Ecosystem Function: Cyanobacteria Solutions, A Missed Opportunity?

Robert K. Hall,¹ Sherman Swanson,² Robin J. Schafer,³ Joan L. Aron,⁴ Michael J. Philbin,⁵ Daniel T. Heggem,⁶ John Lin⁷ and David Guiliano¹

¹USEPA Region IX, WTR2, 75 Hawthorne St., San Francisco, CA 94105, hall.robertk@epa.gov
²Natural Resources & Environmental Sciences, University of Nevada, 1684 N. Virginia MS 186, Reno, NV
³University of Puerto Rico, San Juan, Puerto Rico.
⁴Aron Environmental Consulting, Columbia, Maryland.

⁵U.S. Dept. of the Interior Bureau of Land Management, Montana/Dakotas State Office, Billings, Montana
 ⁶USEPA Office of Research & Development, NERL, Environmental Sciences Division, Las Vegas, NV
 ⁷USEPA Office of Research & Development, NERL, ESD, Landscape Ecology Branch, Las Vegas, NV

Ecosystem Functions: Answers and Solutions

- The answer to all things environmental is "It Depends."
- To find answers and define solutions, we need to know the problem
- Solution to nonpoint source (NPS) pollution is managing for ecosystem function.
 - Look for the cause, solve the problem not the symptom
 - Management for stream and wetland riparian functions
 - Need partners, the communities, within the watershed to solve the problem
- However, if the knee jerk reaction to a problem is using regulatory authority, than the solution will allude us (i.e., treating the symptom).
 - <u>http://www.lakeeriewaterkeeper.org/wp-content/uploads/2012/04/lew-conf-lake-erie-hess.pdf</u>

For example: Toledo, OH, and Lake Erie What is the problem? Need to reduce sediment and nutrient loads to curb algal blooms (cyanobacteria)

What is the problem? Answers and Solutions: <u>Ecosystem Function</u>

Potential? Swamp with a network of forests, wetlands, and grasslands Hydrology? Nineteenth century settlers drained the swamp and converted to farmland Vegetation? Obligate and facultative wetland plant communities (sedges, rushes, etc.) Soil and Landform? Hydric soils, low lying proglacial karst topography

Google earth

Introduction

- Drinking Water
- Ecosystem Function
- Cyanobacteria
- Case Studies
- Solutions
- Conclusion

Drinking Water

- What are we most worried about quality, quantity?
- How do we get Quality and Quantity?
- What are the sources groundwater, surface water, treated?
- What makes New York City's drinking water economical both in quality and quantity?

Answer can be summed up:

"Riparian functions keep water on the land longer, reduce flood and drought effects, improve water quality, enhance forage and habitats, and focus monitoring for management." Sherman Swanson, UNR

Drinking Water

"Riparian functions keep water on the land longer (quantity), reduce flood and drought effects (sequesters nutrients and other pollutants, excess sediment – see Toledo, OH), improve water quality, enhance forage and habitats, and focus monitoring for management ('the' solution, which can also be written as 'focus of adaptive management')."

Sherman Swanson, UNR < One smart dude

Ecosystem Function

- Stream and wetland riparian function
- Proper Functioning Condition (PFC)
 - Potential
 - Indicators
 - Drivers of Ecosystem Function Vegetation, hydrology, soil and landform
 - Response sediment, nitrogen (N), phosphorus (P)

Stream and wetland riparian functions integrate the relationships between species, their habitats and fostering ecosystem resilience, which is critical to resilience – i.e., ensuring long-term sustainability.

These relationships are dependent on the drivers of ecological function – vegetation, hydrology, soil and landform

Stream food web from Nakano, et al., 1999.

Upland	Riparian	Aquatic	Riparian	Upland
Żone	Zone	Zone	Zone	Zone

What is a Riparian Area?

Riparian areas are the lush, well-vegetated areas immediately adjacent to streams, lakes, ponds and other bodies of water. Riparian vegetation requires the influence of surface or ground water.

Proper Functioning Condition (PFC)

Understand Attributes, Processes & Potential to Determine Functionality, Risks, Needs, Management, and Monitoring

Potential

 Highest ecological status a riparian area can attain given no political, social or economic constraints

NATURAL RIPARIAN RESOURCES

PROPER FUNCTIONING CONDITION – DEFINITION

- RIPARIAN-WETLAND areas are functioning properly when adequate vegetation, landform, or large woody debris is present to:
 - Dissipate STREAM ENGERGY associated with high flows
 - Filter SEDIMENT and CAPTURE BED LOAD
 - Aid FLOODPLAIN DEVELOPMENT
 - Improve FLOOD WATER RETENTION and GROUNDWATER RECHARGE
 - Stabilize STREAMBANKS

Degradation Rates

Recovery Rates

Bear Creek May 1977

Bear Creek Oct 1996

Difference in Air & Water Temperatures

Difference in Air & Water Temperatures

Bear Creek - Central Oregon

1998

Bear Creek (3.5 Miles)

	1978	1994
Riparian Area	3.8 acres	12 acres
Bank Erosion	12,448 feet	799 feet
Water Storage	500,000 gal/mi	2,096,000 gal/mi
Production	200 lbs/acre	2000 lbs/acre

Data from C. Rasmussen (1996) and W. Elmore

Cyanobacteria - Microcystin

- Toxins are classified by how they affect the human:
 - Hepatotoxins affect the liver;
 - Neurotoxins affect the nervous system;
 - Dermal irritants, affect the skin.
- Dose Makes the Response why no human deaths, but plenty of animal deaths.
- Microcystins are both hepatotoxins and dermal irritants

Dose Makes the Response

- USEPA Health Advisory for algal toxins May 6, 2015
 - For children younger than school age, USEPA recommends drinking water values not to be exceed:
 - Micrcystin-LR 1.6 ug/L
 - Cylindrospermopsin 3.0 ug/L
 - For all ages, USEPA recommends drinking water values not to exceed:
 - Microcystin-LR 0.3 ug/L
 - Cylindrospermopsin 0.7 ug/L
- USEPA recommends:
 - Monitoring for algal blooms
 - Treating water as necessary
 - Establish advisories when concentration comes close to and/or exceed above values

Cyanobacteria: A Case Study

- Redfield Ratio atomic ratio of carbon, nitrogen and phosphorus (C:N:P
 - = 106:16:1) found in phytoplankton
 - N:P in plankton tends to the N:P composition of seawater
 - If it's in the water, it will be found in plant communities primary producers
- Redfield Ratio is used to determine which nutrient is limiting for the formation of phytoplankton blooms/hypozia.
 - N:P ratio >17, P assumed limiting factor; N:P ratio <10, N assumed limiting factor; N:P ratio >10 and <17, either N or P is limiting
- Temperature
 - Blooms usually occur later in the summer
 - Pathogens Note: "If it's in the water, stuff will happen."

Eutrophication

Lemolo Lake

USDA Image – July 6, 2014

Google earth

Case Study 1. Diamond and Lemolo lakes

Mount Bailey

Diamond Lake
Diamond Lake

•

Image USDA Farm Service Agency

Case Study 1. Diamond and Lemolo lakes

USDA Image, August 11, 2012

Lemolo Lake Lemolo Lake

Number of days Listed

August, 2007

D July, 2012

		May, 1994	August, 2000	August, 2007	July, 20
	Delta	50	80	120	110
	Stream Channel Width	4	5	4	<4
1	Algal Extent	NA	30	41	57

~120 m

~40 m

~4 m

~110 m

~60 m

<4 m Roberts Creek

Goo

Case Study 2. Tenmile Lakes

August 2005

July 2012

Dregon italGlobe

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

120

100

40

Solutions: Immediate – Management Response

Environmental Risk - Break the pathway

- Cyanobacteria Microcystin, Toledo, Ohio
 - Provide water
- Uranium, Yerington, Nevada, Anaconda Mine,
 - Provide water
- However, this is unsustainable

Short Term – Management Response

State of Oregon DEQ Number of HAB Advisories and Days Under Advisory By Year

This is unsustainable as well. Why? Response (lagging) indicators. What do we need? Drivers of physical processes.

Long-Term Management - Watersheds that capture, store & safely release water

Long Term Management

 Potential is based upon a concept of dynamic equilibrium within an ecosystem corresponding to measures of the physical setting

i.e., vegetation, hydrology, soil and landform

Lakes, reservoirs, rivers and wetlands are complex ecosystems

For example - Lemolo Lake and Diamond Lake, Oregon

 Risk to an ecosystem is contingent on the ability of that ecological system to achieve its functional state, or proper functioning condition, given that it has an anthropogenic use.

For example – Toledo River, Ohio

Nature is not static but adjusts and adapts to climatic and anthropogenic stresses

• For example - Tenmile Lakes, Oregon

A functional and resilient ecosystem is sustainable.

Conclusions

• Solutions

- 1. Think Management
 - Manage the ecosystem for functions
 - A proper functioning condition watershed will provide resilience and sustainable goods and services

2. Think Long-term Management

• Solve the problem before it becomes a problem

Indicators

- Drivers of Ecosystem Function leading indicators
 - Vegetation, hydrology, soil and landform
- Response indicators (e.g., water quality) are lagging
 - may not respond in time to make a decision

Proper functioning condition (PFC)

- A way of brining communities together
- Integrating science in collaborative decision making

