Press: Pressure, Temp: Temperature, Solv: Solvent 
α: proton-donating site, β: proton-accepting site. 
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INTRODUCTION 


Recent trends in environmental regulatory strategies dictate that EPA will rely heavily on 

predictive modeling to carry out the increasingly complex array of exposure and risk 

assessments necessary to develop scientifically defensible regulations.  The pressing need for 

multimedia, multistressor, multipathway assessments, from both the human and ecological 

perspectives, over broad spatial and temporal scales, places a high priority on the development of 

broad new modeling tools.  However, as this modeling capability increases in complexity and 

scale, so must the inputs.  These new models will necessarily require huge arrays of input data, 

and many of the required inputs are neither available nor easily measured.  In response to this 

need, researchers at NERL-Athens have developed the predictive modeling system SPARC 

which calculates a large number of physical and chemical parameters from pollutant molecular 

structure and basic information about the environment (media, temperature, pressure, pH, etc.).  

Currently, SPARC calculates a wide array of physical properties and chemical reactivity 

parameters for organic chemicals strictly from molecular structure. See Table 1.  

SPARC has been in use in the Agency programs for several years, providing chemical 

and physical properties to program offices (e.g., Office of Water, Office of Solid Waste and 

Emergency Response, Office of Prevention, Pesticides and Toxic Substances) and Regional 

Offices. Also, SPARC has been used in Agency modeling programs (e.g., the Multimedia, 

Multi-pathway, Multi-receptor Risk Assessment (3MRA) and LENS3, a multi-component mass 

balance model for application to oil spills) and to state agencies such as the Texas Natural 

Resource Commission. The SPARC web-based calculators have been used by many employees of 

various government agencies, academia and private chemical/pharmaceutical companies 
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 throughout the United States. The SPARC web version performs approximately 50,000-100,000 

calculations each month. (See the summary of usage of the SPARC web version in the Appendix). 

PREVIOUS PEER REVIEWS OF THE SPARC SYSTEM 

Over the lifespan of its development, the SPARC computer system has undergone 

numerous (and various types of) reviews that have helped to establish its validity.  For example, we 

have published 10 journal articles on the SPARC computer system, each of which has undergone 

extensive peer-review (See references 2-11). Also, the SPARC computer system underwent an 

EPA Science Advisory Board (SAB) review in 1991, which was relatively early in its development 

stage. This multi-day review gave the SPARC development team the opportunity to demonstrate 

the system, and to discuss its modeling philosophy with experts in environmental science.  Their 

comments on the system were very favorable, and they provided important input on further system 

development.  Following is a brief excerpt from the SAB’s written report.  “For a program still in 

development, progress is excellent. Resources should be made available to complete the 

documentation and conduct extensive testing of the model” [12]. 

Also, the SPARC computer system has been included, along with other projects at our 

Division, in several major peer reviews, once in 1997 and again in 2000.  These reviews were 

conducted by “blue-ribbon” panels of scientists from outside of EPA.  Again, the comments on 

SPARC were laudatory and they provided important input to model development.  For example, 

the following is an excerpt from the 1997 peer review panel’s report on the SPARC project.  “The 

review panel is extremely impressed with the quality and productivity of this broad project, as well 

as with the presentation, the speaker, and the body of work that he summarized in such a 

remarkable fashion. This effort represents a central cog in the entire ERD program in 

environmental chemistry, as well as a key component of the Division’s programmatic support to 

the broader agency. Moreover, this body of work represents a truly impressive service to the 
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larger environmental chemistry community. EPA must find ways of providing permanent, long-

term support for the commitment to this effort. It should also work toward making this service fully 

available via the internet. This project truly represents a key component of the NERL/Athens 

scientific endeavor” [13]. 

Furthermore, the SPARC developers have frequently engaged in informal consultation with 

leaders in relevant fields of science throughout the SPARC model design.  These scientists include 

the late Dr. Robert Taft of the University of California, Dr. John Garst and Dr. Bruce King of the 

University of Georgia, Dr. Ralph Dougherty of the Florida State University and Dr. Samuel 

Yalkowski of the University of Arizona. 

In summary, the SPARC system has now been extensively reviewed by many renowned 

scientists outside of EPA and in many different peer-review processes.  Reviewer comments have 

always been favorable and the suggestions of these scientists have always been used to improve 

further model development.  This type of “open communication” with leaders in various fields of 

science improves and helps to establish the validity of the SPARC models. 

Although development of the SPARC program has been aimed at use in environmental 

assessments, these physicochemical models have widespread applicability in the academic and 

industrial communities  For example, the SPARC program has been used at several universities as 

an instructional tool to demonstrate the applicability of physical organic models to the quantitative 

calculation of physicochemical properties (e.g., graduate class taught by the late Dr. Robert Taft at 

the University of California). Also, the SPARC calculator has great potential for aiding industry 

(such as Pfizer, Merck, Pharmacia & Upjohn, etc.) in the areas of chemical manufacturing and 

pharmaceutical and pesticide design. 
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ISSUES REGARDING VERIFICATION AND VALIDATION OF SPARC 

To adequately convey the importance of verification and validation of SPARC models, it 

is necessary to first describe briefly, and in general terms, the SPARC modeling approach and 

philosophy. Indeed, it is useful to compare and contrast the SPARC approach to that of more 

conventional models for predicting physicochemical parameters.  

Most models that predict a given physicochemical property (e.g., solubility, boiling point, 

etc.) are based, in a very direct way, on experimental data for that property for a limited training 

set of chemicals.  Model development involves finding the best correlations between various 

descriptors of chemical structure and the observed property values.  These descriptors are 

subsequently used to construct a model that adequately “recalculates” the training (or 

calibration) data set. Then, to validate, one must demonstrate that the empirical model also 

accurately predicts property values for chemicals not included in the training set, but whose 

experimental values are known.  These data are often called the validation set. In order to 

predict a new physicochemical property (e.g., octanol/water partition coefficient), the entire 

process must be repeated, requiring new training and validation data sets for each new property. 

On the other hand, with SPARC, experimental data for physicochemical properties (such 

as boiling point) are not used to develop (or directly impact) the model that calculates that 

particular property. Instead, physicochemical properties are predicted using a few models that 

quantify the underlying phenomena that drive all types of chemical behavior (e.g., resonance, 

electrostatic, induction, dispersion, H-bonding interactions, etc.). These mechanistic models 

were parameterized using a very limited set of experimental data, but not data for the end-use 

properties that will subsequently be predicted. After verification, the mechanistic models were 
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used in (or ported to) the various software modules that calculate the various end-use properties 

(such as boiling point). It is critical to recognize that the same mechanistic model (e.g., H-

bonding model) will appear in all of the software modules that predict the various end-use 

properties (e.g., boiling point) for which that phenomenon is important.  Thus, any comparison 

of SPARC-calculated physicochemical properties to an adequate experimental data set is a true 

model validation test -- there is no training (or calibration) data set in the traditional sense for 

that particular property. The results of validation tests on the various SPARC property models 

are presented below in the sections devoted to each property. 

The unique approach to SPARC modeling also impacts our strategy for module 

verification. For example, when a mechanistic model is updated or improved by incorporating 

new knowledge, the impact on all of the various end-use parameters must be assessed.  Toward 

this end, we have developed quality assurance software that executes each quarter. This 

software runs the various property modules for a large number of chemicals (4200 data-point 

calculations) and compares the output to historical results obtained over the life-span of the 

SPARC program.  (Note that, early in our developmental stage, output of all SPARC modules 

were compared to hand calculations with selected chemicals to the extent possible.  Satisfactory 

results were obtained prior to proceeding with further development).  In this way, we ensure that 

existing parameter models still work correctly after new capabilities and improvements are 

added to SPARC. This also ensures that the computer code for all property and mechanistic 

models are fully operational.  Since the same approach to verification was taken for all property 

modules, and since they are all driven by the same verified mechanistic models, we will not 

discuss verification in the following sections devoted to each property. 
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SPARC COMPUTAIONAL APPROACH 

SPARC does not do "first principles" computation; rather, it analyzes chemical structure 

relative to a specific reactivity query much as an expert chemist might.  SPARC utilizes directly the 

extensive knowledge base of organic chemistry.  Organic chemists have established the types of 

structural groups or atomic arrays that impact certain types of reactivity and have described, in 

“mechanistic” terms, the effects on reactivity of other structural constituents appended to the site of 

reaction. To encode this knowledge base, a classification scheme was developed that defines the 

role of structural constituents in affecting or modifying reactivity.  Furthermore, models have been 

developed that quantify the various “mechanistic” descriptions commonly utilized in structure-

activity analysis, such as induction, resonance and field effects. SPARC execution involves the 

classification of molecular structure (relative to a particular reactivity of interest) and the selection 

and execution of appropriate “mechanistic” models to quantify reactivity.  In brief, the SPARC 

model consists of a set of core models describing intra/intermolecular interactions that are linked by 

the appropriate thermodynamic relationships to provide estimates of reactivity parameters under 

desired conditions such as temperature, pressure and pH.  The details of SPARC computational 

methods are presented in a companion U.S. E.P.A report, “Prediction of Chemical Reactivity 

Parameters and Physical Properties of Organic Compounds from Molecular Structure Using 

SPARC” [14].  Hence, only an overview will be given here. 

For physical properties, intermolecular interactions are expressed as a summation over all the 

interaction forces between molecules (i.e., dispersion, induction, dipole and H-bonding).  Each of 

these interaction energies is expressed in terms of a limited set of molecular-level descriptors      

(volume, molecular polarizability, molecular dipole, and H-bonding parameters) that, in turn, are 
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calculated from molecular structure.  For chemical reactivity, molecular structure is broken into 

functional units. Reaction centers with known intrinsic reactivity are identified and the impact on 

reactivity of appended molecular structure is quantified using mechanistic perturbation models. 

 A "toolbox" of mechanistic perturbation models has been developed that can be 

implemented where needed for a specific reactivity query.  Resonance models were developed and 

validated on more than 5000 light absorption spectra [1, 2], whereas electrostatic interaction 

models were developed and validated on more than 4500 ionization pKas in water [3-8].  Solvation 

models (i.e., dispersion, induction, H-bond and dipole interactions) have been developed and 

validated on more than 8000 physical property data points on properties such as vapor pressure, 

boiling point, solubility, Henry’s constant, GC chromatographic retention times, Kow, etc [3, 9, 

10]. The SPARC computational approach is based on blending well known, established methods 

such as SAR (Structure Activity Relationships) [15, 16], LFER (Linear Free Energy Relationships) 

[17, 18] and PMO (Perturbed Molecular Orbital) theory [19, 20].  SPARC uses SAR for structure 

activity analysis, such as induction, resonance and field effects. LFER is used to estimate 

thermodynamic or thermal properties and PMO theory is used to describe quantum effects such as 

charge distribution delocalization energy and polarizability of the π electron network. 

SPARC PHYSICAL PROPERTIES MODELS 

For all physical properties (e.g., vapor pressure, boiling point, activity coefficient, solubility, 

partition coefficients, GC/LC chromatographic retention times, diffusion coefficients, etc.), SPARC 

uses one master equation to calculate characteristic process parameters: 

(1)∆G = ∆G +∆GProcess nInteractio Other 
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where ∆GInteraction describes the change in the energy associated with the intermolecular interactions 

accompanying the process in question.  For example, in liquid to gas vaporization, ∆GInteraction 

describes the difference in the energy associated with intermolecular interactions in the gaseous 

phase versus that associated with interactions in the liquid phase. The intermolecular interaction 

forces between the molecules are assumed to be additive.  The ∆GOther lumps all non-interaction 

energy components such as entropy changes associated with mixing or expansion, and changes in 

internal molecular (vibrational, rotational) energies.  At the present time, the intermolecular 

interactions in the liquid phase are modeled explicitly, interactions in the gas phase are ignored, and 

molecular interactions in the crystalline phase are extrapolated from the subcooled liquid state using 

the melting point.  The 'non-interaction' entropy components are process specific and will be 

described later, in the vapor pressure and the activity coefficient models.  The intermolecular 

interactions in the liquid phase are expressed as a summation over all the mechanistic components: 

∆GInteraction = ∆GDispersion + ∆GInduction + ∆GDipole − dipole + ∆GH − Bond (2) 

Each of these interaction mechanisms is expressed in terms of a limited set of pure 

component descriptors (liquid density-based volume, molecular polarizability, microscopic bond 

dipole, and hydrogen bonding parameters), which in turn are calculated strictly from molecular 

structure [3, 9]. 

Dispersion interactions are present in all molecules, including polar and non-polar 

molecules. Induction interactions are present between two molecules when at least one of them has a 

local dipole moment.  Dipole-dipole interactions exist when both molecules have local dipole 

moments.  H-bonding interactions exist when αi βj or αj βi products are non zero, where α 

8




represents the proton donation strength and β represents the proton acceptor strength. In SPARC, all 

the physical property estimations derive from a common set of core models describing 

intra/intermolecular interactions, and require as user inputs molecular structure (both solute and 

solvent(s)) and reaction conditions of interest (temperature, pressure, etc.).  The self-term, ∆Gii 

(solute-solute) interaction model is used to describe the vapor pressure at 25o C. The self terms, ∆Gii 

and ∆Gjj (solvent-solvent) plus the cross term, ∆Gij (solute-solvent) interactions, are required to 

describe the solute, i, activity coefficient in any solvent, j at 25o C. 

Like the chemical reactivity models, the ∆Gii, ∆Gij and ∆Gjj models have been extended and 

validated on numerous physical properties under different reaction conditions such as temperature, 

pressure and solvents. The self-term interaction model has been tested on a large number of vapor 

pressures, boiling points, diffusion coefficients and heat of vaporization.  Likewise, the solute-

solvent interaction model has been validated on activity coefficients, solubilities, partition 

coefficients and GC/LC chromatographic retention times in any solvent at any temperature.   

Validation of the SPARC Refractive Index Model 

The molecular polarizability and volume can be related to the index of refraction (n) using 

the Lorentz-Lorenz equation. For our units of cm3/mole for volume (V) and Å3/molecule for 

polarizability (P), the Lorentz-Lorenz equation can be written as 
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2n − 1 4π ( .
= 

0 6023 P)
 (3)2n + 2 3V 

The refractive index output was initially verified by comparing the SPARC prediction 

value to hand calculations for selected key molecules.  The refractive index calculator was trained 

on 325 non-polar and polar organic compounds at 25o C then validated on 578 organic 

compounds at 25o C [9, 10] as shown in Figure 1. The statistical performance for the SPARC 

refractive index calculator is shown in Table 2. See reference 9 for sample hand calculations. 
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Table 2. SPARC Physical and Chemical Properties Calculator Statistical Performance 
versus Observations 

Property Units Total # 
Molecule 

RMS R2 Reaction Conditions 
 Temp/Solvent 

Refractive Index N/A 578 0.007 0.997 25 
Volume g/cm3 1440 1.97 0.999 25 
Vapor Pressure log atm 747 0.15 0.994 25 
Boiling Point o C 4000 5.71 0.999 0.1-1520 torr 
Heat 
of Vaporization3 

Kcal/mole 1263 0.301 0.993 25, Boiling Point 

Diffusion 
Coefficient in Air4 

cm2/s 108 0.003 0.994 25 

Activity Coefficient log MF5 491 0.064 0.998 25, 41 solvents 
Solubility log MF 647 0.40 0.987 25, 21 solvents 
Distribution N/A 623 0.43 0.983 25 Octanol, Toluene CCl4, 
Coefficient Benzene, 

Cyclohexane, Ethyl Ether 
Henry’s Constant M/L6 286 0.34 0.990 25, Water 

271 0.10 0.997 25, Hexadecane 
GC Retention Time2 Kovtas 295 10 0.998 25-190, Squalane, B18 

LC Retention Time Kovtas 125 0.095 0.992 25, Water/Methanol 

Gas pKa 
3 

Non-aqueous pKa 
3 

pKa in water 

Kcal 
Kcal 

Kcal/1.36 

400 
300 

4338 

2.25 
1.90 

0.356 

0.999 
0.960 

0.994 

25 , Alcohols, Aceteonitrile, 
Acetic acid, DMF1, THF1 , 
pyridine 
25-100, Water 

Electron Affinity e.V. 260 0.14 0.98 Gas 

Ester Carboxylic M-1s-1 1470 0.37 0.968 25-130, Water, Acetone, 
Hydrolysis Rate Alcohols, Dioxane, 

Aceteonitrile 
Tautomer Constant3 

Hydration Constant3 
Kcal/1.36 
Kcal/1.36 

36 
27 

0.3 
0.43 

0.950 
0.744 

25, Water 

E½ Chemical e.V 352 0.18 0.95 25, Water, Alcohols, DMF1 

Reduction3 Aceteonitrile, DMSO1 

’ 1 	 DMF: N,N -dimethylforamide 
DMSO: Dimethyl sulfoxide 
HF: Tetrahydrofuran 

2. 	 GC retention times in SE-30, OV-101 and PEG-20M liquid stationary liquid phase is  
not included in this report. 

3 See the companion SPARC report [14] 
4. 	 Models were developed after the HWIR exercise. 
5. 	 MF: mole fraction 
6. 	 M/L unit is (mole/L)/(mole/L); unitless 
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Figure 1. SPARC-calculated versus observed refractive index at 25o C. The RMS (Root Mean 
Square) deviation was 0.007 and R2 was 0.997. 

Validation of the SPARC Molecular Volume Models 

The zero order density-based molecular volume at 25o C is expressed as 

oV25 = Σ (V frag − A )	  (4)i ii 

where Vi
frag  is the volume of the ith molecular fragment and Ai is a correction to that volume based 

on both the number and size of fragments attached to it.  The Vi
frag are determined empirically from 

measured liquid-density based volumes, and then stored in the SPARC database.  The zero order 

volume at 25o C is further adjusted for changes resulting from dipole-dipole and hydrogen bonding 

intermolecular interactions:  

Σ D io	 i i

o


V i = V 25 + A dipole − dipole o + A H − bond 
β α i	 (5)

V 25	 V 25 
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 13

where Di is the weighted sum of the local dipole for the molecule, and α and β are the H-bonding 

parameters of potential proton donor and proton acceptor sites within the molecule, respectively. 

Adipole-dipole and AH-bond are adjustment constants due to dipole-dipole and H-bonding, respectively.   

The final molecular volume at any temperature T is then expressed as a polynomial expansion in 

(T-25) corrected for H- bonding, dipole density and polarizability density interactions [9, 14]. 

 The molecular volume can be calculated within 2 cm3 mole-1 for most organic molecules.  

Figure 2 shows the SPARC-calculated versus observed molecular volumes for both polar and non-

polar compounds at 25o C.   The statistical performance for the volume calculator is in Table 2.    See 

reference 9 for sample hand calculations. 
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Figure 2.  SPARC-calculated vs. observed-liquid density based volume at 25o C for 1440 organic  
molecules.  The RMS deviation was 1.97 cm3 mole-1 and R2 was 0.999.  
 

Validation of the SPARC Vapor Pressure Model 

 The saturated vapor pressure is one of the most important physiochemical properties of pure 

compounds.  By 1978, vapor pressure data (as a function of temperature) were available for more  

 



than 7000 organic compounds [21].  Despite the frequency of reporting in the published literature, 

the number of compounds where the vapor pressure was truly measured and not extrapolated to 25o 

C from higher temperature measurements, is limited.  Most of the measured 25o C vapor pressure 

data are for compounds that are either pure hydrocarbons or molecules that have relatively small 

dipole moments and/or weak hydrogen bonds.  There is a pressing need to predict the vapor pressure 

of those compounds that have not been measured experimentally.  In addition to being highly 

significant in evaluating a compound’s environmental fate, the vapor pressure at 25o C provides an 

excellent arena for developing and testing the SPARC self interaction physical process models. 

The vapor pressure, vpo
i of a pure solute, i, can be expressed as function of all the 

intermolecular interaction mechanisms, ∆ Gii (interaction), as 

log vpi
o ∆ − Gii (Interaction ) 

+ LogT + C= (6)
303 . 2 RT 

where log (T) + C describes the change in the entropy contribution associated with the volume 

change in going from the liquid to the gas phase.  The crystal energy term (given in reference 14), 

CE, must be added to equation 6 for molecules that are solids at 25o C, the CE contribution becomes 

important, especially for rigid structures such as aromatic or ethylenic molecules that have high 

melting points [14]. 

The vapor pressure computational algorithm output was initially verified by comparing the 

SPARC prediction of the vapor pressure at 25o C to hand calculations for key molecules.  Since the 

SPARC self interactions model, ∆Gii, was developed initially on this property, the vapor pressure 

model undergoes the most frequent validation tests.  The calculator was trained on 315 non-polar 
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and polar organic compounds at 25o C.  Figure 3 presents the SPARC-calculated vapor pressure at 

25o C versus measured values for 747 compounds.  The SPARC self-interactions model can predict 

the vapor pressure at 25o C within experimental error over a wide range of molecular structures and 

measurements (over 8 log units).  For simple structures, SPARC can calculate the vapor pressure to 

better than a factor of 2.  For complex structures such as some of the pesticides and pharmaceutical 

drugs where dipole-dipole and/or hydrogen bond interactions are strong, SPARC calculates the 

vapor pressure within a factor of 3-4. The statistical performance for the vapor pressure calculator 

is shown in Table 2. See references 9 and 14 for sample hand calculations.  The vapor pressure 

model was also tested on the boiling point and heats of vaporization [9, 14]. 
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Figure 3. SPARC-calculated vs. observed log vapor pressure for 747 organic molecules at 25o C. 
The figure includes all the vapor pressure measurements (real not extrapolated) we found in the 
literature. The RMS deviation error was 0.15 log atm and R2 was 0.994. 

Validation of the SPARC Boiling Point Model 

SPARC estimates the boiling point for any molecular species by varying the temperature 

at which a vapor pressure calculation is done. When the vapor pressure equals the desired 
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pressure, then that temperature is the boiling point at that pressure. The normal boiling point is 

calculated by setting the desired pressure to 760 torr. Boiling points at a reduced pressure can be 

calculated by setting the desired pressure to a different value.  

 SPARC temperature dependence models were developed initially on the boiling point.  The 

boiling point calculator was trained on 1900 boiling points for a wide range of non-polar and polar 

organic compounds.  The calculator was validated against 4000 boiling points measured at different 

pressures ranging from 0.05 to 1520 torr spanning a range of over 800o C as shown in Figure 4.   

Figure 4. SPARC-calculation versus observed 4000 boiling points for pressure ranging from 0.1 to at 
1520 torr.  The Total RMS deviation was 5.71o C.  The RMS deviation for polar molecules was 8.2o 

C and R2 was 0.9988, while for non-polar molecules the RMS was 2.6o C and R2 was 0.9995.  
 

Validation of the SPARC Activity Coefficient Model 

For a solute, i, in a liquid phase, j, at infinite dilution, SPARC expresses the activity coefficient as 

)
2.303

1) - 
V
V(

  +  
V
V(  RT  + nInteractio G  =    RT- j

i

j

i
ijij log)(log ∆∑∞γ        (7) 
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where Vi and Vj are the molecular volume of the solute and the solvent, respectively.  The last term 

is the Flory-Huggins excess-entropy-of-mixing contribution in the liquid phase for placing a solute 

molecule in the solvent [3, 14].  

The activity coefficient computational algorithm output was initially verified by comparing 

the SPARC prediction to hand calculations for key molecules.  The SPARC activity coefficient 

calculator was trained on 211 activities for a wide range of organic molecules.  Figure 5 presents the 

validation for SPARC-calculated log activity coefficients versus measured values for 491 

compounds at 25o C in 41 different solvents.  The SPARC activity coefficient test statistical 

parameters are shown in Table 2.  The activity coefficients calculator was also tested on the 

solubility in more than 20 different solvents and partition coefficients in more than 18 different 

solvents. See following sections for more details. 
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Figure 5. SPARC-calculated versus observed log activity coefficients at infinite dilution for 491 
compounds in 41 solvents including water.  Only 15% of these compounds have strong dipole-
dipole and/or H-bond interactions. The RMS deviation was 0.064 log mole fraction and with an 

2 of 0.998. 
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Validation of the SPARC Solubility Model 

SPARC does not calculate the solubility from first principles, but rather from the infinite 

dilution activity coefficient model discussed previously.  SPARC first calculates the infinite dilution 

activity coefficient, γ∞; when log γ∞ is greater than 2, the mole fraction solubility can be reliably 

estimated as χsol = 1/γ∞ . However, when the log γ∞ is calculated to be less than 2, this approximation 

fails. In these cases, γ∞ is greater than γsol and SPARC would underestimate the solubility using the 

inverse relationship. In order to overcome this limitation, SPARC employs an iterative calculation.  

SPARC sets the initial guess of the solubility as χsol
guess = 1/γ∞ . SPARC then 'prepares' a mixed 

solvent that is χsol
guess in the solute and (1- χsol

guess) in the solvent. SPARC then recalculates γ∞ in the 

'new' solvent and the corresponding χsol
guess. This process is continued until γ∞ converges to 1 

(miscible). The solubility calculator spans more than 12 log mole fraction as shown in Figure 6. 

 The RMS deviation was 0.40 log mole fraction, which was close to the experimental error.  

SPARC estimates the solubility for simple organic molecules to better than a factor of 2 (0.3 log 

mole fraction) and within a factor of 4 (0.6 log mole fraction) for complicated molecules like 

pesticides and pharmaceutical drugs. The RMS deviation for the solids compounds is 3 times 

greater than the RMS deviation for liquids compounds due to the crystal energy contributions.  For 

more details see reference 14. The statistical parameters for calculated log solubility for 647 

organic molecules in 21 different solvents including water at 25o C are shown in Table 2. 
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Figure 6. Test results for SPARC calculated log solubilites for 260 compounds. The RMS 
deviation is 0.321 and R2 is 0.991. The RMS deviation for 119 liquid soluibilties is 0.135 and R2 

is 0.997 while for the 141 solids compounds the RMS deviation is 0.419 and R2 is 0.985. 

Validation of the SPARC Mixed Solvents Model 

SPARC can handle solvent mixtures for a large number of components.  However, speed 

and memory requirements usually limit the number of solvent components to less than twenty on 

a PC. The user specifies the name and volume fraction for each solvent component.  Each of the 

solvent components must have been previously initialized as a solvent.  SPARC will allow the 

user to specify a name for the mixture so that it can be used later as a 'known' solvent.  The 

activity coefficients (or solubility) of molecules in binary solvent mixtures have been tested and 

appear to work well. Figure 7 shows the calculated log γ in a water/methanol mixture versus 

measured values.  For more details see reference 14. 
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Figure 7. SPARC-calculated versus observed log activities for 120 compounds in water/methanol 
mixed solvent at 25o C. The RMS deviation error was 0.18 and the R2 was 0.980. 

Validation of the SPARC Partition Constants Models 

All partition (Liquid/Liquid, Liquid/Solid, Gas/Liquid, Gas/Solid) constants are 

determined by calculating the activity coefficient of the molecular species of concern in each of 

the phases without modification or extra parameterization to the activity coefficient model. 

Gas/liquid (Henry's Constant) Model 

Henry's constant may be expressed as   

H x = vpo γ ∞ (8)i ij 

where vpi
o is the vapor pressure of pure solute i (liquid or subcooled liquid) and γij 

∞ is the activity 

coefficient of solute (i) in the liquid phase (j) at infinite dilution.  SPARC vapor pressure and activity 

coefficient models can be used to calculate the Henry's constant for any solute out of a  
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mixed solute-solvent liquid phase.  An application of Henry's law constant for the prediction of gas-

liquid chromatography retention time is given in the companion SPARC report [14].   

Liquid/Liquid Partitioning Model 

SPARC calculates the liquid/liquid partition constant, such as the octanol/water distribution 

coefficient, by simply calculating the activity of the molecular species in each of the liquid phases as 

∞ ∞
log K liq1/liq2 = logγ liq 2 

- logγ liq1 
+ log Rm (9) 

where the γ∞s are the infinite dilution activities in the two phases and Rm is the ratio of the 

molecularites of the two phases (M1/M2). Although octanol/water partition coefficients are widely 

used and measured, the SPARC system does not limit itself to this calculation.  SPARC can 

calculate the liquid/liquid partition coefficient for any two immiscible phases.     

Gas/Solid Partitioning Model 

SPARC calculates gas/solid partitioning in a manner similar to gas/liquid partitioning.  For 

the solid phase, the solvent self-self interactions, ∆Gjj, are dropped from the calculation when one of 

the phases is solid. This type of modeling will be useful for calculating retention times for capillary 

column gas chromatography. 

Liquid/Solid Partitioning Model 

SPARC calculates liquid/solid partitioning in a manner similar to liquid/liquid partitioning. 

For the solid phase, the solvent self-self interactions, ∆Gjj, are dropped from the calculation.  

21




The gas/liquid models have been extensively tested against observed Henry’s constant 

measurements.  The two largest data sets are air/water and air/hexadecane systems.  The liquid/solid 

and gas/solid partitioning models are implemented in code but have not been extensively tested.  The 

liquid/liquid partitioning models are the most extensively tested partitioning models due to the large 

octanol/water data sets available. The statistical parameters for SPARC-calculated partition 

constants in many solvents at 25o C are shown in Table 2. Figure 8 shows calculated versus 

observed Henry’s constant for compounds dissolved in hexadecane.  Figure 9 shows the current 

general performance of SPARC for log Ksolvent/water, where the solvents are carbon tetrachloride, 

benzene, cyclohexane, ethyl ether, octanol and toluene.  Figure 10 displays a comparison of the EPA 

Office of water (OW) recommended observed octanol-water distribution coefficients versus SPARC 

and C log P calculated values. The RMS deviation and R2 values were is 0.18 and 0.996 

respectively for SPARC and 0.44 and 0.978 respectively for ClogP calculated values [22]. 
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Figure 8. Observed vs. SPARC-calculated Henry’s constants for 271 organic compounds in 
hexadecane. The RMS deviation was 0.1, while the R2 was 0.997. 
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Figure 9. SPARC-calculated versus observed log distribution coefficients Ksolvent/water for 623 
organic compounds in six solvents at 25o C. The RMS deviation was 0.38 and R2 was 0.983. 
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Figure 10. Test of OW for calculated Koctanol/water versus measured values.  Squares are SPARC 
calculate values, circles are ClogP calculate values. The RMS deviation and R2 values were 0.18 
and 0.996 respectively for SPARC and 0.44 and 0.978 respectively for ClogP calculated values 

Validation of the SPARC Diffusion Coefficient in Air Model 

Several engineering equations exist that do a very respectable job of calculating molecular 

diffusion coefficients in air over wide ranges of temperature and pressure. The equation most 

compatible with the SPARC calculator is also the relationship that seems to perform the best over  
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a wide variety of molecules.  This equation is that of Wilke and Lee [23], which for binary diffusion 

coefficient is expressed as: 

1/ 2 -3 ) T 3/ 2 

(10)DAB =  [3.03 - (0.98 / M AB )](10 1/ 2 2PM ABσ AB ΩD 

 where DAB is the binary diffusion coefficient in cm2/s, T is the temperature in K, MA and MB are 

the molecular weights of A and B in g/mol and MAB is 2[(1/MA) + (1/MB)]-1 and P is the pressure 

in bar. The ΩD is a complex function of T* and has been accurately determined by Neufeld [24].   

SPARC predicts gas phase binary diffusion coefficients at any temperature and pressure 

to better than 6% as shown in Figure 11. The statistical parameters are in Table shown 2. 
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Figure 11. SPARC-calculated vs. observed diffusion coefficient. The RMS deviation was 0.003. 

The overall SPARC physical properties training set output is shown in Figure 12. The 

training set includes vapor pressure (as a function of temperature), boiling point (as a function of 

pressure), diffusion coefficients (as a function of pressure and temperature), heat of vaporization (as 

function of temperature), activity coefficient (as a function of solvent), solubility (as a function of 
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 solvent and temperature), GC retention times (as a function of stationary liquid phase and 

temperature) and partition coefficients (as a function of solvent).  This set includes more than 50 

different pure solvents (see Table 3) as well as 18 mixed solvent systems.   The observed measured 

values for the training and validations sets were from many sources such as references 26-34.    

 For other SPARC physical properties models such as GC/LC retention time in polar and 

non-polar liquid phase, heat of vaporization and diffusion coefficient in water, see reference 14. 

Figure 12. SPARC-calculated vs. 2400 observed training set physical property values. The aggregate 
RMS is 0.29 and R2 is 0.997.  For more details see text. 
 
 
 
Table 3. Solvents that have been tested in SPARC 

Chloroform  1-butanol 1-chloro hexadecane 1-dodecanol             OV-101 
1-propanol  butanone 1-nitro propane              2-dodecanone           isopropanol     
isobutanol  acetone  2-nitro propane               aceteonitrile             PEG-20M 
benzyl ether  benzene  benzylchloride  benzonitrile              SE-30  
cyclohexane  decane  bromobenzene  butronitrile               pyridine 
cyanohexane  ethanol  dioctyl ether  cyano cyclohexane  water 
heptane                hexane  hexadecane  heptadecane             squalane 
methanol  nonane  1-butyl chloride              nitrobenzene            1-me naphthalene 
nitroethane  octane  nitro cyclohexane nitro methane          2-me naphthalene 
nonanenitrile  squalene            pentadecane nitrile isoquinoline              m-cresol 
quinoline                         phenol                1,2,4 trichlorobenzene hexafluorobenzene    p-xylene 
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SPARC CHEMICAL REACTIVITY MODELS 

SPARC reactivity models have been designed and parameterized to be portable to any 

chemical reactivity property and any chemical structure.  For example, chemical reactivity models 

are used to estimate ionization pKa, zwitterionic constant, isoelectric point and speciation 

fractions as a function of pH.  The same reactivity models are used to estimate gas phase electron 

affinity and ester hydrolysis rate constants in water and in non-aqueous solutions. 

Validation of the SPARC pKa in water Models 

Like all chemical reactivity parameters addressed in SPARC, molecular structures are 

broken into functional units called the reaction center and the perturber in order to estimate pKa 

in water. The reaction center, C, is the smallest subunit that has the potential to ionize and lose a 

proton to a solvent. The perturber, P, is the molecular structure appended to the reaction center, 

C. The pKa of the reaction center is adjusted for the molecule in question using the mechanistic 

perturbation models.  The pKa for a molecule of interest is expressed in terms of the 

contributions of both P and C. 

+ ( pKpKa = (  pKa )c δ p a )c (11)  

where (pKa)c describes the ionization behavior of the reaction center, and δp(pKa)c is the change 

in ionization behavior brought about by the perturber structure given as 

δ p( pKa )c = δ ele pKa +δ res pKa +δ sol pKa+... (12)  

where δrespKa, δelepKa and δsolpKa describe the differential resonance, electrostatic and solvation 

effects of P on the initial and final states of C, respectively.  
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The SPARC pKa calculator was trained on 2500 organic molecules, then validated on 

4338 pKa’s (4550 including carbon acid) in water as shown in Figure 13 and Table 4. The 

calculator was tested for multiple ionization’s up to the 6th (simple organic molecules) and 8th (azo 

dyes) for molecules with multiple ionization sites.  In addition, the pKa models were tested on all 

the literature values we found for zwitterionic constants (12 data points), the thermodynamic 

microscopic ionization constants, pki, of molecules with multiple ionization sites (120 

measurement data points, the RMS deviation error is 0.5), the corresponding complex speciation 

as a function of pH and the isoelectric points (29 measurement data points) in water. The 

diversity and complexity of the molecules used was varied over a wide range in order to develop 

more robust models during the last few years.  Hence, the SPARC pKa models are now very 

robust and highly tested against almost all the available experimental literature data. 

While it is difficult to give a precise standard deviation of a SPARC calculated value for 

any given individual molecule, in general SPARC can calculate the pKa for simple molecules 

such as oxy acids and aliphatic bases and acids within ±0.25 pKa units; ±0.36 pKa units for most 

other organic structures such as amines and acids; and ±0.41 pKa units for =N and in-ring N 

reaction centers and for complicated structures.  Where a molecule has more than six ionization 

sites (n > 6), the expected SPARC error is ±0.65 pKa units. For more details see reference 14.

 Table 4. Statistical Parameters of SPARC pKa Calculations 
Set Training R2 RMS Test R2 RMS 
Simple organic compounds 793 0.995 0.235 2000 0.995 0.274 
Azo dyes compounds 50 0.991 0.550 273 0.990 0.630 
IUPAC compounds1 2500 0.994 0.356 43382 0.994 0.370 

1. Observed values are from many ref. such as 35-36 
2. Carbon acid pKas are not included 
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Figure13. SPARC-calculated versus observed for 4338 pKa's of 3685 organic compounds. The 
RMS deviation was equal to 0.37. This test does not include carbon acid reaction center. The 
majority of the molecules are complex compounds.  Some of the molecules such as azo dyes 
have 8 different ionization sites.   
 
 
 

Validation of the SPARC Carboxylic Acid Ester Hydrolysis Rate Constant Models 

 Reaction kinetics were quantitatively modeled within the chemical equilibrium 

framework described previously for ionization pKa in water.  It was assumed that a reaction rate 

constant could be described in terms of a pseudo equilibrium constant between the reactant and 

transition states.  SPARC therefore follows the modeling approach described for pKa.  For these 

chemicals, reaction centers with known intrinsic reactivity are identified and the reaction rate 

constants expressed by perturbation theory as 

kkk cpc logloglog ∆+=         (13)  

where log k is the log of the rate constant of interest; log kc is the log of the intrinsic rate constant 

of the reaction center and ∆plog kc denotes the perturbation of the log rate constant due to the 

appended structure.  
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 The ester hydrolysis rate constant models have been tested to the maximum extent possible 

as function of temperature and solvent.  The RMS deviation error for 1470 hydrolysis rate constants 

in 6 solvents and at different temperature was 0.37 as shown in Figure 14.  In this test, there were 

653, 667 and 150 base, acid and general base catalyzed calculations performed as shown in Table 5 

[14, 25].   

 
 
Table 5. Statistical Parameters of SPARC Calculated Hydrolysis Rate Constants (M-1s-1) 

Solvent           Base              Acid           Gbase 
 No          RMS       R2 No            RMS      R2 No        RMS    R2 
Water 142 0.39      0.98 383  0.36       0.98 51  0.34     0.98 
Acetone/Water 143 0.34      0.83 208  0.33       0.96 73  0.36     0.96 
Ethanol/Water 105 0.29      0.83 39  0.17       0.98 9  0.1       0.99 
Methanol/Water 150 0.36      0.78 22  0.22       0 .95 N/A  
Dioxnae/Water 90 0.47      0.75 15  0.16       0.87 17  0.47      0.67 
Aceteonitrile/Water 24 0.3        0.97 N/A   N/A  
Total Molecules 654 0.37      0.96 667 0.37         0.97 150 0.39       0.97 

The observed-measured values are from many references such as 37-40 
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Figure 14. SPARC-calculated versus observed hydrolysis rate constants for base, acid and 
general base in six different solvents and at different temperatures.  The aggregate RMS was 0.37.  



Validation of the SPARC Electron Affinity (EA) Models 

As was the case for pKa, the SPARC computational procedure starts by locating the 

potential sites within the molecule at which a particular reaction of interest could occur.  In the 

case of EA these reaction centers, C, are the smallest subunit(s) that could form a molecular 

negative ion. Any molecular structure appended to C is viewed as a "perturber" (P). EA as 

expressed in terms of the summation of the contributions of all the components, perturber(s) and 

reaction center(s), in the molecule: 

n 

EA = ∑ [(EA ) + (  ∆EA ) ] (14)δ pc c 
c=1 

where the summation is over n, which is defined as the number of reaction centers in the 

molecule. (EA)c is the electron affinity for the reaction center. δp(∆EA)c is a differential quantity 

that describes the change in the electron affinity behavior affected by the perturber structure.  

In the estimation of EA, there was no modifications to any of the pKa models or any extra 

parameterization for P to calculate electron affinity from ionization pKa models other than inferring 

the electronegativity and the electron affinity susceptibility of the reaction centers (C) to 

electrostatic and resonance effects [4]. 

The EA models have been tested to the maximum extent possible on all the gas phase 

electron affinity measurements reported by Kebarle, McIver and Wentworth [4]. The RMS 

deviation for the 260 EA’s was 0.14 e.V. and R2 was 0.98 as shown in Figure 15. The statistical 

parameters are shown in Table 2. 
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Figure 15. SPARC-calculated versus observed electron affinity for 260 organic compounds.  The 
RMS deviation was 0.14 e.V. and R2 was 0.98. 

MONOPOLE MODELS (IONIC SPECIES) 

The SPARC models were extended to ionic organic species by incorporating monopole 

(charge) electrostatic interaction models to SPARC's physical properties toolbox.  These ionic 

models play a major role in modeling and estimating Henry’s constant for charged (ionic) species in 

any solvent system.  These capabilities (ionic activity) in turn allow SPARC to calculate gas phase 

pKa, and non-aqueous ionization pKa and E1/2 chemical reduction in any solvent system.    

Validation of the SPARC Monopole Models 

The SPARC monopole models have been tested on all the available data for Henry’s 

constant for charged molecules in water, unfortunately there was only 12 data points.  However, the 

SPARC Ionization pKa in water coupled with Henry’s constant for charged molecules was used to 

estimate 400 pKa‘s in the gas phase and 300 pKa‘s in non-aqueous solvents. Also, SPARC 

electron affinity calculator coupled with Henry’s constant for charged molecules was used to  
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estimate 352 E1/2 chemical reduction data measurements.  See Table 2 and for more details see 

reference 14. 

QUALITY ASSURANCE 

A quality assurance (QA) plan was developed to recalculate all the aforementioned physical 

and chemical properties and compare each calculation to an originally-calculated value stored in 

the SPARC databases. Every quarter, two batch files that contain more than 3000 compounds 

(4200 calculations) recalculate various physical and chemical properties. QA software compares 

every single “new” output to the SPARC originally-calculated-value dating back to 1993-1999. 

This ensures the integrity of the SPARC model as new features are added. 

CONCLUSION 

The strength of the SPARC chemical reactivity parameters and physical properties 

calculator is the ability to estimate numerous properties for a wide range of organic compounds 

within an acceptable error, especially for molecules that are difficult to measure.  The SPARC 

physical properties/chemical reactivity parameters calculator prediction is as reliable as most of the 

experimental measurements for these properties.  For simple structures, SPARC can calculate a 

property of interest within a factor of 2 or even better.  For complex structures where dipole-dipole 

and/or H-bond interactions are strong, properties can generally be calculated within a factor of 3-4. 

The true validity of the SPARC physical/chemical property models does not lie in the 

models’ predictive capability for pKa, or solubility, but is determined by the extrapolatability of 

these same models to other types of chemistry.  The ability of SPARC models to be extended to 

various chemical/physical properties without modification or extra parameterization to any of the 

basic models, provides great confidence in this powerful calculation tool. 
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APPENDIX 

Summary of usage of the SPARC-web version 

Two months back-to-back report, which represents the usage of the SPARC calculator in 
October and November, 2002.  November was the highest while October was the lowest usage to 
date. 

Summary of Activity for Report 

October 2002 

Hits Entire Site (Successful) 56,875 
Average Number of Hits per day on Weekdays 
2,153 
Average Number of Hits for the entire 
Weekend 1,297  
Most Active Day of the Week Thu  
Least Active Day of the Week Sat  
Most Active Day Ever October 24, 2002 
Number of Hits on Most Active Day 4,963  
Least Active Day Ever October 05, 2002 
Number of Hits on Least Active Day 7  

URL's of most active users 

207.168.147.52 463 
p120x183.tnrcc.state.tx.us 3,986 
141.189.251.7 1,720 
198.137.21.14 455 
57.67.16.50 327 
 gateway.huntingdon.com 6,823 
 aries.chemie.uni-erlangen.de 1,487  
p120x226.tnrcc.state.tx.us 67 
 thompson.rtp.epa.gov 413  
webcache.crd.GE.COM 143 

November 2002 

Hits Entire Site (Successful) 95,447 
Average Number of Hits per day on Weekdays 
4,146 
Average Number of Hits for the entire 
Weekend 842  
Most Active Day of the Week Wed  
Least Active Day of the Week Sun  
Most Active Day Ever November 13, 2002  
Number of Hits on Most Active Day 15,450  
Least Active Day Ever November 02, 2002  
Number of Hits on Least Active Day 7  

URL's of most active users 

141.189.251.7 1,223 
 gw.bas.roche.com 1,821 
 gateway.huntingdon.com 3,729 
p120x183.tnrcc.state.tx.us 737 
hwcgate.hc-sc.gc.ca 660 
p120x226.tnrcc.state.tx.us 379 
 thompson.rtp.epa.gov 563  
chen.rice.edu 966 

SPARC is online and can be used at http://ibmlc2.chem.uga.edu/sparc 
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