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Abstract 

Vehicles are major sources of air pollutant emissions, and individuals living near large roads endure high 

exposures and health risks associated with traffic-related air pollutants.  Air pollution epidemiology, health risk, 

environmental justice, and transportation planning studies would all benefit from an improved understanding of 

the key information and metrics needed to assess exposures, as well as the strengths and limitations of the 

various alternatives.  Several metrics for characterizing exposure to traffic-related air pollutants were developed 

for the 218 residential locations of participants in the NEXUS epidemiology study conducted in Detroit, 

Michigan, U.S.  Exposure metrics included proximity to major roads, traffic volume, vehicle mix, traffic 

density, vehicle exhaust emissions density, and pollutant concentrations predicted by dispersion models.  

Results presented for each metric include comparisons of exposure distributions, spatial variability, intraclass 

correlation, concordance and discordance rates, and overall strengths and limitations.  While showing some 

agreement, the simple categorical and proximity classifications (e.g., high diesel/low diesel traffic roads and 

distance from major roads) do not reflect the range and overlap of exposures seen in the other metrics.  

Information provided by the traffic density metric, defined as the number of kilometers traveled (VKT) per day 

within a 300 m buffer around each home, was reasonably consistent with the more sophisticated metrics.  

Dispersion modeling provided spatially- and temporally-resolved concentrations, along with apportionments 

that separated concentrations due to traffic emissions and other sources.  While several of the exposure metrics 

showed broad agreement, including traffic density, emissions density and modeled concentrations, these 

alternatives still produced exposure classifications that differed for a substantial fraction of study participants, 

suggesting the potential for exposure misclassification and the need for refined and validated exposure metrics.  

While data and computational demands for dispersion modeling of traffic emissions are non-trivial concerns, 

once established, dispersion modeling systems can provide exposure information for both on- and near-road 

environments that would benefit future traffic-related assessments. 
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Introduction 

Residential location and proximity to major roads have been widely used in analyses of exposures and adverse 

health effects that can result from traffic-related air pollutants, reflecting the elevated concentrations found near 

large roads (Zhu et al. 2006; Baldauf et al. 2008; Barzyk et al. 2009; Hagler et al. 2009; Hu et al. 2009; Health 

Effects Institute 2010; Karner et al. 2010).  As an indicator or exposure surrogate, residential distance to roads, 

or more generally, residence location, is intended to reflect the portion of exposure received at home, which is 

generally the dominant share since most individuals spend the majority of their time at home (Huang et al. 

2000).  Residence location or proximity to roads can be used as a surrogate exposure metric itself, or as an input 

to land use regression, dispersion, space-time (geostatistical), and hybrid models, which are designed to 

estimate ambient air concentrations and sometimes personal exposures in the case of the hybrid models (Brauer 

2010; Rioux et al. 2010; Batterman 2013; Beevers et al. 2013; Özkaynak et al. 2013).   

Actual exposure for any particular individual will be the result of many factors, e.g., the amount of time spent 

indoors and outdoors, building and vehicle cabin air exchange rates, and breathing rates (Özkaynak et al. 2013).  

Unfortunately, direct measurement of traffic-related air pollutant exposure is rarely practicable due to cost and 

logistical issues (Rioux et al. 2010).  Ambient air quality monitoring networks do not provide the spatial 

coverage needed to estimate near-road exposures (Batterman 2013), and personal, home or biomarker 

measurements rarely are feasible in large scale studies.  Still, it remains important to improve exposure 

estimates that are used in epidemiology, health impact, environmental justice and other studies (Jerrett et al. 

2005; Brauer 2010; Institute 2010; Sheppard et al. 2012).  Improved estimates will minimize exposure 

misclassification that can bias results of epidemiology studies towards the null (Kioumourtzoglou et al. 2014), 

incorrectly predict risks in health impact studies, and misidentify affected populations in environmental justice 

studies. 

This paper explores alternate metrics for characterizing exposure to traffic related air pollutants, including 

metrics based on proximity to major roads, traffic volume and density, traffic type, traffic emissions density, 

and pollutant concentrations from dispersion modeling.  These metrics are being utilized in an ongoing 

epidemiology study investigating effects of diesel exhaust emissions on the respiratory health of asthmatic 

children in Detroit, Michigan, USA (Vette et al. 2013).  The evaluation of the exposure metrics presented in this 

paper includes a comparison of exposure distributions, spatial variability using maps coded by exposure group, 

intraclass correlations, and concordance rates.   

Methods 

Study population 

The Near-road EXposures and effects of Urban air pollutants Study (NEXUS) was designed to examine near-

roadway exposures to air pollutants and respiratory health in children with asthma living close to major roads in 

Detroit, MI.  This community-based participatory research (CBPR) study was designed and conducted with 

community input and consent.  Children with asthma or symptoms of asthma from 6 to 14 years of age were 

recruited on the basis of the proximity of their home to major roads in three traffic categories:  high diesel/high 

traffic (HDHT), defined as homes within 175 m of roads with >6,000 commercial vehicles/day (commercial 

annual average daily traffic; CAADT) and >90,000 total vehicles/day (annual average daily traffic; AADT);  

low diesel/high traffic (LDHT), defined as homes within 175 m of roads with >90,000 AADT and <4,500 

commercial vehicles/day;  and low diesel/low traffic (LDLT) homes located >300 m from roads with >25,000 
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AADT and greater than 500 m from roads with >90,000 AADT.  In the initial groups, the designation of 

commercial vehicles was used as a surrogate for diesel vehicles.  Children in the LDLT group were drawn from 

the same neighborhoods and school catchment areas as the other groups, but lived further from high-traffic 

corridors, thus minimizing possible confounding from unmeasured neighborhood-associated covariates.   

Ultimately, 139 children were recruited and participated in the study from September 2010 to December 2012.  

Because a number of children moved during the study, a total of 218 residence locations were considered 

(Figure 1).  The study population had approximately equal distribution across the three traffic categories.  The 

population was primarily minority (non-Hispanic Blacks constituted 82% of the participants, Hispanics 8%, 

Non-Hispanic Whites 4%, and other/multiracial 6%).  Many households were poor (about one-third of families 

reported annual household incomes below $15,000). 

Residential proximity to major roadways 

Because concentrations of traffic-related air pollutants rapidly decrease with distance from roads, considerable 

effort was spent to obtain accurate estimates of home locations and the distance to major road.  Initially, to 

guide field staff in their recruitment efforts, candidate homes were identified using GIS-produced maps, which 

identified buffers within 200 m of selected highways and the street and house numbers of residences within 

these buffers.  For the children recruited and enrolled into the study, the resulting 218 home locations were 

geocoded using three approaches.  The first used a hand-held GPS device (60CS, Garmin International Inc., 

Olathe, KS, USA) operated by our technician who stood as close as possible to the residence’s front door.  

When the indicated accuracy was <10 m, the location was recorded on a data entry form and as a waypoint in 

the device’s memory.  The calibration of the device was confirmed using several other GPS units.  Second, 

online automated geocoding software provided by ‘Bing Maps’ (http://www.bing.com/maps/) was used by 

manually entering the number, street, city and ZIP code of each residence into this application, which returned 

latitude and longitude.  The Bing Map estimates used the European Petroleum Survey Group (EPSG) code, a 

Mercator projection, and a spherical model of the earth (Aitchison 2011).  The third geocoding estimate used 

the address locator in the online U.S. Streets Geocode Service in ArcGIS, ESRI ArcMap 10.0 (Redlands, CA, 

USA).  This system uses a cascading sequence of geolocators starting with the Tele Atlas Address Points 

database, followed by the Tele Atlas Street Address Range database, 9-digit ZIP code, and then the 5-digit ZIP 

code locators (ESRI 2010).   

All coordinates were converted to Universal Traverse Mercator (UTM) coordinates for use in subsequent 

analyses.  In the event of discrepancies exceeding 100 m between the GPS and automated geocoding 

coordinates, data were checked, plotted, and if needed, our technician was sent out to confirm GPS coordinates 

a second (and sometimes a third) time, at which point all GPS measurements agreed.  Final home locations are 

plotted in Figure 1.  On average, the automated geocoding estimates diverged from GPS measurements at the 

NEXUS homes by an average 30 ± 23 m, although much larger errors were not infrequent, e.g., 75th and 95th 

percentile errors were ~50 and 75 m (Ganguly et al. 2014).  The bigger errors can represent a large fraction of 

the buffer width (200 m) used in the proximity metrics, suggesting that a fraction of homes geocoded using 

automated systems would be misclassified by such surrogate exposure metrics, especially since automated 

geocoding programs typically give larger errors than those found for Detroit (Rioux et al. 2010; Ganguly and 

Batterman 2014).  

Distances from each residence to the nearest roads and highways were determined using ESRI ArcMap (version 

10.0) “NEAR” function within the Proximity toolset, the 2012 Topologically Integrated Geographic Encoding 
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and Referencing (TIGER) 2012 road shape files, and the North American Datum (NAD) for 1983.  A second 

measure of distance to the nearest highway was calculated similarly using the link-based road network for the 

emissions inventory described next.  This distance averaged 20 m greater than the TIGER estimate, representing 

the distance to the road centerline rather than to the road edge. 

Road network, traffic data and emissions inventory 

The modeled road network used 9,701 links (linear segments) to represent 3,109 km of roads, which included 

all but the smaller and numerous local roads in the ~800 km2 study area (Figure 1).  Major roads (e.g., 

freeways) were represented using separate links for each direction, large service roads, if any, and ramps.  Road 

network data obtained from the Southeast Michigan Council of Governments (SEMCOG) included the 

locations, number of lanes, and roadway type (e.g., freeway, arterial).  The road network extended at least 5 km 

beyond the locations of the NEXUS homes, and fully encompassed the city of Detroit (area of ~355 km2).  

Hourly vehicle traffic volume and speed on each link were estimated using the SEMCOG Travel Demand 

Forecast Model, which uses a TransCAD-based a suite of applications, and temporal profiles for monthly, 

weekly and daily flows by vehicle class (e.g., heavy-duty diesel, light-duty gasoline).  Where possible (e.g., for 

interstates), estimated vehicle flows were checked against observed traffic counts.   

Estimates of total and diesel vehicle volumes on major roads formed the basis of the initial participant 

recruitment and the exposure classification.  The initial grouping of roads (as HDHT, LDHT and LDLT) used 

2006 and 2007 maps with AADT and CADT flows prepared by the Michigan Department of Transportation 

(http://mdotcf.state.mi.us/public/maps_adtmaparchive/).  As described earlier, subsequent analyses used state 

and regional data and a traffic demand model to derive AADT for each road link for the year 2010.  Traffic on 

the major road closest to each HDHT and LDHT residence was estimated by summing AADT values on the 

corresponding road-links, which included at least two links (one for each direction) and occasionally additional 

links if the road split or if ramps added to the road’s traffic in the vicinity of the residence.  At three homes, two 

major roads had similar proximity and both were counted in the AADT estimate.  The corresponding number of 

lanes on these roads was summed as another measure of road size.  Finally, the number of diesel vehicles on the 

closest major road was calculated as the product of the AADT (vehicles/day) and the fraction of diesel vehicles 

for the road type, which was 5.23% for “other freeways” (National Functional Class or NFC 12) and 9.18% for 

interstates (NFC 11).  These fractions represent the sum of light-duty diesel trucks, heavy-duty diesel trucks, 

and heavy-duty diesel vehicles (LDDV, LDDT, HDDV) as derived using state-level data from the US Federal 

Highway Administration (Table VM-4 from the FHWA Highway Statistics Series 

www.fhwa.dot.gov/policyinformation/ statistics/2010/vm4.cfm), and the US EPA Emission Inventory 

Improvement Program (www.epa.gov/ttn/chief/eiip/).  

Primary mobile source emissions of particulate matter below 2.5 µm dia (PM2.5), oxides of nitrogen (NOx), 

carbon monoxide (CO) and other pollutants were estimated for each link on an hourly basis, thus producing a 

spatially and temporally resolved mobile source emissions inventory.  The link-based inventory used emission 

factors representative of each vehicle class in the study area for the year 2010 calculated using the 

MOVES2010a model with inputs including the average speed and flow on each link, local vehicle mix and age 

distribution, ambient temperature, season, and road type (Cook et al. 2008; Isakov et al. 2009).  Due to large 

uncertainties, particulate emissions for brake and pavement wear, and resuspension of dust were not included in 

the PM emissions estimates.  

Emissions-based exposure metrics incorporate the quantity of traffic-related pollutant emissions released, 
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providing an exposure metric that may be particularly relevant to policies addressing emission controls, 

transportation control measures, and other actions that directly affect emissions.  Emissions density was 

estimated as the daily vehicle exhaust emissions (g/day) within a 300 m buffer around each home.  PM2.5, NOx 

and CO emissions were considered.  

Concentration estimates and dispersion modeling 

We evaluated whether simple “box” models using the emissions density information discussed above could 

provide useful estimates of near-road pollutant concentrations.  We assumed a wind speed u = 3.66 m/s (the 

long term Detroit average), a mixing height h = 100 m, and the average traffic-related PM2.5 emission rate Q in 

the 300 m buffer (r = 300 m) around high traffic homes.  Concentrations were calculated as C = Q / (2 u r h). 

Hourly pollutant concentrations for the year 2010 were predicted at each home for three cases:  annual average 

concentrations due to on-road exhaust emissions; the maximum 24-hour concentration also due to on-road 

exhaust emissions, and the “total” annual average concentration due to on-road, non-road and background 

sources.  Each case used the road-link emissions inventory for the Detroit area described above, the new RLINE 

dispersion model specifically designed for roadway emissions (Snyder et al. 2013a; Venkatram et al. 2013), and 

hourly meteorological data from the Detroit City airport processed by AERMET.  In addition, the third case 

used a hybrid model system that integrated RLINE, the AERMOD model for area and point sources in the 

region using source locations (Cimorelli et al, 2005), emission rates and other parameters from the 2008 

National Emissions Inventory (NEI), and estimated regional (background) concentrations determined using the 

Community Multiscale Air Quality (CMAQ) model, observations from air quality monitoring networks in the 

region, and a space/time kriging model.  As described in Isakov et al. (2014), this system is highly flexible, and 

model outputs can provide spatial and temporal patterns of air pollutants by source category.   

Detailed descriptions and evaluations of RLINE and the other dispersion models have been presented elsewhere 

(Heist et al. 2013; Snyder et al. 2013a; Snyder et al. 2013b; Venkatram et al. 2013; Isakov et al. 2014).  In 

Detroit, model results have been compared to ambient observations collected in both routine monitoring 

networks (AQS) and during the NEXUS intensive campaign.  Compared to AQS data, 24-hr average PM2.5 

concentrations correlated well (0.78<r<to 0.94) with 2010 data collected at four PM2.5 monitoring sites in 

Detroit, and most predictions were within a factor of two of observations.  NOx concentrations predicted at the 

sole AQS monitoring site in Detroit reproduced morning and afternoon peaks but overpredicted the 

concentrations, likely due to contributions from regional sources since this site was several km from major 

highways.  Compared to black carbon measured outside of 25 of the NEXUS homes and NOx measured at 9 

homes in (September-November) 2010, the model generally captured the magnitude and dynamics of observed 

concentrations, although concentrations were overpredicted or missed at some sites and some specific hours, 

likely due to uncertainty in hourly traffic activity and emissions at the road link level.  Further description of the 

evaluation of the modeling system in the Detroit application is presented elsewhere in this issue (Isakov et al. 

2014).   

Data analysis 

Descriptive analyses included graphs of distributions stratified by the original HDHT, LDHT and LDLT 

groups.  Differences in means between the HDHT and LDHT groups were evaluated using t tests, and 

difference in distributions for the same groups were evaluated using the non-parametric Mann-Whitney (MW) 

tests.  (Sample size n=96 in all cases for both tests).  Comparisons between exposure metrics used Spearman’s 

and Kendall’s τ-b correlation coefficients to measure interclass agreement.  The latter correlation coefficient 
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considers the number of concordant pairs of observations minus the number of discordant pairs, expressed as 

the fraction of total pairs, and accounts for ties.  Both are non-parametric measures that range from -1 to 1.  

Several additional measures of concordance/discordance rates were derived for exposures divided into “high”, 

“medium” and “low” categories to provide estimates potentially relevant to exposure misclassification, as 

discussed in the text.  

Results 

Grouping of homes by distance to roads 

By design, many of the children participating in NEXUS lived close to major roads.  Most children in the high 

traffic groups (HDHT and LDHT) lived near two interstate highways and two State of Michigan highways:  I75 

(n=30 residence locations), I94 (n=20), M10 (n=30), and M39 (n=16).  A few children lived near I96 (n=3), 

which was classified as a “medium” diesel high traffic road and not considered further in the present analysis.    

The distributions of distances from high traffic roads for the HDHT, LDHT and LDLT groups are shown in 

Figure 2.   Means and distributions in the two high traffic groups did not differ (t-test: p=0.641; MW test: 

p=0.376), and the mean distance was 96 ± 45 m from the road edge.  The distributions were rectangular in 

nature, and one residence was as close as 1 m from the road edge (along I75 in southwest Detroit).  In contrast, 

distances in the LDLT group were much longer, averaging 1,562 ± 1,133 m (± standard deviation).   

Among the HDHT and LDHT groups, distances from roads did not vary among the four major roads (Kruskal-

Wallace test, p=0.628), although the average distance for M39 was 10 m less than those for the three other 

major roads.  No general trends were noted for residence-road distances with respect to region of the city or 

distance from downtown. 

Total and diesel traffic metrics 

The distributions of total and diesel traffic volume on major roads near the NEXUS homes are shown in Figures 

3A and 3B and mapped in Figures 4A and 4B; descriptive statistics are in Table 1.  As anticipated, diesel 

vehicle traffic was highly correlated to the total traffic (r = 0.93), however, there are important differences, as 

discussed below.  The maps show the clustering of high traffic homes along five major highways: HDHT 

homes fall mostly in the south and east along I75 and I94 (red circles, Figure 4A); LDHT homes are mostly in 

the north and west along M10 and M39 (blue circles).  The LDLT homes (green circles) are distributed 

throughout the region.    

Considering the total traffic (AADT) near the high traffic homes, the average volume was 134,000 ± 30,000 

vehicles/day and the average number of lanes was 7.2 ± 1.6.  As noted above, three homes were equally near 

two major roads, including the home with the highest AADT, which was located at the I94-M10 intersection 

(AADT = 212,000 vehicles/day, counting both roads); the two other homes were at the I94-I96 and I75-I96 

junctions (178,000 and 134,000 vehicles/day, respectively).  Traffic volumes at such junctions can be difficult 

to estimate given the numbers of ramps and highway segments involved.  Otherwise, the traffic volume 

estimates were due to a single road.  The AADT distributions for HDHT and LDHT homes were similar (t-test: 

p=0.091; MW test: p=0.262; Figure 3A), although the HDHT group had a greater range and its lowest tertile 

had 25,000 fewer vehicles/day.  AADT had negligible correlation with the home’s distance to the road (r = -

0.006).  The maps suggest that each road had a wide range of traffic volumes, i.e., no apparent geographic bias. 
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Considering diesel traffic near the high traffic homes, the volume averaged 8,640 ± 2,240 vehicles/day, and 

eight homes had over 12,500 diesel vehicles/day.  HDHT homes had an average of 2,100 diesel vehicles/day 

more than LDHT homes, a statistically significant difference (t-test: p<0.001; MW test, p<0.001).  Still, the 

distributions of HDHT and LDHT homes had considerable overlap, and roughly half of the two sets of homes 

had a comparable range of diesel volume (7,000-9,000 vehicles/day; Figure 3B).  The highest diesel volume 

occurred for homes along I75, while homes along the eastern portion of I94 had lower diesel traffic volumes 

than other HDHT homes (Figure 4B).  This resulted in part from reclassifying this section of I94 to an “other 

highway” (NFC 12) designation rather than “interstate” in an attempt to better match the observed traffic 

classification.  Diesel volume had negligible correlation with distance to the road (r = 0.001).  Overall, 

estimates of diesel traffic are less certain than those for total traffic due to the variation in fleet mix and the 

limited classification data available.   

By design, the LDHT homes were intended to have commercial annual average daily traffic (CADT) below 

4,500 vehicles/day.  There are several reasons for differences between the initial groupings and those computed 

using the road-link network.  First, not all diesel traffic is “commercial” (and vice-versa).  Based on the fleet 

composition data used, the bulk of diesel traffic on major roads are heavy duty diesel vehicles (HDDV), which 

represent 84% of the diesel volume on interstates, and 71% on “other highways.”  The balance of diesel 

vehicles is contributed by light duty diesel vehicles (LDDV) and light duty diesel trucks (LDDT), which 

respectively represent 11 and 6% of the diesel vehicles on interstates, and 20 and 9% on other highways.  With 

the exception of the 6 to 9% of the diesel vehicles classified as LDDVs, most LDDTs and all HDDVs form part 

of CADT.  With the LDDV fraction removed, differences between the HDHT and LDHT categories slightly 

increase, e.g., the average volume of diesel traffic is 8,700 ± 2,500 vehicles/day near the HDHT homes, and 

6,300 ± 950 vehicles/day near the LDHT homes.  Second, CADT will include some gasoline-powered vehicles.  

However, the emissions inventory classifications do not correspond well to the AADT/CADT classifications.  

Third, the initial and road-link estimates of CADT used different data sources: the former depended on local 

measurements, while the latter used a mix of local, Michigan and national-level data. 

Traffic density metric 

A measure of traffic density, the number of vehicle-km traveled (VKT) per day within a 300 m radius of each 

home, was calculated using the road-link network.  The average VKT/day was 94,200 ± 24,900 for HDHT 

homes, 102,200 ± 17,230 for LDHT homes, and 12,700 ± 12,400 for LDLT homes.  Differences in traffic 

density between HDHT and LDHT homes approached statistical significance (t-test: p=0.071; MW test, 

p=0.117; Figure 3C).  This metric varied considerably within each home group, e.g., the range spanned a factor 

of 2.8 for HDHT homes, and variation for homes along the same highway could be considerable, e.g., the 

southwest section of I75 shows several HDHT homes with low traffic density (Figure 4C).  Of the LDLT 

homes, 4% (n=4) had moderately high traffic density (41,000 to 74,000 VKT/day), overlapping or nearly 

overlapping the high traffic homes.  Based on this exposure metric, the LDHT homes had slightly greater 

exposure than HDHT homes.   

For most high traffic homes, the largest share by far of the traffic density metric was contributed by interstates 

and other highways.  This exposure metric can be very sensitive to the distance criterion since roads will drop 

out as the distance criterion (buffer size) decreases.  For example, a 150 or 200 m buffer excluded the nearby 

highway for a few HDHT homes, dropping the KMT/day to near zero, despite large values obtained with the 

300 m buffer.   
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Emissions density metrics 

Figures 3D and 4D show the PM2.5 emissions density distributions and levels at each home.  For PM2.5, the 

emissions density averaged 2,226 ± 568 g/day at HDHT homes, 2,029 ± 379 at LDHT homes, and only 315 ± 

320 at LDLT homes.  The distributions of PM2.5 emissions near HDHT and LDHT homes appeared similar, 

although outliers caused results of the statistical tests to vary (t-test: p=0.052; MW test: p=0.153), e.g., a few 

HDHT homes near intersections of major roads (e.g., I95 and I75) had very high emissions.  For the high traffic 

homes, nearby highways contributed the bulk of emissions.  Emissions rates in the 300 m buffers around LDLT 

homes were much lower, although a few homes had emissions densities that overlapped those in the high traffic 

group. 

Distributions and maps for NOx and CO emissions density are shown in Supplemental Figures S1 and S2.  

Results for NOx parallel the findings for PM2.5.  However, results for CO diverged as HDHT homes tended to 

have lower CO emissions within the 300 m buffer, although statistical significance was not reached (t-test: 

p=0.072; MW test: p=0.093).  Some of the higher levels were found for homes along M39 (in the western 

portion of the study region), due to the lower CO contributions from diesel vehicles and the dominance of CO 

emissions from much more numerous (and gasoline-powered) automobiles.  Overall, the pattern for CO closely 

resembled the traffic density metric (Figures 3C and 4C). 

Emission-based metrics may be especially relevant for the traffic analysis zones (TAZ) commonly used by 

metropolitan planning organizations for various purposes, although TAZs may be relatively large relative to the 

spatial variability of traffic-related air pollutants.  Emission-based metrics can be developed for the major road 

nearest point of interest (e.g., a home), for roads within a local area, or for buffers around points of interest, as 

presented here.  This metric is pollutant-specific and thus can account for differences in fleet mix, technology 

and transportation control measures (TCMs) that affect emissions.   

Concentration metrics 

The “box” model using the average emissions density around high traffic homes for PM2.5 (2,226 g/day) gave a 

predicted PM2.5 concentration of 0.12 µg/m3.  This low estimate does not account for temporal variation in 

emission rates (e.g., rush-hour emissions are approximately twice the average rate) or meteorology (e.g., wind 

speeds near 1 m/s are not uncommon and mixing heights also vary).  In addition, some homes had twice the 

average emission rate, and results will be sensitive to the buffer size and source configuration.  The most 

significant limitation, however, is the validity of the fully mixed assumption near major roads where vertical 

dispersion of roadway emissions may not reach 100 m.  As shown below, dispersion models designed for near-

road applications yielded concentrations one to two orders of magnitude greater.  Thus, while box models have 

been used at a city-wide or regional level (Apte et al. 2012), they do not appear useful for near-road 

applications.    

Dispersion modeling results for PM2.5 are summarized in Table 2, and concentration distributions and maps are 

shown in the bottom panels of Figure 3 and 4.  Considering emissions from local traffic and annual average 

concentrations, PM2.5 levels at high traffic homes were 1.6 µg/m3 higher than those at LDLT homes, or about 

twice that at the LDLT homes.  Considering 24-hour peak concentrations, PM2.5 levels at several HDHT homes 

were estimated to exceed 40 µg/m3, which is high relative to PM2.5 standards.  (The U.S. National Ambient Air 

Quality Standards are currently 12 and 35 µg/m3 for annual and 24-hr averages, respectively).  The average 24-

hr peak across the high traffic homes was 11 µg/m3 more than levels at the LDLT homes, again about twice the 

level.  The peak metric tended to decrease the relative difference between high and low traffic homes.  



9 

Considering the “total” PM2.5 estimated by the hybrid model, regional sources were dominant, contributing 

about 12 µg/m3 on an annual average basis across the homes.  Given the relatively high contribution of PM2.5 by 

regional sources, the spatial variability due to local sources was significantly reduced, e.g., PM2.5 levels at low 

and high traffic homes differed by only 10 to 20%.  (Distributions and maps of total PM2.5 are shown in 

Supplemental Figure S3).  

The distributions of annual average PM2.5 concentrations at HDHT and LDHT homes due to local traffic were 

very similar (t-test: p=0.637; MW test: p=0.523, Figures 3E, S3);  peak 24-hr concentrations tended to be 

slightly but not statistically higher at the LDHT homes (t-test: p=0.251; MW test: p=0.235; Figures 3E, 3F).  

The highest prediction, considered an outlier since it considerably exceeded any other prediction, occurred at a 

home very near I75.  Excluding this point, concentrations due to local traffic varied by about 3-fold in each 

exposure group.   

Unlike the metrics discussed earlier, dispersion modeling results are expressed as concentrations that permit 

direct and meaningful comparisons to air quality standards, monitoring data and other studies.  For example, a 

recent application of a hybrid dispersion model in London, England showed annual average PM2.5 contributions 

from 1 to 5 µg/m3 due to local vehicle exhaust (depending on site), and about 11 µg/m3 due to other local and 

regional sources (Beevers et al. 2013).  Both the traffic and regional PM2.5 contributions were very similar to 

those predicted for Detroit.  While an intercity comparison incorporating meteorology and spatial factors is 

beyond the present scope, the volume of traffic and the number of large and high emitting diesel trucks on 

Detroit’s highways may produce PM2.5 concentrations that are comparable to those in London, despite Detroit’s 

smaller size and lower fraction of diesel vehicles.   

Comparison of exposure metrics  

Table 3 compares the exposure metrics using Spearman’s and Kendall’s τ-b correlation coefficients.  To include 

the original categorical proximity classifications in this analysis, LDLT, LDHT and HDHT groups were coded 

two ways:  as 1, 2 and 3 respectively in the “Group1” variable, with the assumption that exposures were ranked 

as HDHT > LDHT > LDLT; and as 1, 2 and 2 in the “Group2” variable with the assumption that exposures 

were HDHT ≈ LDHT > LDLT, as suggested by most metrics.  Results for these variables are only indicative of 

agreement.  Table 3 colors the higher (>0.6 and >0.8, absolute value) correlation coefficients.  For the 

Spearman coefficients, absolute values above 0.17 (n=96 for comparisons involving only high traffic groups) or 

0.12 (n=198 to 218 for other comparisons) are statistically significant (p<0.05, 1-sided test).  While the 

measures have some differences, e.g., the Spearman coefficients are 3 to 23% higher than the Kendall τ-b 

coefficients and contrasts in Kendall's τ-b coefficients tend to be larger, similar patterns emerge.  The original 

proximity classifications (“Group1” and “Group2”) are related to distance to the nearest highway (defining 

variables), to traffic density (VKT/day in the 300 m buffer around each home), and to PM2.5 and CO emissions 

density metrics using the same buffers.  While maximum 24-hr and annual average PM2.5 concentrations from 

local traffic were closely correlated, predicted PM2.5 concentrations had only modest agreement with most of 

the other exposure metrics, although correlations with the traffic density and distance metrics might be viewed 

as reasonable.   

Differences among the metrics can occur for a number of reasons.  Metrics that depended on a single road, i.e., 

the original groups, distance to, traffic volume on, and number of lanes on the nearest major road, fared poorly 

in comparisons since these metrics excluded the influence of other roads, among other reasons.  Still, these 

simple metrics have some value.  Second, traffic density and emissions density are very strongly related, and 
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may yield equivalent spatial patterns.  Third, predicted concentrations (e.g., annual average and 24-hr maxima) 

were not as strongly related to the two density metrics, most likely a result of the dispersion modeling 

accounting for meteorological influences, e.g., directional effects.  Fourth, while concentrations of different 

pollutants and concentrations using different averaging times and statistics (e.g., average versus peak) show 

differences, the long term spatial patterns are relatively similar and a single metric may be sufficient for many 

applications.  (In contrast, short-term patterns, e.g., daily levels, will vary considerably due to both the influence 

of meteorology and traffic patterns.)  In health effects studies such as NEXUS, it is also useful to understand the 

relative ranking of exposures, discussed next.  

Table 4 presents a concordance analysis related to exposure misclassification if one of the metrics in the 

pairwise comparison reflects the true exposure.  This measure is defined as the percentage of homes identically 

classified after grouping each metric into tertiles (high, medium and low categories).  Thus, 100% agreement 

indicates that each home is placed in the same tertile for the pair of metrics considered.  Random assignment 

would be expected to yield 33% agreement.  For distance, tertiles were reversed, i.e., the shortest distances 

(presumably the highest exposure) were placed in the third tertile.  The skewness of several metrics produced 

non-uniform tertile ranges, i.e., for the number of lanes (0-6, 6-8 and 8-14), PM2.5 emissions (0-306, 306-1837, 

1837-4027 g/day), 24-hr peak (6-14, 14-18, 18-47 µg/m3) and annual average (0.8-1.6, 1.6-2.7, 2.7-9.4 µg/m3) 

PM2.5 concentrations.  Thus, another concordance measure was used to examine agreement with “thirds,” 

defined using three evenly spaced bins between the metric’s minimum and a nominal maximum value, either 

the actual maximum or an adjusted value that provided 15 observations in the top third.  This gave ranges for 

the distance metric of 3067-5025, 1534-3067 and 1-1534 m (reversed); 0-1300, 1300-2600 and >2600 g/day for 

PM2.5 emissions; 0.8-1.6, 1.6-2.7 and >2.7 µg/m3 for annual average PM2.5 concentrations; and 6-17, 17-27 and 

>27 µg/m3 for peak 24-hr PM2.5 concentrations.  (Figure 3D illustrates differences between tertiles and thirds.) 

Again, 100% agreement denotes that the pair of metrics placed each home at the same (low, medium or high) 

level.  Table 4 highlights metrics with higher (>60 and >80%) agreement.  These concordance measures give an 

estimate of misclassification intended for comparison to the three original groups (HDHT, LDHT, LDLT), as 

discussed next, but they have several disadvantages, e.g., potential sensitivity to the metric’s distributions and 

the bin cutoffs.   

The original proximity classification for NEXUS homes (“Group1” in Table 4) matched the tertiles and thirds 

groupings for PM2.5 concentrations predicted by the dispersion model for 54 to 65% of homes.  Considering 

only the low and high traffic categories (“Group2”), the percentage of homes that matched PM2.5 concentration 

tertiles was lower (45 to 52%), but higher for thirds (60 to 80%).  The same five metrics that were highly 

correlated (traffic density, emissions density for CO and PM2.5, annual average and peak 24-hr average PM2.5 

concentrations from traffic, Table 3), and sometimes the total PM2.5 (including all sources) had higher 

agreement, e.g., 50 to 90% using tertiles, and 59 to 80% using thirds.  This excludes the very high concordance 

found between (and expected for) traffic density and CO emissions density.  Overall, the concordance measures 

in Table 4 and the correlations in Table 3 produced similar patterns among the metrics.  While over half of the 

homes were similarly placed into “low,” “medium” or “high” traffic exposure classes using either the original 

groups or one of the other metrics discussed, 20 to 50% of homes, depending on the metric, were categorized 

differently. 

We also examined rates of “severe” discordance using both tertiles and third, but considering homes placed in 

the high exposure group by one metric, but in the low exposure group by the second metric.  Paralleling the 

analysis above, severe discordance rates among five more comprehensive metrics (traffic density, CO and PM2.5 
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emissions densities, and annual average and 24-hr peak concentration) were low (0-6%).  However, rates using 

total or diesel traffic volume on the nearest major road with these five metrics were 11 to 22% using tertiles, 

and 43 to 52% using thirds.  Severe discordance rates using the simple distance-to-highway metric compared to 

the five metrics were also low (1-3% using tertiles), meaning that few LDLT homes were placed in the upper 

tertiles of the five metrics and few HDHT or LDHT homes were placed in low tertiles of the same metrics.  In 

addition to reinforcing earlier conclusions, this analysis indicates severe discordance is rare among exposure 

metrics using traffic density, emissions density, or concentrations.  

Table 5 summarizes the exposure metrics, describing their strengths, limitations, data requirements, and key 

results in NEXUS.  Each metric provides different information (noted in the table and not repeated here).  

Several additional points are noteworthy.  First, traffic-related exposures should be viewed as a continuum, and 

exposure groups are not “homogeneous.”  For example, most of exposure metrics for the NEXUS homes in 

each of the three initial groups (LDLT, LDHT and HDHT) typically spanned a 3-fold range, with considerable 

overlap between groups.  Second, exposures result from multiple emission sources, and concentrations depend 

on source characteristics (e.g., emission rate) and dispersion (e.g., wind direction and stability), factors that vary 

in time.  While an emphasis on nearby sources (e.g., major roads) makes analyses more tractable, such 

simplifying assumptions can be inaccurate, and the choice of a distance cut-off is arbitrary.  As examples, 

concentrations of traffic-related pollutants at NEXUS homes near major highways varied greatly from day-to-

day, and homes that were distant (>500 m) from highways sometimes still received considerable levels of 

traffic-related pollutants.  Third, the minimum information needed to evaluate spatial variability (typically using 

the long term average) of traffic-related exposure includes the distance-to-road and traffic flows for the larger 

and nearby roads.  This can be expressed in the relatively simple traffic density metric, which correlated 

reasonably well with predicted PM2.5 concentrations (r=0.78 for annual averages, r=0.74 for 24-hr peaks).  

Traffic density has been identified as one of the strongest predictor variables in recent land-use regression 

(LUR) models of traffic related air pollutants (Hoek et al. 2008).  However, traffic density metrics do not 

provide concentrations and, even if incorporated into LUR models, results may be limited in terms of 

comparability across cities and time (Allen et al. 2011; Wang et al. 2013).  The dispersion models provided 

spatial and temporal concentration predictions as well as source apportionment information, e.g., the PM2.5 

share due to traffic.  While data and computationally intensive, such models have a strong physical basis and 

also are amenable to forecasting and scenario analysis (Brauer 2010). 

Conclusions 

Surrogate exposure metrics for traffic-related air pollution exposures developed and compared in this study 

include proximity to highways, traffic volume, traffic density, number of lanes, emissions density, and 

concentration predictions from dispersion models.  These metrics were critiqued individually and collectively, 

focusing on results obtained at the 218 home locations of participants in the Detroit-area NEXUS epidemiology 

study.  Comparisons included examination of exposure distributions, spatial variability using maps coded by 

exposure group, Spearman’s and Kendal’s τ rank correlation coefficients, and concordance rates.  While 

showing some agreement, simple categorical and proximity classifications (high diesel/low diesel traffic roads 

and distance from major roads) did not reflect the range and overlap of exposures seen in the other metrics.  

Information provided by the traffic density metric, defined as the number of kilometers traveled per day within 

a 300 m buffer around the home, was reasonably consistent with the more sophisticated metrics, although this 

metric does not provide information related to concentrations or temporal variability.  Dispersion modeling 
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provided this information, along with source apportionment results that separated concentrations from traffic 

emissions and other sources.  At the NEXUS homes, the annual average and 24-hour peak concentrations 

showed a high degree of spatial agreement.  While there is broad agreement between several of the surrogate 

exposure metrics, including traffic density, emissions density and dispersion modeling, most of these 

alternatives still produced significantly different exposure classifications, suggesting the potential for exposure 

misclassification and the need for refined and validated exposure metrics. 

The analyses also indicated the need for accurate geocoding of homes and roads given the spatial variability of 

pollutant levels near roads.  Positional errors in the range of 30 to 50 m, and sometimes much more, should be 

anticipated using automated geocoding software.   

Dispersion modeling systems can provide exposure information relevant to on- and near-road environments, not 

only at homes, as demonstrated in the Detroit, but also at schools, parks, workplaces, commuting routes and 

other locations where people are exposed.  While assembling the data and the computational demands for 

dispersion modeling of traffic emissions in large urban areas are non-trivial issues, future traffic-related health 

assessments, including epidemiological, risk and environmental justice studies, would benefit from such 

information.  Further, this information can be used in hybrid models that simulate indoor exposures and time-

activity behaviors, thus providing a refined estimate of air pollution exposure.  At the community level, 

exposure assessments used in conjunction with transportation planning tools would advance policy initiatives 

aimed at mitigating traffic-related air pollutant exposures and health effects. 
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Figure 1.   Map of modeled road network in study area, and locations of 218 homes of participants in NEXUS.  
Shaded area defines city of Detroit and population by Census Block group.  Axis scales are Universal Traverse 
Mercator coordinates (m).  Highlighted roads are NFC=11 (HDHT). 

 

 

Figure 2.  Distribution of distances of homes to major roads for the three traffic exposure groups (HDHT=high 
diesel/high traffic; LDHT=low diesel/high traffic; LDLT=low diesel/low traffic).  Based on GPS home location 
and road edge.    
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Figure 3. Distributions of selected exposure metrics coded by home group (HDHT=high diesel/high traffic; 
LDHT=low diesel/high traffic; LDLT=low diesel/low traffic).  A. Total traffic volume on major roads nearest 
to children’s homes.  B. Diesel traffic volume on major roads nearest children’s home.  C. Traffic density for 
roads within 300 m of the home. D. PM2.5 emissions density for roads within 300 m of the home.  E. Annual 
average PM2.5 concentrations due to on-road emissions.  F. Maximum 24-hour average PM2.5 concentrations 
due to on-road emissions.  Panel D also depicts differences between tertiles (in grey) and thirds (in orange).  
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Figure 4.  Depiction of various exposure metrics mapped and coded by home group (HDHT=high diesel/high 
traffic; LDHT=low diesel/high traffic; LDLT=low diesel/low traffic).  High diesel roads are highlighted in 
yellow.  A. Total traffic volume on major roads nearest to children’s homes.  B. Diesel traffic volume on major 
roads nearest children’s home.  C. Traffic density for roads within 300 m of the home.  D. PM2.5 emissions 
density for roads within 300 m of the home.  E. Annual average PM2.5 concentrations due to on-road emissions.  
F. Maximum 24-hour average PM2.5 concentrations due to on-road emissions.  In A and B, LDLT homes are 
shown as green circles without coding for traffic volume.    

A. Total traffic on nearest major road B. Diesel traffic on nearest major road 

C. Traffic density within 300 m buffer D. PM emissions density within 300 m

E. Annual average PM2.5 concentration F. Maximum 24-hr PM2.5 concentration 
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Table 1.   Statistics of AADT volume, diesel traffic volume, and number of lanes for the nearest highways at 
the high traffic (HDHT and LDHT) homes. 
 
 
 
 
 
 
 
 
 
 

 
 
Table 2.  Statistics of PM2.5 concentrations (µg/m3) predicted at home of NEXUS participants, classified by 
exposure group (HDHT=high diesel/high traffic; LDHT=low diesel/high traffic; LDLT=low diesel/low traffic).  
The hybrid annual average includes on-road, area, point and regional sources. 
  

HDHT LDHT All HDHT LDHT All HDHT LDHT All
Average 133,737 143,965 138,638 9,663    7,529    8,640    7.8 6.6 7.2
St. Dev. 34,962  21,614  29,634  2,510    1,130    2,237    1.8 1.1 1.6
Minimum 76,723  106,508 76,723  7,043    5,570    5,570    6 6 6
25th Percentile 94,202  131,718 124,586 7,716    6,889    7,182    6 6 6
Median 144,013 137,845 140,722 8,386    7,209    8,218    8 6 6
75th Percentile 153,576 162,808 160,968 11,297  8,515    8,974    9 7 8
95th Percentile 185,442 171,849 180,417 14,098  8,988    13,711  11 9 10
Maximum 211,750 187,373 211,750 16,235  9,800    16,235  14 10 14
Number 50 46 96 50 46 96 50 46 96

All Traffic (vehicles/day) Number of LanesDiesel Traffic (vehicles/day)

HDHT LDHT LDLT HDHT LDHT LDLT HDHT LDHT LDLT
Average 3.3 3.2 1.5 21.4 22.8 12.9 15.6 15.6 13.9
St. Dev. 1.2 1.0 0.4 6.3 6.2 2.9 1.4 1.5 1.3
Minimum 2.2 2.1 0.8 12.0 14.9 6.4 13.3 13.7 12.1
25th Percentile 2.7 2.4 1.3 16.4 17.9 10.7 14.6 14.4 13.0
Median 2.9 3.0 1.5 20.8 20.6 12.7 15.4 15.3 13.6
75th Percentile 3.8 3.6 1.6 25.4 26.2 14.8 16.2 16.3 14.4
95th Percentile 4.8 4.8 2.4 29.6 34.7 17.9 18.2 18.6 16.5
Maximum 9.4 6.4 3.3 47.4 35.4 21.1 20.7 19.2 19.7
Number 50 46 102 50 46 102 50 46 102

Onroad Sources, Annual Ave. Onroad Sources, 24-hr Peak Hybrid, Annual Average
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Table 3.  Comparison of exposure metrics at the NEXUS homes using Spearman (top) and Kendall τ-b 
correlation coefficients.  Shaded numbers show absolute value of correlations above 0.6 and 0.8.  Variables:  
Group1 = LDLT, LDHT and HDHT assigned 1, 2, 3, respectively;  Group2 = LDLT, LDHT and HDHT 
assigned 1, 2, 2, respectively;  Distance = distance to nearest major highway (LDHT and HDHT only); AADT 
= traffic volume on nearest major road (LDHT and HDHT only); Lanes = number of lanes on nearest major 
road (LDHT and HDHT only); Diesel = diesel vehicles volume on nearest major road (LDHT and HDHT only); 
VKT = traffic density as vehicles-km-traveled/day in 300 m buffer around home; PMemis = PM2.5 emissions in 
300 m buffer; COemis = CO emissions in 300 buffer;  PMave = 2010 annual average PM2.5 concentration due 
to local traffic;  PMmax  = 2010 maximum 24-hr average PM2.5 concentration from local traffic;  PMtot  = 2010 
annual average PM2.5 concentration from all sources.  Sample size is n=218, except for comparisons involving 
AADT, Lanes, and Diesel metrics where n=116 since only high traffic homes are considered.  (a) not calculated 
due to variable definition.  

  

Group1 Group2 Distance AADT Lanes Diesel VKT PMemis COemis PMave PMmax PMtot
(group) (group) (m) (veh/day) (no) (veh/day)(km/day) (g/day) (g/day) (ug/m3) (ug/m3) (ug/m3)

Spearman correlation coefficients
Group1 1.00
Group2 0.95 1.00
Distance -0.81 -0.87 1.00
AADT -0.12 (a) 0.06 1.00
Lanes 0.39 (a) 0.31 -0.08 1.00
Diesel 0.47 (a) -0.02 0.66 0.12 1.00
VKT 0.80 0.86 -0.66 0.50 -0.43 0.26 1.00
PMemis 0.83 0.85 -0.66 0.36 -0.33 0.47 0.98 1.00

COemis 0.79 0.86 -0.66 0.48 -0.43 0.25 1.00 0.98 1.00
PMave 0.78 0.82 -0.75 0.15 -0.24 0.23 0.78 0.78 0.78 1.00

PMmax 0.70 0.76 -0.71 0.35 -0.23 0.27 0.74 0.73 0.75 0.90 1.00

PMtot 0.56 0.59 -0.57 0.13 -0.08 0.17 0.55 0.54 0.55 0.74 0.71 1.00

Kendall Tau-B coefficients matrix
Group1 1.00

Group2 0.90 1.00

Distance -0.62 -0.71 1.00

AADT -0.10 (a) 0.04 1.00

Lanes 0.36 (a) 0.23 -0.07 1.00

Diesel 0.39 (a) -0.02 0.60 0.09 1.00

VKT 0.61 0.71 -0.42 0.42 -0.34 0.19 1.00

PMemis 0.66 0.70 -0.42 0.28 -0.26 0.36 0.90 1.00

COemis 0.60 0.70 -0.41 0.40 -0.34 0.18 0.98 0.91 1.00

PMave 0.62 0.67 -0.58 0.12 -0.18 0.16 0.55 0.56 0.55 1.00
PMmax 0.54 0.62 -0.52 0.27 -0.18 0.19 0.53 0.52 0.53 0.74 1.00
PMtot 0.44 0.49 -0.40 0.09 -0.06 0.12 0.38 0.37 0.38 0.56 0.52 1.00
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Table 4.  Comparison of exposure metrics at the NEXUS homes showing concordance with classifications 
using tertiles and “thirds”.  Shaded numbers show percentage agreement above 60 and 80%.  Variables and 
sample size are defined in Table 3. 

  

Group1 Group2 Distance AADT Lanes Diesel VKT PMemis COemis PMave PMmax PMtot
(group) (group) (m) (veh/day) (no) (veh/day)(km/day) (g/day) (g/day) (ug/m3) (ug/m3) (ug/m3)

Agreement among tertiles (percent)
Group1 100
Group2 75 100
Distance 58 44 100
AADT 28 36 33 100
Lanes 24 26 18 38 100
Diesel 33 39 27 56 34 100
VKT 52 45 49 34 19 37 100
PMemis 56 45 49 37 17 43 89 100
COemis 53 45 48 33 21 35 96 90 100
PMave 60 51 66 32 20 34 58 61 59 100
PMmax 54 45 62 41 18 35 58 56 57 75 100
PMtot 55 52 58 42 22 36 51 50 50 64 64 100

Agreement with thirds (percent)
Group1 100
Group2 75 100
Distance 31 7 100
AADT 45 71 16 100
Lanes 15 33 15 34 100
Diesel 53 76 21 67 40 100
VKT 70 76 28 35 28 42 100
PMemis 76 90 14 60 31 74 80 100
COemis 70 73 30 33 28 38 97 78 100
PMave 64 80 12 47 33 50 70 77 69 100
PMmax 65 76 15 60 30 48 68 76 66 77 100
PMtot 56 68 13 44 39 43 61 62 59 72 67 100
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Exposure Metric 

(as defined for NEXUS) 
Strengths Limitations Results in Detroit 

1 Distance to major road 

(distance from home to road 
edge, and distance from home 
to road centerline, using GPS 
home location) 

Simple to construct.

Low data needs. 

Can potentially distinguish 
roads with varying traffic 
volume, vehicle mix, or other 
characteristics. 

Distance limit used as cutoffs 
for classifying 
homes/receptors is arbitrary. 

May not consider traffic 
volume, vehicle mix, and 
other factors. 

Sensitivity to distance 
calculation, e.g., using road 
edge or centerline. 

HDHT and LDHT roads had 
comparable distances to 
homes. 

LDLT distances considerably 
exceeded HDHT and LDHT 
groups, by design and 
recruitment approach. 

2 Total traffic volume on 
nearby roads  

(AADT roads within 200 m of 
homes, using nearest road 
edge and GPS home location) 

Relatively simple to construct. 

Reasonably good traffic 
volume estimates on major 
roads. 

Could potentially select period 
of day, e.g., rush-hour. 

Traffic volume estimates 
needed. 

Distance criterion used to 
determine road is arbitrary.  

Does not provide metric for 
low traffic groups. 

HDHT and LDHT groups 
largely indistinguishable. 

HDHT group had considerable 
range.   

3 Diesel traffic volume on 
nearby roads  

(roads within 200 m of homes 
using road edge and GPS 
home location) 

Relatively simple to construct. 

May relate to PM emissions 
from diesel traffic. 

Could potentially select period 
of day. 

Difficult to estimate diesel 
traffic volume accurately. 

Does not account for type of 
diesel vehicles and emissions. 

Otherwise as 2 above. 

HDHT and LDHT groups 
were largely indistinguishable.

HDHT group had roughly 10-
20% higher diesel volumes 
than LDHT group, but about 
2/3 of the values overlapped.  

4 Local traffic density  

(AADT on road segments 
with 300 m distance (buffer) 
around each home, based on 
distance to road centerline, 
GPS home location, and 
traffic-demand model 
estimates of AADT) 

Includes local traffic 
emissions that might affect 
receptor. 

Result (VKT/day) is easily 
interpretable and possibly 
generalizable. 

Large range across sites. 

Can be applied to irregular 
shapes, including sources and 
receptors. 

Can select period of day. 

Relevant to traffic analysis 
zones used by planners. 

Moderately high data needs 
and computationally intensive. 

Sensitive to distance criterion, 
which is somewhat arbitrary. 

Uncertainty of traffic 
estimates on all but major 
roads. 

Excludes smallest roads. 

LDHT group had slightly 
greater exposure than the 
HDHT group 

All but a few LDLT homes 
had low values 

5 Emissions on local roads 

(as 4 above with addition of 
annual average road-link 
emissions estimates for PM2.5, 
NOx and CO) 

Incorporates vehicle emissions 
of pollutants of interest. 

Reflects vehicle mix on roads. 

Also as 4 above 

Results depend on pollutant, 
to an extent. 

High data needs and 
computationally intensive. 

Difficult to estimate emissions 
accurately. 

For PM2.5 and NOx, HDHT 
had slightly higher exposure 
than LDLT. 

For CO, results are reversed 
but very similar 

All but a few LDLT homes 
had much lower values. 

6 Pollutant concentration
predictions 

(PM2.5 predictions at homes 
used road-link emissions 
inventory for traffic emissions 
with RLINE dispersion model; 
area and point sources using 
AERMOD and regional 
sources handled using CMAQ 
and kriging interpolations of 
monitoring data) 

Incorporates effects of 
emissions, meteorology, and 
location in a physically-based 
approach. 

Quantification and 
apportionment of ambient 
concentrations due to different 
sources of interest, e.g., 
traffic. 

Can be derived for specific 
periods of day, season or year, 
e.g., daily predictions at rush 
hour periods. 

Inter-study comparisons are 
possible and meaningful. 

Results depend on pollutant, 
averaging time, and statistic. 

High data needs and 
computationally intensive. 

Uncertainty not well 
characterized. 

Results potentially sensitive to 
many factors, including home 
placement. 

 

For PM2.5, HDHT and LDHT 
distributions were very similar 
although some dependence on 
averaging time and statistic.   

PM2.5 contributions from local 
traffic at HDHT and LDHT 
homes were about twice that 
at the LDLT homes. 

Regional sources provide 
large fraction (80%) of total 
PM2.5 concentration, but 
smaller contributions of NOx 
and CO. 

 

Table 5.  Summary of metrics used for exposure to traffic-related air pollutants in NEXUS. 

  



22 

 

Supplemental Tables and Figures 

 

 

Figure S1.  Distribution and maps of NOx emissions, defined as g/day for roads within 300 m of the home, 
coded by home group.  High diesel roads are highlighted in yellow. 

 

 

 

 

Figure S2.  Distribution and maps of CO emissions, defined as g/day for roads within 300 m of the home, 
coded by home group.  High diesel roads are highlighted in yellow. 
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Figure S3.  Distribution and maps of total annual average PM2.5 predicted for 2010 from hybrid model.  Each 
figure is coded by home group.  High diesel roads are highlighted in yellow. 

 

 

 

Table S1.  Comparison of exposure metrics for NEXUS homes using rates of “severe” exposure 
misclassification in percent for tertiles and “thirds” groups.  Shaded numbers show scores above 60 and 80%.  
Variable definitions as follows:  Group = LDLT, LDHT and HDHT (assigned 1, 2, 3) categorical classification; 
Distance = m to nearest major highway; AADT = total traffic on nearest major highway; Lanes = number of 
lanes on nearest major highway; Diesel = diesel vehicles on nearest major highway; VKT = traffic density 
defined as vehicles-kilometers-traveled/day in 300 m buffer around home; PM Emis = PM2.5 emissions in same 
buffer ; CO Emis = CO emissions in same buffer;  PM Max = maximum 24-hr  PM2.5 concentration;  PM Ave = 
2010 annual average PM2.5 concentration.  Sample size is n=218, except for comparisons involving AADT, 
Lanes, Diesel metrics where n=116 due to use of only high traffic homes.  
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Group Distance AADT Lanes Diesel VKT PM Emis CO Emis PM Max

(group) (m) (veh/day) (no) (veh/day) (km/day) (g/day) (g/day) (ug/m3)
Severe disagreement among tertiles (percent)

Distance 51
AADT 11 20
Lanes 31 7 19
Diesel 20 20 4 16
VKT 47 1 11 9 22
PM Emis 48 1 15 9 19 0
CO Emis 47 1 15 10 19 0
PM Max 46 2 15 8 16 1 1 1
PM Ave 53 3 16 3 18 1 1 1 0

Severe disgreement with thirds (percent)
Distance 33
AADT 66 34
Lanes 82 26 1
Diesel 57 25 0 3
VKT 1 33 51 65 50
PM Emis 0 33 46 61 44 0
CO Emis 1 33 52 65 51 0 0
PM Max 8 42 44 56 43 3 1 3
PM Ave 4 46 50 62 48 6 2 7 0


