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ABSTRACT 10 

The new version of EPA’s positive matrix factorization (EPA PMF) software, 5.0, includes three 11 

error estimation (EE) methods for analyzing factor analytic solutions: classical bootstrap (BS), 12 

displacement of factor elements (DISP), and bootstrap enhanced by displacement (BS-DISP). 13 

These methods capture the uncertainty of PMF analyses due to random errors and rotational 14 

ambiguity. To demonstrate the utility of the EE methods, results are presented for three data sets:  15 

(1) speciated PM2.5 data from a chemical speciation network (CSN) site in Sacramento, 16 

California (2003–2009); (2) trace metal, ammonia, and other species in water quality samples 17 

taken at an inline storage system (ISS) in Milwaukee, Wisconsin (2006); and (3) an organic 18 

aerosol data set from high-resolution aerosol mass spectrometer (HR-AMS) measurements in 19 

Las Vegas, Nevada (January 2008). We present an interpretation of EE diagnostics for these data 20 

sets, results from sensitivity tests of EE diagnostics using additional and fewer factors, and 21 

recommendations for reporting PMF results. BS-DISP and BS are found useful in understanding 22 

the uncertainty of factor profiles; they also suggest if the data are over-fitted by specifying too 23 

many factors. DISP diagnostics were consistently robust, indicating its use for understanding 24 

rotational uncertainty and as a first step in assessing a solution’s viability. The uncertainty of 25 

each factor’s identifying species is shown to be a useful gauge for evaluating multiple solutions, 26 

e.g., with a different number of factors.  27 

HIGHLIGHTS 28 

 We provide examples and interpretation of new error estimation methods in EPA PMF 29 

 Multiple error estimation methods improve understanding of rotational uncertainty 30 

 Multiple error estimation methods provide range of uncertainty in factor profiles 31 
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1. INTRODUCTION  34 

Multivariate receptor modeling tools are widely used for examining patterns in environmental 35 

data. Positive matrix factorization (PMF) is one such model and data analysis tool that 36 

decomposes a matrix of speciated sample data into two matrices—factor contributions and factor 37 

profiles—in order to understand the factors or sources impacting the speciated sample data 38 

(Poirot et al., 2001; Paatero et al., 2014; Paatero et al., 2003; Reff et al., 2007; Ulbrich et al., 39 

2009; Zhang et al., 2011; Hopke, 2008; Kim and Hopke, 2007; McCarthy et al., 2013; Brown et 40 

al., 2012). The two most common PMF programs are PMF2 and ME-2, in addition to EPA PMF, 41 

a freely available graphical user interface (GUI) developed by the U.S. Environmental Protection 42 

Agency (EPA) that uses the ME-2 program. The detailed methods of these programs have been 43 

documented elsewhere (Paatero, 1997; Paatero and Tapper, 1994), and are summarized below.  44 

A speciated data set can be viewed as a data matrix X of dimensions n by m, in which n samples 45 

and m chemical species were measured. Rows and columns of X and of related matrices are 46 

indexed by i and j, respectively. The goal of multivariate receptor modeling, for example with 47 

PMF, is to identify the number of factors p, the species profile f of each factor, and the amount of 48 

mass g contributed by each factor to each individual sample that solve the chemical mass balance 49 

between measured species concentrations and factor profiles (Equation 1): 50 
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where eij is the residual for each sample/species and cij is the modeled solution of xij. Entire 52 

matrices are denoted by capital bold-face letters. Columns of the factor contribution matrix G 53 

may be denoted by gk, and similarly rows of factor profile matrix F denoted by fk.  54 

In PMF, factor elements are constrained so that no sample can have a significantly negative 55 

contribution. PMF allows each data value to be individually weighted. This feature allows 56 

analysts to adjust the influence of each data point, depending on the confidence in the 57 

measurement. The PMF solution minimizes the object function Q (Equation 2) via a conjugate 58 



gradient algorithm, based upon the estimated data uncertainties (or adjusted data uncertainties) 59 

uij. 60 
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In some scientific disciplines, data rows are normalized (e.g. to sum=1) before the data matrix is 62 

analyzed by PMF models. In such a scaled matrix the errors of data values are not uncorrelated. 63 

However, such normalization does not require any special attention before fitting the data with 64 

PMF: For any row i, the fitted values gik take care of any error in normalization (i.e. of the 65 

correlated part of the error) on row i, so that fitting the values fkj only deals with the original 66 

uncorrelated errors.   67 

ME-2 is the underlying program used to solve the PMF problem in EPA PMF (Norris et al., 68 

2014), the GUI that feeds the data and user specifications to ME-2. ME-2 then performs the 69 

iterations via the conjugate gradient algorithm until convergence to a minimum Q value is 70 

obtained. The minimum Q may be global or local; users can attempt to determine whether Q 71 

values are global or local by using different starting points for the iterative process and 72 

comparing the minimum Q values reached. Output from ME-2 is then fed back through EPA 73 

PMF and formatted for users to use and visualize. The latest version of EPA PMF, version 5.0, 74 

includes a revised signal/noise (S/N) calculation and new error estimation (EE) methods. S/N 75 

details are in the EPA PMF Fundamentals and User Guide (Norris et al., 2014), while details of 76 

EE methods are summarized here and presented fully in Paatero et al. (2014). In conjunction 77 

with the new EPA PMF version, this manuscript demonstrates the utility of the multiple EE 78 

methods over multiple case studies (speciated fine particulate matter [PM2.5] data from 79 

Sacramento; water quality data from Milwaukee; and high-time-resolution aerosol mass 80 

spectrometer (HR-AMS) data from Las Vegas) and provides recommendations for reporting 81 

PMF results. These case study examples using different ambient data sets are presented to 82 

complement the theory behind new EE methods in EPA PMF and ME-2, and synthetic data 83 

analyses presented in a companion paper (Paatero et al., 2014). Together, they show the use of 84 

multiple EE methods. 85 



2. METHODS 86 

2.1 Error Estimation in EPA PMF and ME-2 87 

As described in detail in Paatero et al. (2014) variability in the PMF solution has traditionally 88 

been assessed via bootstrapping (BS), where multiple PMF solutions are generated by using a 89 

series of data sets that are resampled versions of the original data set. EPA PMF performs BS by 90 

randomly selecting non-overlapping blocks of consecutive samples (block size is suggested by 91 

the software or by the user) and creating a new input data file of the selected samples, with the 92 

same dimensions (i.e., number of samples and number of species) as the original data set. PMF is 93 

then run on the new resampled data set, and each BS factor is mapped to a base run factor by 94 

comparing factors’ contributions (G matrix) for those samples included in the resampled data set. 95 

The BS factor is assigned to the base factor with which the BS factor has the highest uncentered 96 

correlation, above a user-specified threshold. If no base factors have a correlation above the 97 

threshold for a given BS factor, that factor is considered “unmapped.”  If more than one BS 98 

factor from the same run is correlated with the same base factor, they will all be mapped to that 99 

base factor. This process is repeated for as many BS runs as the user specifies. In this manner, an 100 

understanding of the uncertainty of the apportionment of each species in each factor is found. 101 

EPA PMF and ME-2 now have two additional EE methods: displacement (DISP) analysis and 102 

bootstrapping with displacement (BS-DISP). The three methods are complementary and can be 103 

used to understand the uncertainty of a PMF solution: 104 

1. BS intervals include effects from random errors and partially include effects of rotational 105 

ambiguity. If the user misspecifies data uncertainties, this modeling error usually has 106 

minimal impact in BS results. 107 

2. DISP intervals include effects of random errors and rotational ambiguity. If the user 108 

specifies too-small data uncertainties, then this modeling error results in DISP intervals 109 

that are too short. Specifying too-large data uncertainties, e.g., when a species is made 110 

weak intentionally, results in DISP intervals that are too long.  111 



3. BS-DISP intervals include effects of random errors and rotational ambiguity. If the user 112 

misspecifies data uncertainty, BS-DISP results are more robust than for DISP since the 113 

DISP phase of BS-DISP does not displace as strongly as DISP by itself. 114 

With DISP, each fitted element in F in the base PMF solution is “displaced” from its fitted value 115 

far enough so that Q increases by a predetermined amount called dQmax. Each such extended 116 

displacement is interpreted as the upper or lower interval estimate of the perturbed variable, thus 117 

yielding an uncertainty estimate for each species in each factor profile. The uncertainty estimate 118 

consists of both data uncertainties (data noise) and rotational ambiguity. Depending on the data 119 

set in question, one or the other may be more significant. In EPA PMF, only “strong” species are 120 

actively displaced in DISP. Since “weak” variables have their uncertainty increased by a factor 121 

of 3 and DISP intervals are directly related to species uncertainties, these result in large error 122 

estimates for weak species. Hence, only “strong” species are displaced in DISP.  123 

BS-DISP was developed to combine BS’s strength of robustness to data errors and DISP’s 124 

strength of capturing rotational uncertainty. BS-DISP is a combination of BS and DISP methods 125 

in which each resampled data set is decomposed into profile and contribution matrices and then 126 

fitted elements in F are displaced. The collection of all results from the process of resampling, 127 

decomposing, and displacing is then summarized to derive uncertainty estimates. Intuitively, this 128 

process may be viewed as follows: each BS resample results in one solution that is randomly 129 

located within the rotationally accessible space. Then, the DISP analysis determines an 130 

approximation for the rotationally accessible space around that solution. Taken together, all the 131 

approximations of rotationally accessible spaces for randomly located solutions represent both 132 

the random uncertainty and the rotational uncertainty for the modeled solution to the complete 133 

data set.  134 

2.2 EE Results and Diagnostics in EPA PMF 135 

With three EE methods, there is copious output generated by ME-2 and EPA PMF for evaluating 136 

PMF solutions. In the results presented here, all diagnostics and data are readily available in the 137 

output of EPA PMF. For DISP, the focus is on the number of swaps at the lowest dQmax level and 138 

the percent change in Q (%dQ), where swaps occur if factors change so much that they exchange 139 

identities, indicating a “not-well-defined (NWD) solution” (Paatero et al., 2014). In addition, the 140 



minimum and maximum values for each species that were reached during displacement for the 141 

lowest dQmax level are used as the DISP uncertainty range for each factor profile. In DISP, only 142 

“strong” species are used, since DISP is very sensitive to higher data uncertainties, e.g., those 143 

that occur when a user makes a species “weak” in EPA PMF, where data uncertainty is tripled. 144 

With BS, the fraction of BS runs mapped to the base solution by factor is assessed to understand 145 

the reproducibility of the base solution. The 5th and 95th percentiles are used as the BS 146 

uncertainty range for each factor profile. All species are used in BS, since the input data are 147 

being resampled. BS-DISP diagnostics include the overall fraction of BS-DISP runs that met all 148 

BS-DISP criteria, including factor swaps, decrease in Q, and lack of mapping via BS. Ideally, the 149 

identifying species for each factor, e.g., silicon and calcium for a soil factor, should be activated 150 

in DISP and BS-DISP. For DISP and BS-DISP, results for actively displaced species are 151 

considered to be the most reliable; other species, left passive in DISP or BS-DISP, may have 152 

error intervals that are smaller than if they were actively displaced.   153 

Since species concentrations can often span multiple orders of magnitude, it can be difficult to 154 

compare EE results among solutions or species using concentration units. As presented by 155 

(Paatero et al., 2014), the interval ratio can be used to compare results among species and is 156 

defined as the length of the given species’ EE interval divided by the interval midpoint. With this 157 

method, the maximum interval ratio is 2, and is indicative of more uncertain results. For DISP, 158 

endpoints of the uncertainty interval for a specific F factor element are the minimum and 159 

maximum values for that factor element observed in all displacements and are output by ME-2 in 160 

the DISPres file, with one file for each dQmax. For BS, the endpoints of the uncertainty interval 161 

for a factor element are the 5th and 95th percentile values for that factor element from all BS 162 

resamples, calculated by EPA PMF using the PMF_ab_boot.dat file output from ME-2. For BS-163 

DISP, each BS resample is displaced and minimum and maximum values are calculated for each 164 

factor element as described for DISP. EPA PMF then calculates the 5th percentile of the 165 

minimums and 95th percentile of the maximums, which are used as the lower and upper bounds 166 

for BS-DISP EE; the minimums and maximums for each BS-DISP iteration are output by ME-2 167 

in the BSDISPres file, with one file for each dQmax value. In the examples presented here, the 168 

interval ratios of the identifying species for each factor are compared among species and runs. If 169 

the interval ratios of the identifying species of a given factor are large, the identification of that 170 

factor is more uncertain than factors whose identifying species’ interval ratios are lower.  171 



2.3 Example Data Sets: Sacramento PM2.5, Milwaukee Water, and Las Vegas HR-AMS 172 

Data 173 

Table 1 summarizes the settings used for EPA PMF analysis for all three data sets presented 174 

here; details for each data set follow the table. Summary statistics of input parameters for each 175 

data set are provided in Supplemental Information. Multiple runs with different numbers of 176 

factors were run for each data set; PMF and EE diagnostics for each run are provided by data set, 177 

including figures showing how factor profiles and EE intervals changed with increasing number 178 

of factors. Qexpected was calculated for each scenario, equal to (number of non-weak data values in 179 

X) – (numbers of elements in G and F, taken together). For example, for five factors, 642 180 

samples, and 19 strong species, this equals (642*19) – ((5*642)+(5*19)), or 8893. For six 181 

factors, Qexpected would be 8232, and for seven factors it would be 7571. Weak data values were 182 

excluded due to their minor influence on Qexpected. Q/Qexpected was calculated by species, as the 183 

sum of the squared scaled residuals (i.e., Qtrue) divided by (overall Qexpected divided by number of 184 

non-weak species); the denominator is simply the overall Qexpected divided equally across species. 185 

For the Sacramento data set, 24-hour speciated PM2.5 data for the Del Paso Manor monitoring 186 

site in Sacramento, California, operated as part of the chemical speciation network (CSN), were 187 

downloaded from EPA’s Air Quality System (AQS) database, for July 2003 through February 188 

2009. Concentrations and uncertainties were used as reported, to provide an example of using 189 

commonly available data; no censoring of data below detection was done, nor were samples with 190 

missing data included. Supplemental Table 1 provides summary statistics of input data. Nine 191 

aberrant samples, when Fourth of July or New Year's Day fireworks occurred, were excluded, 192 

leaving 642 samples for PMF analysis. The 19 species with S/N greater than 1 were included, 193 

including PM2.5 mass. For simplicity in this example, no species were made weak. Between five 194 

and seven factors were run.  195 

For the Milwaukee data set, water samples of combined sewer outflows (wastewater plus 196 

stormwater), taken from an inline storage system (ISS) in Milwaukee and described in detail in 197 

(Soonthornnonda and Christensen, 2008) and (Bzdusek et al., 2006), were explored; additional 198 

information is available at  http://v3.mmsd.com/wastewatertreatment/deep-tunnel. Samples were 199 

collected from multiple sites on one day and were analyzed for trace metals (Cd, Cr, Cu, Pb, Ni, 200 

Zn) via EPA method 6010 (Inductively Coupled Plasma-Atomic Emission Spectrometry), and 201 



for biological oxygen demand (BOD), total suspended solids (TSS), total phosphorus (TP), and 202 

ammonia (NH3) via standard methods (American Public Health Association methods 5210B, 203 

2540D, and EPA methods 365.1 and 350.1). Supplemental Table 2 provides summary statistics 204 

of input data. Ten species across 53 samples were used, with three factors, as described by 205 

Soonthornnonda and Christensen (2008). Since Cd values were one of two values across all 206 

samples, indicating that the concentrations were near or below the detection limit, Cd was made 207 

weak in one run and excluded in another. Active species in BS-DISP were NH3, Cr, and TSS. 208 

For the Las Vegas data set, HR-AMS measurements were made outdoors next to a classroom and 209 

play yard at Fyfe Elementary School, 18 meters from the US 95 freeway soundwall in Las 210 

Vegas, Nevada, during January 2008. Analysis of these data, including development and 211 

assessment of a PMF solution, are described in Brown et al. (2012). The HR-AMS measures 212 

non-refractory PM1, including detailed spectra of organic aerosol (OA), which can then be 213 

decomposed by PMF (Allan et al., 2003; Jayne et al., 2000; Jimenez et al., 2003; DeCarlo et al., 214 

2006; Ulbrich et al., 2009; Zhang et al., 2011; Lanz et al., 2010). Unlike traditional OA analysis, 215 

where aerosol is collected on filters over the course of many hours and later analyzed for 216 

individual molecules by gas chromatography-mass spectroscopy (GC-MS) or other techniques, 217 

the HR-AMS provides a high-time-resolution quantification of OA via mass spectra. The OA is 218 

characterized by a detailed mass spectrum of individual mass-to-charge ratios m/z; a time series 219 

of these mass spectra can then be decomposed via PMF to understand the OA composition (Ng 220 

et al., 2010; Ulbrich et al., 2009; Jimenez et al., 2009). Factors range in both volatility and degree 221 

of oxidation (Donahue et al., 2012; Jimenez et al., 2009; Kroll et al., 2011): low-volatility 222 

oxygenated organic aerosol (LV-OOA), semi-volatile oxygenated organic aerosol (SV-OOA), 223 

hydrocarbon-like organic aerosol (HOA), and biomass burning organic aerosol (BBOA). LV-224 

OOA is highly oxygenated and is commonly found in all ambient OA; it typically has a high 225 

amount of m/z 44 (COO+ fragment). HOA is generated by primary emissions, has low oxygen 226 

content, and is typically composed of saturated fragments such as m/z 43 (C3H7
+ fragment) and 227 

55 (C4H7
+ fragment). In between HOA and LV-OOA in terms of oxidation is SV-OOA, which is 228 

composed of a mixture of the fragments in LV-OOA and HOA. BBOA is also somewhere 229 

between HOA and LV-OOA, depending on the combustion conditions (e.g., residential biomass 230 

burning versus wildfires) and aging of the OA, but is associated with m/z 60 (C2H4O2
+ fragment), 231 



which is derived from and is proportional to the biomass burning tracer molecule levoglucosan 232 

(Alfarra et al., 2007; Canagaratna et al., 2007; Lee et al., 2010). 233 

In Brown et al. (2012), results using two-minute averaged data were presented. To reduce ME-2 234 

run time and EPA PMF processing time, 20-minute averaged data were used in this analysis. A 235 

75% completeness requirement was used for each 20-minute average, resulting in 1405 samples 236 

used in EPA PMF. Fragments with S/N less than 5 were made weak, meaning their uncertainties 237 

were increased by a factor of three; of the total 113 fragments (m/z up to 140), 12 were 238 

downweighted by this scheme. Supplemental Table 3 provides summary statistics of input data. 239 

Results were essentially identical between the two-minute in Brown et al. (2012) and the 20-240 

minute data set used here, with the correlations (r2) between the factor profiles and factor 241 

contributions of the two data sets ranging between 0.98 and 0.999. EE results for the four-factor 242 

solution presented in Brown et al. (2012), as well as for three and five factors, are discussed here. 243 

No censoring of data below detection or substitution of missing data was done. Active species 244 

for BS-DISP were m/z 43, 44, 55, and 60.  245 

3. RESULTS AND DISCUSSION 246 

3.1 Sacramento PM2.5 Data 247 

Five to seven factors were used with the Sacramento data; profiles are shown in Figure 1 and 248 

results are summarized in Table 2 and Supplemental Table 4. Profiles identified for the five-249 

factor solution included: (1) nitrate; (2) chlorine with sodium; (3) sulfate; (4) biomass 250 

burning/potassium (K); and (5) soil (Si, Ca, Fe). Moving to six factors, copper, chromium, and 251 

nickel moved out of the burning and soil factors to a new copper/metals factor. At seven factors, 252 

sodium ion separated from the chlorine factor into its own factor. PM2.5 mass, ammonium, 253 

elemental carbon (EC), organic carbon (OC), K, Si, sulfate and nitrate were well predicted (i.e., 254 

r2 observed/predicted greater than 0.8) with five to seven factors. At six factors, iron was better 255 

predicted (0.80 with six factors versus 0.71 with five factors), and at seven factors, aluminum, 256 

calcium, and sodium ion were well predicted. In moving from five to six factors, there was a 257 

decrease in Q/Qexpected from 5.5 to 4.93, and a smaller decrease when moving from six to 258 

seven factors (4.93 to 4.63). When changes in Q become small with increasing factors, it can 259 



indicate that there may be too many factors being fit, suggesting here that six factors may be the 260 

optimal solution.  261 

With five factors, all factors but Cl were mapped in 100% of BS runs (Cl was mapped 86% of 262 

runs), there were no swaps with DISP, and 100% of the BS-DISP runs were successful. Results 263 

were generally stable at six factors as well, with all factors mapped in BS in 100% of runs except 264 

for the copper/metals factor (mapped on 88% of runs). No swaps occurred with DISP, and all 265 

BS-DISP runs were successful. At seven factors, the solution was less stable. The new sodium 266 

factor was mapped with BS in 72% of the runs and copper/metals in 78% of the runs, while other 267 

factors were mapped in 100% of runs. There were no swaps in DISP, but 28% of BS-DISP runs 268 

were rejected due to factor swaps. Thus, while additional species had better observed/predicted 269 

diagnostics with seven factors, these additional factors appeared less stable than the factors found 270 

in the five- and six-factor solutions.  271 

As seen in Supplemental Table 4 and Figure 2, DISP error estimate intervals, expressed as 272 

interval ratios to be comparable across species of differing magnitudes, are quite low for key 273 

species, indicating little rotational ambiguity in the solutions. Ratios are generally highest for the 274 

model with seven factors, indicating modestly higher uncertainty for these key species with 275 

seven factors. For BS, interval ratios are generally consistent for a given factor for all three 276 

model runs, with the exception of the copper/metals factor at seven factors. Here, the BS interval 277 

of copper is relatively large, spanning an order of magnitude (0.00012 to 0.0065 µg between the 278 

5th and 95th BS percentiles), resulting in a very high EE for copper in this factor, which suggests 279 

a poorly defined factor. The BS mapping indicates some instability in the chlorine factor at five 280 

factors, the copper/metals factor at both six and seven factors, and modest instability of the 281 

sodium-only factor with seven factors. The instability of the chlorine, copper/metals, and sodium 282 

factors are further seen with BS-DISP, where the interval ratios for the key species are high for 283 

factors with low BS mapping (chlorine at five factors, copper at six factors, and both sodium and 284 

copper at seven factors). In these three cases, BS-DISP interval ratios approach or are equal to 285 

two, since the BS-DISP 5th percentile for these species/factor combinations is at or near zero. 286 

The combination of poor BS mapping of two of seven factors, the very high EE intervals from 287 

both BS and BS-DISP for both copper and sodium factors, and the small change in Q/Qexpected 288 



going from six to seven modelled factors indicate that the seven-factor solution is not stable and 289 

likely should not be used.  290 

3.2 Milwaukee Water Results 291 

As further described by Soonthornnonda and Christensen (2008), three factors were determined: 292 

(1) stormwater was characterized by high amounts of TSS and Pb; (2) sanitary sewage was 293 

characterized by high BOD, TP, and ammonia; and (3) high-metals-content stormwater, likely 294 

from sewer sediment erosion, was characterized by high concentrations of metals such as Cr. 295 

Table 3, Supplemental Table 5 and Figures 3 and 4 summarize the results. With three factors and 296 

Cd included as weak, all species were relatively well predicted, with Q/Qexpected values all less 297 

than 2 except for BOD. BS results showed 100% mapping for two factors and 86% mapping for 298 

the trace metals factor; DISP had no swaps and 98% of BS-DISP cases were successful. Upon 299 

removing Cd, other species were not any better predicted, Q/Qexpected was similar, and BS 300 

mapping was poorer compared to the run with Cd included (BS mapping 72% for metals factor). 301 

In both scenarios, the poorer BS mapping of the metals factors is likely due to its more 302 

intermittent signal across the samples, relative to the other two more consistent sources. In 303 

addition, the small overall size of the matrix (10 species, 53 samples) is likely at the extreme 304 

lower end of a viable size for PMF applications, which may lead to some instability. Despite 305 

these limitations, the factors when including Cd are stable and as reported by Soonthornnonda 306 

and Christensen (2008), also compare very well with chemical mass balance (CMB) results, 307 

further solidifying their interpretability. 308 

3.3 Las Vegas HR-AMS Results 309 

As described by Brown et al. (2012), four factors were determined: LV-OOA, HOA, SV-OOA 310 

and BBOA. On average, HOA made up 28% of the organic matter (OM), had an abundance of 311 

m/z 43, and peaked during the morning and evening commute periods coincident with peak 312 

traffic volume. LV-OOA, indicated by an abundance of m/z 44, was highest in the afternoon and 313 

accounted for 25% of the OM. BBOA occurred in the evening hours, was predominantly from 314 

the residential area to the north, and on average constituted 10% of the OM. SV-OOA accounted 315 

for the remaining 37% of the OM, and had an abundance of m/z 57 and 55. The HOA and 316 

LV-OOA factors were nearly identical to those found in other studies; correlations of the profiles 317 



with Pittsburgh factor profiles (Ulbrich et al., 2009) were 0.99. The HOA factor profile is very 318 

similar to pure diesel exhaust (Mohr et al., 2009). The BBOA factor had typical tracer fragments 319 

of m/z 60 and 73, which are produced during AMS analysis of levoglucosan and related 320 

anhydrosugars produced during biomass combustion (Lanz et al., 2008; Lee et al., 2010). The 321 

SV-OOA factor profile was similar to that of aged diesel exhaust (Sage et al., 2008).  322 

Factor profiles are shown in Figure 5 and EE diagnostics are summarized in Table 4, 323 

Supplemental Table 6, and in Figure 6. For the four-factor base solution, BS resamples 324 

reproduced 100% of the base factors. There were no factor swaps with DISP and, as also seen in 325 

the other data set examples, only an extremely low change in Q (less than 0.1%) was observed. 326 

However, in BS-DISP, 46% of the runs had swaps. BS-DISP interval ratios were also the largest 327 

among EE methods. The BS-DISP interval ratio was highest for SV-OOA across all EE methods. 328 

These results suggest that the SV-OOA factor is more uncertain than the other factors.   329 

With three factors, only HOA, LV-OOA and BBOA were identified, 100% of the BS resamples 330 

identified these 3 factors, 100% of the BS-DISP runs were accepted, and no swaps occurred with 331 

DISP. EE interval ratios are generally lower with three factors than with four factors, with the 332 

exception of DISP interval ratios that were higher when using three instead of four factors. This 333 

may indicate that using three factors distorts the solution so that the three factors also 334 

accommodate parts of the omitted fourth factor SV-OOA. When four factors are used, DISP 335 

intervals are smaller and BS results similar, suggesting at least four factors are needed, despite 336 

the modest BS-DISP results. 337 

With five factors, an additional “night OA” factor is found that occurs on most evenings 338 

coincident with BBOA and SV-OOA. However, this night OA factor is only found with 80% of 339 

the BS resamples, while the other factors are mapped in 100% of the runs. With BS-DISP and 340 

five factors, 44% of the runs were accepted and there were no swaps with DISP. These results 341 

indicate that the five-factor solution, and in particular the night OA factor, is much less certain 342 

than the four-factor solution. The modest BS-DISP results with four factors suggest that there is 343 

some factor interdependence and rotational ambiguity, confirmed by the oblique, slanting edges 344 

seen in the G-space plots (Paatero et al., 2005; Paatero et al., 2002). In these results, the oblique 345 

edges in the G-space plots could not be straightened out by applying customary rotational 346 



techniques, e.g., by applying Fpeak or by pulling points along the edges. Thus, they indicate a 347 

“modeling error” in the analysis, such as variation in true source profiles during the monitoring 348 

campaign, or presence of data outliers that block the rotations that would be needed for 349 

straightening the edges.  350 

3.4 Discussion 351 

In all three data sets, there were no swaps evident in DISP, indicating that the solutions had no or 352 

few data errors and were well defined. These results differ from the synthetic data analyses 353 

shown in Paatero et al. (2014), which did have swaps in DISP but only when there were too 354 

many factors. In the ambient data examples here, even when pushed up to two or more factors 355 

above the “base” solution, swaps did not occur with DISP. This was also the case when small 356 

data sets were run, e.g., the Milwaukee water data. It seems likely that if more than a few swaps 357 

occur with an ambient data set, then there are either too many factors used or that the solution is 358 

not well defined. Thus, DISP appears to be a good first-step screening tool for a PMF solution; if 359 

zero or only a few swaps occur, the user is assured that they are working towards a reasonable 360 

solution, though results with BS and BS-DISP may eventually suggest otherwise.  361 

In the examples presented here, BS continues to be a useful EE method even though it does not 362 

account for rotational ambiguity. When factors are not reproduced during BS resampling, it 363 

indicates potential problems with that solution. It could be that too many factors are being used, 364 

as is likely at seven factors in Sacramento PM2.5 or five factors in Las Vegas HR-AMS data, or 365 

that the factors with low reproducibility occur infrequently in the data. In the case where it is 366 

clear that the occurrence of a factor is dependent on other environmental conditions, such as 367 

wind direction, meteorology, or source operations, it is not surprising that many BS resamples do 368 

not identify that factor. BS results thus are useful for quantifying the uncertainty of a solution, 369 

and also for identifying factors that have a low degree of reproducibility. Such factors with low 370 

reproducibility may still be real, but require additional investigation and support for their 371 

inclusion. 372 

BS-DISP combines BS’s strength with data errors and DISP’s strength with rotational 373 

uncertainty. In these examples, solutions with no swaps in DISP and more than 95% 374 

reproducibility with BS had variable BS-DISP results. For example, the four-factor solution with 375 



Las Vegas HR-AMS had no swaps in DISP, high reproducibility with BS, and low interval ratios 376 

for the identifying species in each factor. However, there were swaps in 46% of the BS-DISP 377 

runs, indicating some uncertainty with the solution. With positive BS and DISP results and clear 378 

interpretability of the factors, this amount of swaps is not fatal to the analysis, but confirms that 379 

there is some uncertainty in the solution, particularly regarding the SV-OOA factor. Since SV-380 

OOA factors can vary widely across studies depending on the atmospheric conditions and 381 

processing of OA, and the factors span a much larger range of volatility compared to HOA and 382 

LV-OOA, the modest swapping in BS-DISP appears to confirm its larger uncertainty compared 383 

to other factors.  384 

DISP and BS-DISP provide results for four different dQmax values; the range of results for each 385 

key species/factor combination by dQmax value can indicate whether uncertainties are controlled 386 

more by rotational uncertainty or user-specified data uncertainties. Supplemental Table 7 shows 387 

the DISP intervals for the Sacramento example for key identifying species in each solution. The 388 

Sacramento example is particularly useful, because the solutions have residuals far exceeding the 389 

input uncertainties and thus have a relatively high Q/Q(expected), indicating that the input 390 

uncertainties are not accurate, the factor profiles vary over time, or both. How DISP intervals 391 

change with dQmax may help explain the high Q/Q(expected) values. With five factors, nitrate 392 

intervals are nearly independent of dQmax; thus, the input uncertainties for nitrate are well 393 

represented by the solution, so that the DISP intervals are controlled predominantly by rotational 394 

uncertainty, i.e., how far rotations may proceed during DISP. In contrast, sulfate, Cl, and Si 395 

intervals increase proportionally to the square of dQmax, meaning that they double as dQmax 396 

increases by a factor of 4. Thus, there is less rotational uncertainty for these factors; rather, the 397 

uncertainty is due to input uncertainty. At six factors, all species except Cl have intervals that do 398 

not increase proportional to dQmax, indicating significant rotational uncertainty. With seven 399 

factors, rotational uncertainty appears to be reduced, but at the expense of much larger 400 

uncertainty intervals. These variations in results by dQmax further support the earlier 401 

interpretation that seven factors are likely too many, and that there are some trade-offs in 402 

uncertainty between the five- and six-factor solutions.  403 

 404 



4. PMF REPORTING RECOMMENDATIONS 405 

PMF analyses involve many details about the development of the data, decisions of what data to 406 

include/exclude, determination of a solution, and evaluation of robustness of that solution; 407 

reporting of PMF solutions and analyses vary widely. In many cases, limitations on word count 408 

and other restrictions mean that authors do not include important details of their modeling efforts 409 

in published articles. As more journals publish online and allow appendices or supplemental 410 

material, more analysis details can be shared. Having a consistent base of what is reported will 411 

help all PMF users evaluate, compare, understand, and reproduce PMF analyses. Below, we 412 

provide a sample list of recommended items to report when presenting a PMF analysis.  This is 413 

complementary to the AMS-specific strategy recently assembled in (Crippa et al., 2013).  414 

Q values. Report the Q(robust) and Q(true) values of the analysis that was deemed most useful, 415 

and note how Q or Q/Q(expected) changed under different scenarios, e.g., with a different 416 

number of factors or with different species included/excluded. Discussion of the obtained Q 417 

value is moot if uncertainties of the input data have been fine-tuned in order to produce 418 

meaningful scaled residuals. In contrast, observing changes in Q under different scenarios is 419 

often very helpful when selecting between different modeling alternatives, such as different 420 

numbers of factors. When changes in Q become small with increasing factors, it can be 421 

indicative that there may be too many factors being fit.  422 

Q(expected) should also be calculated, but only the “good” or non-weak variables should be 423 

taken into account. The expected value of Q is approximately = (number of non-weak data 424 

values in X) – (numbers of elements in G and F, taken together). A downweighted weak variable 425 

has only a small, rarely significant contribution to Q(expected), and for simplicity is excluded 426 

here. If the Q value of the chosen model differs significantly from what is expected (e.g., by a 427 

factor of ten or more), then DISP error analysis becomes invalid and BS-DISP is likely 428 

questionable. 429 

Lastly, it can be useful to report if an individual column or row of X had a Q/Q(expected) ratio 430 

that was much higher than that of other columns or rows. This indicates that the column or row 431 

was not well fitted and contributes significantly more than expected to Q. 432 



Estimated or adjusted uncertainties of input data. Uncertainties drive not only a base solution 433 

but also the BS, and in particular, the DISP and BS-DISP results. Their development and use in 434 

the PMF analysis needs to be clearly documented. This also includes documenting if extra 435 

modeling uncertainty (an adjustable parameter within PMF) was applied in the analysis. 436 

Lower limit for G (contributions). In EPA PMF, the lower limit of the normalized contributions 437 

is set to -0.2, since allowing a small negative value helps PMF accept true rotations even in the 438 

presence of a large number of zero values in some G factors. 439 

Use of robust mode. In EPA PMF, the robust mode is always used, which automatically 440 

downweights by a factor of four the influence of observations that have a scaled residual greater 441 

than 4. Nevertheless, use of robust mode should always be documented in publications. 442 

Treatment of missing values. If missing data were included in the PMF analysis, they need to be 443 

treated appropriately so they do not influence the solution. Often, the median concentration of a 444 

given species is used, with an uncertainty of four times the median. The scaled residuals for these 445 

points should be inspected to ensure that they are clearly less than one. If missing data are given 446 

a standard deviation of four times the median, then the scaled residuals for these points may 447 

occasionally violate this requirement. In such cases, the analysis should be repeated so that 448 

uncertainties of missing values are increased sufficiently. Multiple statistical methods exist for 449 

replacing missing data with statistically viable values. We do not recommend these methods for 450 

PMF analyses. They are necessary for any statistical procedures that cannot accommodate 451 

missing data. With PMF analyses, inputting a sufficiently large uncertainty makes the data truly 452 

"missing", a process that cannot be improved by using data substitutions. PMF can even be used 453 

to obtain substitution values to be used in other statistical procedures: run PMF so that the values 454 

in question (missing and/or BDL values) have sufficiently large uncertainty values associated to 455 

them. Use the fitted values (fitted by PMF to missing/BDL positions) as substitution values, and 456 

then use them as replacements to whatever values were originally present in the missing/BDL 457 

positions of the matrix. 458 

Treatment of data below detection. In many published PMF studies, below detection level (BDL) 459 

data values have been censored, i.e., substituted by replacement values, such as 0.5*detection 460 

limit, even if the original measured values have been available. It appears that this practice has 461 



no proven advantages when species with low S/N are downweighted. On the other hand, it may 462 

be demonstrated that the substitution practice prevents uncertainty estimation, introduces hard-463 

to-estimate bias, and occasionally gives rise to ghost factors. In general, it is a modeling error if 464 

BDL values are replaced by a fraction of the detection limit. If such a replacement has been 465 

done, then EE of PMF results should not be attempted because none of the available EE methods 466 

is able to estimate the bias error incurred in results by censoring BDL values. If EE is 467 

nevertheless attempted in the presence of such censoring, then a clear warning about 468 

questionable validity of quoted error estimates must be included in the paper. Instead of 469 

substitution methods, PMF modeling using ME-2 directly can be optimized by applying a 470 

specific errormodel code to censored data values (Paatero, 2000). In this way the known 471 

information, e.g., that a measurement is somewhere between zero and the detection limit, can be 472 

conveyed to ME-2 without any substitutions that would likely bias the results. 473 

Treatment of data equal to or below zero. Data equal to or less than zero can be included in the 474 

PMF model and, if these values are genuine measured values, should not be censored by 475 

truncation to zero or transformed to positive values. If such censored values must be used 476 

because the original measured values have been discarded, then a warning must be included in 477 

the documentation. EPA PMF allows negative concentration values to be used, though input 478 

uncertainties must still be positive. 479 

Treatment of “total mass.”  In the Sacramento example, uncertainties for total PM2.5 mass were 480 

used as reported, rather than being further downweighted (e.g., (Reff et al., 2007); (Kim et al., 481 

2005)). PM2.5 mass should be downweighted if there are likely significant measurement artifacts, 482 

e.g., gaseous species adsorbing onto filters, or if there are sources that may emit PM2.5 mass but 483 

none of the measured species, in which case a factor containing only mass could be determined. 484 

In these cases, the inclusion of “full strength” total mass does not help in interpretation of 485 

solutions, and could lead to erroneous results.  486 

Use of constraints. EPA PMF and ME-2 allow users to constrain or “pull” elements in their 487 

solution. One common reason for pulling is the attempt to align an oblique “edge” in G-space 488 

plots. However, an oblique edge may sometimes be justified because factors in atmospheric or 489 

environmental data are rarely truly independent. Thus pulling contributions based on G-space 490 



plots must be clearly justifiable, and should be justified and reported in detail if done. If source 491 

profiles or contributions are known for some factors or samples, and constraints are used to 492 

model these, then this information and the reason (e.g., the industrial plant was shut down and 493 

should have a contribution of zero) should be noted. 494 

BS. Report the number of resamples analyzed and the size of percentiles of the obtained 495 

distribution of results chosen for error limits, e.g., in EPA PMF these are the 5th and 95th 496 

percentiles. Also report the percentage of BS factors assigned to each base case factor and the 497 

number of BS factors not assigned to any base case factor, and the interval ratios of each factors’ 498 

identifying species. 499 

DISP. Report species not displaced, such as those downweighted (in EPA PMF, all strong 500 

species are used in DISP), the decrease in Q, the number of factor swaps, and the interval ratios 501 

of each factors’ identifying species. If factor swaps occur for the smallest dQmax, it indicates that 502 

there is significant rotational ambiguity and that the solution is not sufficiently robust to be used. 503 

If the decrease in Q is greater than 1%, it is likely the case that no DISP results should be 504 

published unless DISP analysis is redone after finding the true global minimum of Q.  505 

BS-DISP. As with BS and DISP, report the number of BS resamples analyzed, the size of 506 

percentiles chosen for error limits (in EPA PMF, these are the 5th and 95th), the species actively 507 

displaced, the decrease in Q, and the number of factor swaps. For each factor’s identifying 508 

species, note the extent of the EE interval. 509 

5. CONCLUSIONS 510 

These examples using different ambient data sets are presented to complement the theory behind 511 

new EE methods in EPA PMF and ME-2, as well as synthetic data analyses presented in a 512 

companion paper (Paatero et al., 2014). Together, they show the use of multiple EE methods. 513 

With these ambient data sets, DISP typically had tight intervals and no factor swaps; it appears 514 

that DISP is a good screening tool for solutions, as solutions that have swaps likely have 515 

significant rotational ambiguity and should probably not be used. BS results do not typically 516 

capture rotational ambiguity, but can help identify factors that are not very reproducible, though 517 

low reproducibility may be due to other influences such as wind direction, source activity, etc., 518 



rather than a poor solution. BS-DISP may yield factor swaps even if BS and DISP diagnostics 519 

are positive, and can be used to identify which factors are more certain than others. One 520 

drawback of BS-DISP is its computation time. A large run (e.g., thousands of samples and a 521 

hundred species) may take tens of hours on a modern PC. Future work may need to focus on 522 

optimization of the algorithms in ME-2 to help significantly decrease the run time.  523 

Based on the results here and in Paatero et al. (2014) the different roles of DISP on one hand, 524 

and BS and BS-DISP on the other hand, may tentatively be described as follows: DISP analyzes 525 

the given data set “as is,” not speculating about the reproducibility of the results in future similar 526 

measurements. Hence, uncertainty intervals given by DISP are rather short. The BS-based 527 

methods are based on resampling. Hence, they also estimate variability that follows if a few key 528 

samples are omitted from the data set. Such estimation may be relevant in predicting what might 529 

happen with the following year’s data. A few key samples might not occur at all, or they might 530 

not occur on days when sampling is performed. BS takes into account this kind of uncertainty, 531 

which is not considered by pure DISP. Thus, uncertainty estimates based on BS may be much 532 

larger for such data sets, where a few matrix rows have special importance regarding rotations or 533 

regarding sources that are only observed in a small fraction of all samples.  534 

For all EE methods, the interval ratio of each factor’s identifying species can provide an 535 

understanding of the relative certainty of each factor’s identity. However, each data set is unique, 536 

so results will vary. It must be emphasized that, in some cases, a satisfactory analysis cannot be 537 

performed with any number of factors. The following contrived example illustrates this situation. 538 

With four factors, the result is rotationally unique and all three EE methods indicate small 539 

uncertainties. However, with four factors, the fit is not satisfactory as indicated, e.g., by poor 540 

total mass reconstruction, by poor factor interpretability, etc. With five factors, fit is good but 541 

rotational uncertainty is very large and/or there are frequent factor swaps between factors four 542 

and five. What should the scientist do in this situation?  It would be wrong to only report either 543 

the four-factor or the five-factor results while ignoring the presence of the alternative solution. 544 

The information in the data set confirms that four factors are not enough. However, the 545 

information is not sufficient for quantitative determination of five factors. If additional 546 

information cannot be inserted for obtaining rotational uniqueness, then the two sets of 547 

inconclusive results (using four and five factors, respectively), as well as the impact of 548 



subtracting or adding a factor has on the profiles, contributions, and EE results, should be 549 

reported.  550 

The conclusions presented in this work are based on our experience with a limited number of 551 

synthetic and real data sets. It was not our intention to “prove” the validity or usefulness of these 552 

methods. The statistical properties of real data are so unknown and varied that a general 553 

assessment of the validity can only be reached through a long process. Successful and failed 554 

analyses of different data should be carefully reported in literature. Thus, the present conclusions 555 

should not be regarded as the final truth about EE of bilinear models. Instead, these results are 556 

the first steps toward full understanding of these complicated questions. It is essential that 557 

follow-up studies be performed with an open mind, so that general validity of our conclusions is 558 

not taken for granted in all possible situations. Lastly, we provide a recommended “best 559 

practices” list of information for users to report in their publications, which is critical as more 560 

users employ the new EE methods available in ME-2 and EPA PMF. 561 

6.  DISCLAIMER 562 
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Figure Captions 716 

Figure 1. Factor profiles (fraction of each species by factor) using Sacramento PM2.5 data, for 717 

five, six and seven factors. 718 

Figure 2. Interval ratios of identifying species by EE method and number of factors (5, 6, 7) for 719 

Sacramento PM2.5 data. 720 

Figure 3. Factor profiles (fraction of each species by factor) using Milwaukee water data, for two 721 

factors, three factors with Cd excluded, and three factors with Cd weak. 722 

Figure 4. Interval ratios of identifying species by EE method and run (two factors, three factors 723 

with Cd weak, and three factors with Cd excluded) for Milwaukee water data. 724 

Figure 5. Factor profiles (fraction of each species by factor) using Las Vegas AMS data, for 725 

three, four and five factors. 726 

Figure 6. Interval ratios of identifying species by EE method and number of factors (3, 4, 5) for 727 

Las Vegas data. 728 



 

 

 

Figure 1. Factor profiles (fraction of each species by factor) using Sacramento PM2.5 data, for 

five, six and seven factors. 



 

 

Figure 2. Interval ratios of identifying species by EE method and number of factors (5, 6, 7) for 

Sacramento PM2.5 data. 

 

Figure 3. Factor profiles (fraction of each species by factor) using Milwaukee water data, for two 

factors, three factors with Cd excluded, and three factors with Cd weak. 



 

 

Figure 4. Interval ratios of identifying species by EE method and run (two factors, three factors 

with Cd weak, and three factors with Cd excluded) for Milwaukee water data. 

 

Figure 5. Factor profiles (fraction of each species by factor) using Las Vegas AMS data, for 

three, four and five factors. 



 

 

Figure 6. Interval ratios of identifying species by EE method and number of factors (3, 4, 5) for 

Las Vegas data. 

 



 

Table 1. Summary of EPA PMF settings for all three data sets. 
Parameter Sacramento Milwaukee Las Vegas 

Data type; averaging 
timeframe 

PM2.5 CSN; 24-hr Water Quality; grab 
samples 

HR-AMS; 20-
min 

N species 19 9-10 120 
N samples 642 53 1405 
N factors 5 to 7 3 3 to 5 
Treatment of missing 
data 

No missing data 
included 

No missing data 
included 

No missing data 
included 

Treatment of data 
below detection limit 
(BDL) 

Data used as reported, 
no modification or 
censoring of BDL 
data 

Data used as reported, 
no modification or 
censoring of BDL 
data 

Data used as 
reported, no 
modification or 
censoring of 
BDL data 

Treatment of 
concentrations equal 
to or less than zero 

Data used as reported, 
no modification or 
censoring of data < 0 

Data used as reported, 
no modification or 
censoring of data < 0 

Data used as 
reported, no 
modification or 
censoring of data 
< 0 

Lower limit for 
normalized factor 
contributions  gik 

-0.2 -0.2 -0.2 

Robust mode Yes Yes Yes 
Constraints None None None 
Seed value Random Random Random 
N bootstraps in BS 400 400 400 
r2 for BS 0.8 0.8 0.8 
BS block size  3 1 4 
DISP dQmax 4, 8, 16, 32 4, 8, 16, 32 4, 8, 16, 32 
DISP species All (no species were 

made weak) 
All non-weak All non-weak 

N bootstraps;  r2 for 
BS in BS-DISP 

50; 0.8 50; 0.8 50; 0.8 

BS-DISP species K+, SO4, NO3, Si, 
Na+*, Cl**, Cu 

NH3, TSS, Cr m/z 43, 44, 57, 
60 

BS-DISP dQmax 0.5, 1, 2, 4 0.5, 1, 2, 4 0.5, 1, 2, 4 
Computer run times*** 
for DISP, BS-DISP 

1 hour, 3 hours < 1 hour, < 1 hour 9 hours, 16 hours 

* Only used in 7-factor solution 
** Only used in 6- and 7-factor solutions 
*** Windows 7 64-bit, 3.1 GHz processor, 4 GB RAM 
  



 

Table 2.  Summary of PMF and EE diagnostics by run for Sacramento PM2.5 data.  
Diagnostic 5 factors 6 factors 7 factors 

Qexpected 8893 8232 7571 
Qtrue 65793 52241 45651 
Qrobust 48929 40604 35572 
Qrobust/Qexpected 5.5 4.93 4.63 

Species with 
Q/Qexpected > 6 

PM2.5, Ca, 
Cr, Cu, Ni, 
Si, Zn 

 PM2.5, Ca, 
Cr, Cu, Ni, 
Zn 

 PM2.5, Cr, 
Cu, Ni, Zn 

DISP %dQ <0.1% <0.1% <0.1% 
DISP swaps 0 0 0 

Factors with BS 
mapping < 100% 

Cl factor 
86% 

Cu factor 
94% 

Na factor 
72%, Cu 
factor 80% 

BS-DISP % cases 
with swaps 

0 0 28% 

 
  



 

Table 3.  Summary of PMF and EE diagnostics by run for Milwaukee water quality data. 

Diagnostic 2 factors 
3 factors, with Cd 

weak 
3 factors,  

excluding Cd 
Qexpected 353 291 291
Qtrue 1014 652 635
Qrobust 1004 647 630
Qrobust/Qexpected 2.86 2.25 2.17

Species with 
Q/Qexpected > 2 

Biological oxygen 
demand, total 

suspended solids, 
Cr, Pb 

Biological oxygen 
demand, total 

suspended solids

Biological oxygen 
demand, total 

suspended solids

DISP %dQ <0.1% <0.1% <0.1%
DISP swaps 0 0 0

BS mapping 
100%

Metals factor 88%
Metals factor 74%, 
stormwater factor 92% 

BS-DISP % 
cases with 
swaps 

0%
8% 8%

 
  



 

 

Table 4.  Summary of PMF and EE diagnostics by run for Las Vegas HR-AMS data.  
Diagnostic 3 factors 4 factors 5 factors 
Qexpected 137351 135833 134315
Qtrue 920029 607201 402907
Qrobust 454015 340269 264455
Qrobust/Qexpected 3.31 2.51 1.97

Species with 
Q/Qexpected > 8 

m/z 27, 41, 43, 
44, 54, 55, 56, 
57, 60, 69, 80, 
71, 73, 86, 95 

m/z 31,  43, 
55, 57, 60, 
70, 73, 86  

m/z 41, 43, 
55, 70, 86

DISP %dQ <0.1% <0.1% <0.1% 
DISP swaps 0 0 0

BS mapping 100% 100% 
5th factor 

80%
BS-DISP % 
cases with 
swaps 

0% with 
swaps 

46% with 
swaps

56% with 
swaps

 



 

Supplemental Information 

 Revised Signal/Noise Calculation in EPA PMF 

The signal/noise (S/N) calculation in EPA PMF has been revised for version 5.0.  
Previously, S/N of a given species was essentially the sum of the concentration values divided by 
the sum of the uncertainty values.  While reasonable, this could lead to different problems in 
certain specific situations.  Artificially high S/N values would be obtained in species with a 
handful of high concentration events, resulting in an S/N that may actually be higher than 
another species’ S/N with a more consistent signal. More seriously, artificially low S/N values 
could appear for species with a few missing values. Missing values are usually downweighted by 
very large uncertainty values, typically (much) larger than the largest concentration values in the 
species in question.  If uncertainties for missing values were inflated prior to input into EPA 
PMF, such inflated uncertainty values will inflate the noise in S/N calculations, resulting in an 
S/N that actually will be small enough to cause the classification of a strong variable as “weak.”  
The latter problem has repeatedly been observed in practical work. In addition, the presence of 
slightly negative concentration values, not uncommon in environmental data, could artificially 
decrease S and hence the S/N of a species.   

In the revised calculation, only concentration values that exceed their uncertainty 
contribute to the signal portion of the S/N calculation, since the concentration value is essentially 
equal to the sum of signal and noise, and therefore signal is the difference between concentration 
and uncertainty.   

Two calculations are performed to determine S/N, where concentrations that are below 
uncertainty are determined to have no signal, and for concentrations above uncertainty, the 
difference between concentration (xij) and uncertainty (sij) is used as the signal: 

ij ij
ij

ij

x s
d

s

 
   
 

  if ij ijx s  

 0ijd         if ij ijx s   (3) 

S/N is then calculated as: 

 
1

1
n

ij
ij

S
dnN 

   
 

  (4) 

The result with this new S/N calculation is that species with concentrations always below 
their uncertainties have an S/N of 0.  Species with concentrations that are twice their uncertainty 
values have an S/N of 1.  An S/N greater than 1 often indicates a species with “good” signal, 
though this depends on how uncertainties are determined.  Negative concentration values do not 



 

contribute to the S/N, and species with a handful of high concentration events will not have 
artificially high S/N.  While there are many methods to determine S/N, the one selected in the 
new version of EPA PMF may be more useful in environmental data analysis compared to the 
prior version, with the caveat that the S/N is merely one of many analyses for screening data.  All 
S/N values reported in this paper are calculated according to equations (3) and (4). 

Input Data Summary Statistics 
 
Supplemental Table 1.  Summary of Sacramento PM2.5 input data.  Concentration units in µg/m3. 

Species Category S/N Min 25th Median 75th 
PM2.5  Strong 9.78 0.8 6.7 9.9 15.825 
Aluminum Strong 1.56 0 0 0.01155 0.034825 
Ammonium 
Ion Strong 9.96 0.0102 0.30175 0.5355 0.98025 
Antimony Bad 0.15 0 0 0 0.00233 
Arsenic Bad 0.40 0 0 0.00008 0.00097 
Barium Bad 0.38 0 0 0 0.0051975 
Bromine Strong 2.40 0 0.0011075 0.00234 0.00413 
Calcium Strong 7.07 0 0.013475 0.02465 0.042525 
Chlorine Strong 4.10 0 0 0.01145 0.048675 
Chromium Strong 1.16 0 0 0.00034 0.00205 
Cobalt Bad 0.11 0 0 0 0.00028 
Copper Strong 4.39 0 0.00163 0.0036 0.0078025 
EC Strong 1.65 0 0.329 0.543 1.065 
Iron Strong 9.75 0 0.0395 0.06085 0.101 
Lead Bad 0.55 0 0 0.00082 0.00292 
Manganese Bad 0.84 0 0 0.00089 0.00187 
Mercury Bad 0.22 0 0 0 0.00117 
Molybdenum Bad 0.04 0 0 0 0 
Nickel Strong 1.23 0 0 0.000595 0.00139 
OC Strong 7.63 1.45 3 4.62 7.1325 
Phosphorus Bad 0.05 0 0 0 0 
Potassium 
Ion Bad 5.82 0 0 0.0564 0.113 
Potassium Strong 9.15 0.00058 0.0372 0.0646 0.118 
Rubidium Bad 0.13 0 0 0 0.0005225 
Selenium Bad 0.14 0 0 0 0.0007425 
Silicon Strong 6.46 0 0.0278 0.06285 0.118 
Sodium Ion Strong 2.77 0 0.062475 0.119 0.23075 
Strontium Bad 0.37 0 0 0.00009 0.001365 
Sulfate Strong 8.68 0.115 0.58275 0.9255 1.4525 
Sulfur Bad 9.92 0 0.204 0.315 0.50025 
Tin Bad 0.12 0 0 0 0.0036125 
Titanium Strong 1.26 0 0 0.001805 0.0049 
Total Nitrate Strong 9.08 0.0836 0.62675 1.125 2.45 
Vanadium Bad 0.61 0 0 0.0007 0.0019925 
Yttrium Bad 0.13 0 0 0 0.00026 
Zinc Strong 4.10 0 0.00173 0.003955 0.00753 



 

  
Supplemental Table 2. Summary of Milwaukee input data.  Concentration units in mg/L. 

Species Category S/N Min 25th Median 75th 
BOD5 Strong 4 2 6.4 15 16.5 
TSS Strong 4 6.7 27.5 41 73 
NH3 Strong 4 0.095 0.485 0.81 1.1 
TP Strong 4 0.41 0.585 0.87 1.15 
Cd Bad/Weak 4 0.0009 0.0009 0.002 0.002 
Cr Strong 4 0.0009 0.0039 0.007 0.013 
Cu Strong 4 0.007 0.0125 0.017 0.026 
Pb Strong 4 0.0008 0.0088 0.019 0.049 
Ni Strong 4 0.0014 0.0023 0.003 0.006 
Zn Strong 4 0.023 0.0565 0.079 0.11 

 
 
  



 

Supplemental Table 3. Summary of Las Vegas HR-AMS input data.  Concentration units in µg/m3.  
Species Category S/N Min 25th Median 75th 

mz12 Strong 6.64027 0.0076 0.02108 0.03222 0.0526 
mz13 Strong 5.99052 0.00075 0.00497 0.0094 0.01707 
mz15 Weak 4.23978 -0.0801 0.00064 0.01668 0.06972 
mz24 Weak 4.59659 -0.0002 0.0018 0.00328 0.00574 
mz25 Strong 7.34043 0.00026 0.0057 0.01083 0.01975 
mz26 Strong 9.32493 0.00655 0.02813 0.05505 0.10129 
mz27 Strong 9.79196 0.01416 0.06399 0.12737 0.23371 
mz29 Weak 9.97133 0.03103 0.15862 0.24624 0.39205 
mz31 Strong 7.43832 0.00048 0.01066 0.0209 0.04278 
mz37 Weak 3.59783 -0.0017 0.00577 0.01134 0.0208 
mz38 Strong 8.12982 0.0024 0.01011 0.01967 0.03596 
mz41 Strong 9.74817 0.0164 0.09251 0.18074 0.37634 
mz42 Strong 9.83868 0.00827 0.04005 0.07897 0.14489 
mz43 Strong 9.98527 0.02913 0.12036 0.24026 0.45828 
mz44 Strong 8.64144 -0.0074 0.08723 0.17112 0.26699 
mz45 Strong 8.60323 0.00131 0.01283 0.02361 0.03864 
mz48 Strong 6.94685 6.3E-05 0.00096 0.00201 0.00392 
mz49 Strong 5.20763 4E-05 0.0014 0.0028 0.00509 
mz50 Strong 8.50717 0.00159 0.00765 0.01551 0.02955 
mz51 Strong 9.20871 0.00222 0.0111 0.02312 0.04431 
mz52 Strong 8.75171 0.00143 0.00664 0.01373 0.02653 
mz53 Strong 9.79787 0.00477 0.01865 0.03791 0.07122 
mz54 Strong 9.67074 0.00266 0.01394 0.02697 0.05584 
mz55 Strong 9.97195 0.01369 0.07951 0.15732 0.33873 
mz56 Strong 9.67613 0.00362 0.02261 0.04571 0.09289 
mz57 Strong 9.87256 0.00622 0.04157 0.08792 0.19425 
mz58 Strong 9.07492 0.00132 0.00709 0.01523 0.02727 
mz59 Weak 7.94741 0.00054 0.00286 0.00573 0.0099 
mz60 Strong 8.58301 0.00082 0.00528 0.01171 0.03901 
mz61 Strong 7.36074 0.00022 0.00181 0.00392 0.00892 
mz62 Strong 6.94685 0.00013 0.00192 0.00401 0.00785 
mz63 Strong 7.29958 -0.0057 0.0031 0.00663 0.01681 
mz64 Strong 9.00247 0.00144 0.00629 0.01297 0.0255 
mz65 Strong 9.8444 0.00327 0.01278 0.02562 0.05181 
mz66 Strong 8.05736 0.00068 0.00448 0.00958 0.0192 
mz67 Strong 9.91404 0.00489 0.02657 0.05229 0.11071 
mz68 Strong 9.59442 0.00267 0.01073 0.02175 0.04491 
mz69 Strong 9.9086 0.00495 0.03016 0.06224 0.13184 
mz70 Strong 8.70116 0.00165 0.00908 0.01785 0.03655 
mz71 Strong 9.47584 0.00225 0.01366 0.0271 0.05754 
mz72 Strong 6.76481 0.00036 0.00193 0.00371 0.00711 
mz73 Strong 8.57921 0.00077 0.00399 0.00902 0.0234 
mz74 Strong 7.5283 0.00044 0.00222 0.00464 0.00959 
mz75 Strong 6.5182 0.00012 0.00146 0.00311 0.00633 
mz76 Strong 6.20329 -0.0001 0.00177 0.00371 0.00716 
mz77 Strong 9.38165 0.00172 0.00994 0.0208 0.0431 



 

mz78 Strong 7.89004 0.0009 0.00477 0.00982 0.02111 
mz79 Strong 9.78718 0.00331 0.01445 0.02844 0.05865 
mz80 Strong 7.72935 0.00023 0.0018 0.00384 0.00843 
mz81 Strong 9.94842 0.00327 0.01739 0.0347 0.07285 
mz82 Strong 9.04364 0.00086 0.00587 0.01178 0.02386 
mz83 Strong 9.63347 0.00224 0.01131 0.02262 0.04842 
mz84 Strong 8.44 0.00079 0.00421 0.00847 0.01759 
mz85 Strong 8.88894 -0.001 0.00554 0.01081 0.02274 
mz86 Strong 6.36324 -0.0108 0.00105 0.0022 0.00456 
mz87 Strong 7.82926 0.00022 0.00187 0.00367 0.00743 
mz88 Strong 5.46014 -3E-05 0.00061 0.00123 0.00266 
mz89 Strong 7.62395 0.00029 0.00172 0.00377 0.00795 
mz90 Strong 5.85027 8.1E-05 0.00071 0.00155 0.00304 
mz91 Strong 9.09518 0.00156 0.0101 0.02115 0.04465 
mz92 Strong 5.76976 0.00011 0.00233 0.00504 0.01036 
mz93 Strong 7.99309 0.00054 0.00508 0.01104 0.0226 
mz94 Strong 7.72935 0.0003 0.0024 0.00512 0.01123 
mz95 Strong 9.51552 0.00155 0.0081 0.01693 0.03497 
mz96 Strong 7.94093 0.00039 0.00262 0.00544 0.01051 
mz97 Strong 8.8534 -0.0009 0.00464 0.00929 0.01971 
mz98 Strong 8.45931 0.00047 0.00234 0.00477 0.0099 
mz99 Strong 7.43477 -0.001 0.00172 0.00334 0.00594 
mz100 Strong 5.22097 -0.0001 0.00063 0.00129 0.00236 
mz101 Strong 7.10802 5.9E-05 0.00117 0.00229 0.00464 
mz102 Strong 6.60916 4.2E-05 0.00103 0.00224 0.00502 
mz103 Strong 6.74811 7.4E-05 0.0016 0.00345 0.00747 
mz104 Strong 4.77613 -8E-05 0.00118 0.00254 0.00521 
mz105 Strong 8.19342 0.00034 0.00346 0.00763 0.01698 
mz106 Strong 6.62573 -6E-06 0.00129 0.00272 0.00589 
mz107 Strong 8.5247 0.00044 0.00272 0.00586 0.01285 
mz108 Strong 7.26816 0.00021 0.00122 0.00259 0.00523 
mz109 Strong 9.04447 -0.0005 0.00304 0.00648 0.01318 
mz110 Strong 7.07327 0.00018 0.00115 0.00243 0.00493 
mz111 Strong 7.34289 -0.0008 0.00147 0.00295 0.00596 
mz112 Weak 3.83745 -0.0042 0.00051 0.00114 0.00218 
mz113 Strong 6.10393 -0.0032 0.00077 0.00169 0.00311 
mz114 Strong 5.29001 -0.0002 0.00045 0.00096 0.00196 
mz115 Strong 8.60069 0.00061 0.00291 0.00618 0.01486 
mz116 Strong 6.66794 2.9E-05 0.00095 0.00211 0.00484 
mz117 Strong 7.53592 0.00024 0.00161 0.00363 0.00832 
mz118 Strong 6.12417 4.9E-05 0.00082 0.00185 0.00398 
mz119 Strong 7.60066 0.00018 0.00155 0.00354 0.008 
mz120 Strong 6.01684 -7E-05 0.00071 0.00159 0.00352 
mz121 Strong 6.97556 0.00015 0.00135 0.00292 0.00661 
mz122 Strong 5.29943 -7E-05 0.00064 0.0014 0.00325 
mz123 Strong 6.34159 -0.0016 0.00083 0.00193 0.00445 
mz124 Strong 4.72048 -0.0009 0.00037 0.00082 0.0018 
mz125 Weak 3.27382 -0.0066 0.00025 0.00072 0.00152 



 

mz126 Strong 4.55255 -0.0071 0.00037 0.0008 0.00196 
mz127 Strong 6.01397 -0.0019 0.00078 0.00167 0.00368 
mz128 Strong 7.18673 0.00015 0.00133 0.00299 0.00734 
mz129 Strong 7.35485 0.00021 0.00126 0.00284 0.00705 
mz130 Weak 3.79174 -0.0003 0.00049 0.00116 0.00262 
mz131 Strong 6.81728 6.9E-05 0.00094 0.00231 0.00566 
mz132 Weak 3.38582 -0.0002 0.0005 0.00109 0.00249 
mz133 Strong 6.27521 6.5E-05 0.00093 0.00217 0.00511 
mz134 Weak 4.44894 -0.0001 0.00045 0.00102 0.00233 
mz135 Strong 5.54901 -0.0002 0.00069 0.00156 0.00352 
mz136 Weak 4.51851 -0.0002 0.00032 0.00073 0.00168 
mz137 Strong 6.38935 -0.001 0.00054 0.0014 0.00516 
mz138 Strong 4.6425 -0.0011 0.00024 0.00055 0.0017 
mz139 Strong 6.37272 -0.0022 0.00057 0.00129 0.00302 
mz140 Weak 3.89419 -0.0011 0.00018 0.00041 0.00097 
mz141 Strong 7.09137 -0.0001 0.00073 0.00171 0.00447 
mz142 Strong 5.63898 -0.0001 0.00042 0.00098 0.00243 
mz143 Strong 6.21922 4.9E-06 0.00054 0.00122 0.00302 
mz144 Strong 5.02847 -8E-05 0.00033 0.00072 0.00185 

 
 

Error Estimation Result Details 
 
Supplemental Table 4.  Summary of EE interval ratios by factor and key species for five-, six-, and seven-
factor solutions with Sacramento PM2.5 data. 

Number 
of factors Factor 

Key 
species 

BS 
interval 

ratio 

DISP 
interval 

ratio 
BS-DISP 

interval ratio 
5 NO3 NO3 0.19 0.21 0.29 
6 NO3 NO3 0.15 0.20 0.29 
7 NO3 NO3 0.15 0.22 0.34 
5 K+/OC/EC K+ 0.22 0.16 0.28 
6 K+/OC/EC K+ 0.23 0.25 0.36 
7 K+/OC/EC K+ 0.23 0.33 0.47 
5 SO4 SO4 0.13 0.06 0.16 
6 SO4 SO4 0.35 0.08 0.41 
7 SO4 SO4 0.31 0.18 0.47 
5 soil Si 0.12 0.04 0.20 
6 Soil Si 0.13 0.11 0.16 
7 Soil Si 0.12 0.08 0.27 
5 Cl Cl 0.16 0.05 2.00 
6 Cl Cl 0.21 0.06 0.32 
7 Cl Cl 0.30 0.18 0.36 
6 Copper Cu 0.38 0.13 2.00 
7 Copper Cu 1.93 0.06 1.92 
7 Na Na 0.16 0.10 1.96 

 



 

Supplemental Table 5. Summary of EE interval ratios by factor and key species for Milwaukee water 
quality data. 

Number of factors, 
scenario 

Factor 
Key 

species 

BS 
interval 

ratio 

DISP 
interval 

ratio 

BS-
DISP 

interval 
ratio 

2 Stormwater TSS 0.53 0.41 0.89 

3, with Cd weak Stormwater TSS 0.61 0.77 1.49 

3, excluding Cd Stormwater TSS 0.95 0.79 1.73 

2 
Sanitary 
sewage NH3 0.29 0.33 0.49 

3, with Cd weak 
Sanitary 
sewage NH3 0.66 0.37 1.29 

3, excluding Cd 
Sanitary 
sewage NH3 0.81 0.37 1.30 

3, with Cd weak Metals Cr 0.83 0.97 1.45 

3, excluding Cd Metals Cr 0.61 0.97 2.00 
  
Supplemental Table 6.  Summary of EE Interval ratios by factor and key species for three-, four-, and 
five-factor solutions for Las Vegas AMS data. 

Number of 
factors 

Factor 
Key Species 

(m/z) 

BS 
interval 

ratio 

DISP 
Interval 

ratio 

BS-DISP 
interval 

ratio 
3 BBOA 60 0.27 0.26 0.44 
4 BBOA 60 0.43 0.11 1.14 
5 BBOA 60 1.46 0.10 1.47 
3 HOA 43 0.36 0.42 0.64 
4 HOA 43 0.28 0.30 1.39 
5 HOA 43 0.39 0.36 1.65 
3 LV-OOA 44 0.45 0.48 0.86 
4 LV-OOA 44 0.34 0.32 1.23 
5 LV-OOA 44 0.38 0.27 1.59 
3 SV-OOA 55 n/a n/a n/a 
4 SV-OOA 55 0.50 0.30 1.50 
5 SV-OOA 55 0.44 0.27 1.73 

 
Supplemental Table 7. Sacramento EE intervals by N factors, key species and dQmax value. 
N factors dQmax SO4 NO3 K Cl Si Cu Na+ 
5 4 0.06 0.21 0.16 0.05 0.04 n/a n/a 
5 8 0.09 0.24 0.22 0.08 0.06 n/a n/a 
5 16 0.13 0.27 0.29 0.11 0.08 n/a n/a 
6 4 0.08 0.20 0.25 0.06 0.11 0.13 n/a 
6 8 0.10 0.23 0.31 0.08 0.15 0.16 n/a 
6 16 0.13 0.26 0.39 0.11 0.18 0.20 n/a 
7 4 0.18 0.22 0.33 0.18 0.08 0.06 0.10 
7 8 0.27 0.25 0.39 0.22 0.12 0.08 0.15 
7 16 0.37 0.29 0.44 0.25 0.16 0.12 0.21 
 




