Evaluation of Green Infrastructure Designs Using the Automated Geospatial Watershed Assessment Tool

D. Phillip Guertin¹, Yoganand Korgaonkar¹, I. Shea Burns¹, Jane Barlow¹, Carl Unkrich², David C. Goodrich², and William Kepner³

¹University of Arizona ²Agricultural Research Service ³U.S. EPA
Outline

• Integrated Watershed Management in Arid Built Environments
• Urban Toolkit in the Automated Geospatial Watershed Assessment Tool
• Case Study in Sierra Vista, AZ
• Conclusions and Future Directions
Fixed spelling of integrated on Slide
"Outline"

Yoga Korgaonkar, 7/28/2015
Integrated Watershed Management

Integrated Watershed Management (IWM) is a comprehensive multi-resource management process, involving all stakeholders within the watershed, who together as a group, cooperatively work toward identifying the watershed’s resource issues and concerns.

IWM addresses the interrelationships between:
Water Supply – The Primary Driver in Built Arid Environments
 Flood Control
 Water Quality
 Biological Resources (Natural and Landscaping)
 Sustainable Communities (Greenness)
 Social/Economic Issues
Changed formatting
Yoga Korgaonkar, 7/28/2015
‘Harvestable’ Water (Rainwater/Stormwater) - Potential to Augment Water Supply
(From: Dr. Evan Canfield – Pima County Flood Control)
Low Impact Development (LID) Practices

• The effectiveness of a practice depends on your objective.
• If your objective is to capture stormwater to mitigate flood and water quality
 • Pervious Surfaces – driveways, roads, parking lots are very effective
• But if your primary goal is to augment water supplies then
 • Water Harvesting
 • Rain Gardens
 • Bio-retention Cells – with vegetation, are more effective

• Need tools that can assess the effects of different combinations of LID practices and evaluate between different development designs.
Automated Geospatial Watershed Assessment Tool
AGWA

- Endpoints: volume & peak runoff, sediment, plus N and P
- Simple, direct method for model parameterization
- Provide repeatable results for relative change assessments
- Five hydrologic models to address multiple scales
 - SWAT (2000, 2005) for large basins, daily time steps
 - KINEROS2 and KINEROS-OPUS for small basins, sub-hour time steps
 - Hillslope Runoff and Erosion Models (RHEM)
- Basic GIS functionality
 - watershed delineation
 - watershed discretization
 - model parameterization
 - execute the models
 - visualize results spatially and difference results across multiple simulations
Urban Toolkit

- Within the KINEROS2 Model
- Flow Route Delineation – routing water down streets or swales
- Lot Representation – potential to uniquely represent each lot
 - Impervious Area
 - Contributing Area
 - Flow Off → Flow On Processes
- LIDs on Lots
 - Basins
 - Water Harvesting
 - Pervious Surfaces
- Gray Infrastructure
 - Detention/Retention Ponds
- Visualization of Results
Formatting and slide layout
Yoga Korgaonkar, 7/28/2015
Lot Representation

- Each Home or Commercial Lot can have its own design.
- Based on the Lot Characteristics (setback, etc.) and LID practices, a lot is broken up into planes with difference input parameters.
- Flow Off \rightarrow Flow On processes can be modeled.
- Water can be captured and non-contributing areas can be identified.
fixed typos

Yoga Korgaonkar, 7/28/2015
Case Study

- La Terraza Subdivision in Sierra Vista, AZ (13 ha)
- Two Events (SCS Type II Design Storm)
 - 10 year Return Period (34.29 mm; 1 hour)
 - 100 year Return Period (51.82 mm; 1 hour)
- Three LID Practices – Lot Only
 - Small Retention Basin (1.7 m3; Ks = 201 mm/hr)
 - Pervious Driveway (Ks = 210 mm/hr)
 - Water Harvesting (1.9 m3; Empty)
- Ten Scenarios
 - No LID Practices
 - Single LID Practice
 - Two LID Practices
 - All Three LID Practices
Results

• Post-Development Validation (Kennedy et al. 2013)

\[y = 1.02x \quad R^2 = 0.91 \]

\[y = 1.04x \quad R^2 = 0.92 \]
Results

10 Year Return Period

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Peak Runoff (m3/s)</th>
<th>% Change in Peak Runoff wrt Pre-development</th>
<th>% Change in Peak Runoff wrt Post-Development</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-development</td>
<td>1.49</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Post-development without LID</td>
<td>2.28</td>
<td>53.37</td>
<td>NA</td>
</tr>
<tr>
<td>Retention Basin</td>
<td>2.24</td>
<td>50.26</td>
<td>-2.03</td>
</tr>
<tr>
<td>Permeable Pavements</td>
<td>2.25</td>
<td>51.21</td>
<td>-1.41</td>
</tr>
<tr>
<td>Rainwater Harvesting</td>
<td>2.12</td>
<td>42.29</td>
<td>-7.22</td>
</tr>
<tr>
<td>Retention Basin + Permeable Pavements</td>
<td>2.20</td>
<td>48.03</td>
<td>-3.48</td>
</tr>
<tr>
<td>Retention Basin + Rainwater Harvesting</td>
<td>2.07</td>
<td>38.88</td>
<td>-9.45</td>
</tr>
<tr>
<td>Permeable Pavements + Rainwater Harvesting</td>
<td>2.08</td>
<td>40.09</td>
<td>-8.66</td>
</tr>
<tr>
<td>All LID practices</td>
<td>2.03</td>
<td>36.66</td>
<td>-10.90</td>
</tr>
</tbody>
</table>
Results

100 Year Return Period

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Peak Runoff (m3/s)</th>
<th>% Change in Peak Runoff wrt Pre-development</th>
<th>% Change in Peak Runoff wrt Post-Development</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-development</td>
<td>2.92</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Post-development without LID</td>
<td>3.85</td>
<td>31.75</td>
<td>NA</td>
</tr>
<tr>
<td>Retention Basin</td>
<td>3.80</td>
<td>30.08</td>
<td>-1.27</td>
</tr>
<tr>
<td>Permeable Pavements</td>
<td>3.80</td>
<td>30.05</td>
<td>-1.29</td>
</tr>
<tr>
<td>Rainwater Harvesting</td>
<td>3.77</td>
<td>29.03</td>
<td>-2.06</td>
</tr>
<tr>
<td>Retention Basin + Permeable Pavements</td>
<td>3.75</td>
<td>28.37</td>
<td>-2.56</td>
</tr>
<tr>
<td>Retention Basin + Rainwater Harvesting</td>
<td>3.72</td>
<td>27.29</td>
<td>-3.38</td>
</tr>
<tr>
<td>Permeable Pavements + Rainwater Harvesting</td>
<td>3.72</td>
<td>27.33</td>
<td>-3.35</td>
</tr>
<tr>
<td>All LID practices</td>
<td>3.67</td>
<td>25.59</td>
<td>-4.67</td>
</tr>
</tbody>
</table>
Results

Lot and Street Visualization

[Map images showing flow routes, streets, infiltration (% change), runoff (% change), and post-development with all GI compared to pre-development. Another map shows post-development without GI compared to pre-development.]
Conclusions

• Modeling framework works well on developed watersheds
• Supports the evaluation of different designs.
• Supports the assessment of the accumulative impacts of LID practices.
• Supports detailed representation and modeling of lot and drainage features on a small catchment.
• Future research includes:
 • Adding more LID practices and gray infrastructure practices.
 • Improve the hydrological representation of LID practices.
 • Improve the parameterization for LID practices.
 • Validation of LID Simulation. Data Sets?
 • Provide linkages to other software (e.g. SWMM).
 • Add water quality (N & P) modeling capability.
Acknowledgements

• Special thanks are accorded to Dr. David Woolhiser and Dr. Roger Smith for their many contributions to the K2 model.

• A host of graduate students, too numerous to list here, are commended for their contributions to and testing of K2 and AGWA.

• The U.S. Environmental Protection Agency provided support for this research.