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ABSTRACT

This study applied a phenology-based land-cover daification approach across the Laurentian
Great Lakes Basin (GLB) using time-series data corgting of 23 Moderate Resolution Imaging
Spectroradiometer (MODIS) Normalized Difference Vegtation Index (NDVI) composite images (250 m)
from calendar year 2007. Two classification produs (levels Ill and IV) were evaluated within one lgel
IV Omernik Ecoregion in the GLB using both point-based and area-based “maplets” assessment
methodologies. Classification accuracies were assed at both stratification levels using 127
homogeneous reference pixels (single cover type) three cover types (deciduous, coniferous, and gsa).
Error matrices indicated an overall level Il clasgfication accuracy of 87.9% (KHAT = 0.78) comparedo
95.3% (KHAT = 0.9109) at level IV. Also, there was statistically significant difference between théwo
matrices (Z = 2.03; p=0.05).

Level IV classification extent proportions performed better than level Il when compared with
reference maplets, especially with respect to theediduous and coniferous cover classes. The refeoen
deciduous and coniferous proportions were 51.7% and0.7%, respectively. The level IV classification
comparisons were deciduous 44.7% %= 0.49) and coniferous 54.8% @r= 0.65) compared to 75.8% (=
0.34) and 19.6% (f = 0.37) at level lll. Error matrices generated a® pixel-purity (PP) levels & 50%, >
60%, > 70%, > 80%, > 90% and 100%) within the maplet areas resulted irmn overall minimum accuracy
of 67.9% (>50% PP) and a maximum accuracy of 89.6% (100% PP)Only 7.4% of the (250 m) pixels

had 100% PP.



[. INTRODUCTION

For regional scale mapping with moderate-to-coapsgial resolution satellite imagery, a number of
primary issues have to be addressed prior to grojgi@tion. Satellite sensor selection is basadptimizing
spatial, spectral, temporal, and radiometric regmhg appropriate to capture the vegetation andrapbgenic
variations seen across the landscape. Next, itlagsification (supervised, unsupervised, neuralork, etc.)
and accuracy assessment methodology are deterndihedld training data extend over a regional ara s
regional level? Will the traditional point-baseztaracy assessment method suffice in informing the
categorical confusion of the map? Variabilityngroduced across large geographical extents dselto
regional differences in vegetation types, climgenlogy/soil types, etc. Accordingly, across what
geographical extent should the classification atlyors be applied to capture the local variatiotaofd-cover?
The issue of cover type heterogeneity existentsacttoe landscape within the grid framework alsoghlasis in
deciding how to assess the accuracy of the magpjgct. In this study we have applied a phenolbgyed
land-cover classification across the LaurentianaGkakes Basin (GLB) at two ecoregion scales uai@g07
time series of 23 Moderate Resolution Imaging Speatliometer (MODIS) Normalized Difference Vegeatati
Index (NDVI) composite images (250 m pixel sizéand-cover products were evaluated using both the
traditional point-based accuracy methodology aed-drased (maplets) comparisons.

Regional to global scale land-cover maps have deeved from numerous satellite remote sensing
systems including the MODIS, SPOT Vegetation (VANVISAT, and the National Oceanic and
Atmospheric Administration (NOAA) Advanced Very HidResolution Radiometer (AVHRR). Land-cover
classification algorithms used at the global sbalee been limited in capturing the local and regiaariations
in land-cover, partially due in part to limitatiomsthe number of training sites available to aatelly represent
regional areas. For example, the MODIS classiboaalgorithm uses a database of cover types (@092to
represent the entire globe. The MODIS team hadksttad these training sites to be geographicaity a
ecologically comprehensive [1].

An earlier global product developed from 1 km AVHRIBVI composites (1992-1993) addressed the

large geographic extent issue by defining pseudoeg@ons via an unsupervised classification clusgeof the
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NDVI data to identify areas of spectral similafig}. A total of 961 clusters were identified gldlyawvith 205
located in North America. Friedl et al. [3] sugigekthat subregional imagery differences betweeasaof
similar vegetation composition on the ground maydsponsible for inducing a unique spectral sigmaflihis
effect seems to preclude the use of smaller arfeiasepest when classifying large regional imageayasets. It
was posited that clouds may obscure two similassitreating a low NDVI signature in the shadoweg.a
Cover type confusion also has been documentedjhéhiatitudes for phenology-based NDVI classifmat
[2], [3]. It should be noted that geographic sticdation may not yield significant differences leason the
classification algorithm employed when compariragsification accuracies from the whole to the p&tao
and Lunetta [4] found that there were no advantégegratification of the entire GLB to a regiomael using
a neural network (NN) classifier. However, in teatdy, the limiting factor seemed to be the simpaitentage
of pixels chosen for NN training.

Assessing the accuracy of these moderate-to-cosgeRition maps requires a deviation from the
normal one-to-one assessment process where onggeapuus reference pixel, typically derived fromhieig
resolution data (e.g., aerial photography, Lan83ai+, etc.), is compared to the similar pixel wébsociated
thematic label. At issue is the dominance of nombgeneous reference data, where data ranging Igpatia
from 1 —10° m has been shown to contain multiple land-covees$y[5]. A study in the Albemarle-Pamlico
Watershed of NC and VA found that only 6.0% ofta# 250 m pixels were composed of a single landcove
type [6]. Some have suggested that the more rebt®massessment process for moderate-to-coardeti@so
land-cover is to derive areal sampling documentiegfractions of cover types present [6, 7]. On¢hoe,
referred to as the maplet method, allows the lef/&lorrectness’ to be assessed based on the agntem
between the maplet reference cover proportiongtandlassification cover proportions of the sameleta
areas [7].

Maplets are higher resolution maps of small gedgcaareas used to assess the accuracy of coarser
resolution maps [8]. Maplets were developed aalidation approach for large area datasets towiialthe
issue of assessing class accuracies across anlamgeger of classes. This methodology was first pddity

Chrisman [8] and further elucidated in practiceStgms [9]. Lioubimtseva and Defourny [10] compatieel
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total area of cover types throughout three largpletareas ranging from approximately 5,137 — 6 225
Beyond the comparison of landscape proportions, e assigned dominant cover type labels to 8aatf
pixel within the maplet areas to generate contingeables to compare total, user’s and producecsiiacies
between areas. Stoms [9] used only one large m@yR0 knd) for San Diego County, CA. Cihlar [5] used a
tiling design (i.e. maplets) to refine mapping aotyge proportions from 1.0 km AVHRR data to congar
proportions derived from the coarser AVHRR datanagsled to 30 m spatial resolution. Comparativedsaih
ETM+ data was classified in order to directly ctate areal estimates of the two mapping produaisn&ider
et al. [11] implemented three maplet methods t@Birpent traditional accuracy assessment procedures
urban areas by fusing multiple sources of coaessslution imagery. They indicated that the berwdfthe
areal comparisons allowed a better understandiigeohature and quantity of errors. For example, a
comparison of reference maplets derived from thigoNal Landcover Dataset (NLCD), provided locationa
information leading to the identification of ertype that revealed registration errors as the pyreaor
component associated with urban cover extent. &hsgycautioned that the maplet aggregation methayl
introduce additional errors [11].

The objectives of this study were (1) to invesigie regional to sub-regional effect on GLB
classification of 250 m multi-temporal NDVI imageigr 2007 and (2) to compare two accuracy assedsmen
processes: non-site specific (area-based) and#eific (point-based). We first classified thegkr (115,934
km?) Omernik Level Ill (OL3) ecoregion (‘Northern Havdod Forest’) using ENVI's Spectral Angle Mapper
(SAM), a hyperspectral image classification techri@pplied to continuous time-series NDVI for sixver
types. We then applied the same classificatioardlgn across the thirty smaller Omernik Level ©L@4)
ecoregions nested within this larger OL3. We comgdoth OL3 and OL4 classifications against arezfee
dataset derived from the 2006 NLCD. Finally, bo#ssifications were assessed over one OL4 extemn{

Drumlins) using point-based and area-based accassgssment procedures.



[I. STUDY AREA

We applied our classification to an ecoregion sabhbfor the United States section of the GLB
corresponding to the Omernik Ecoregion Classifmatystem. Omernik developed the ecoregionshor t
conterminous United States at four levels, withdsuibions predicated on ‘perceived patterns of mlomation
of causal and integrative factors including land,uand surface form, potential natural vegetateorg soils’
[12]. The United States portion of the GLB is caragd of 12 OL3 ecoregions covering 328,128 Khable
1), with over one-third of the area composing tleethern Lakes and Forests Ecoregion. OL3 designsitare
designed to address regional analysis, whereasd@signations provide useful information at the ldeeel of
analysis. The OL3 Northern Lakes and Forests Egondas further segmented into 30 distinct OL4 egions
ranging from 1-7% of the OL4 parent region (Tahl&igure 1).

For the area-based versus point-based accuracssassat comparisons we concentrated our research
within the OL4 Toimi Drumlins ecoregion (5,472.7 mested within the larger OL3 ecoregion. The Nemt
Lakes and Forests ecoregion is characterized lmentspoor glacial soils dominated by coniferous an
northern hardwood forests. The glacial procesadhie ecoregion have produced undulating tillsai
morainal hills, broad lacustrine basins and sandwash plains. The Toimi Drumlins, located noryhnorth-
east of Duluth, Minnesota, are described by amgltopography of ridge and troughs where drumlnes a
typically 1.6 km long, 0.4 km wide, 9-16 m highdaoriented in a southwest—northeast direction|sSoe
medium to coarse-textures of Superior and Rainyelgiacial till. Inter-drumlin areas are poorly arety
poorly drained and vegetation is dominated by aspeahn, spruce-fir, white-red-jack pine, and oakkary

cover types.

. METHODOLOGY
A. Overview

A two-tiered experimental design was developeddBssess the impacts of mapping at regional and
sub-regional scales, and (2) to evaluate accurs&gsament information derived from both non-sieciio

area-based ‘maplets’ and traditional site-spegifimt-based approaches. Classifications were paddrusing
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biweekly time-series MODIS NDVI (2007) at two ecgi@al levels (OL3 and OL4) with training sites
selected specific to those two ecoregions. In oraatlow for direct comparison between the two
classifications, the OL3 classification was mastethe 30 OL4 ecoregions existent within the OL8gyaphic
extent (Figure 1). Traditional point-based accuna@frics were generated for the 30 OL3 and OL4
classifications using a reference dataset develbpedthe 2001 NLCD. The second-tier of this stfmgused
on comparing site-specific ‘traditional’ point-basaccuracy methods with non-site specific ‘maplatgsa-

based procedures in assessing accuracy metricongedL4 Omernik ecoregion (Toimi Drumlins).

B. Reference Data

To first address the scale issue with classificatibmedium-to-coarse resolution imagery we atteuhpt
to geolocate point-sample locations that were 100%ogeneous with respect to pixel purity (i.e. FB100
achieve the minimum number of samples per class5®),> 9,000 PP100 pixels would be needed based on
the 30 OL4 regions for the six cover types [13].€ehsure pixel purity, areas containing numerousOBRixels
are commonly used for sub-sampling to offset argnugric registration issues and minimize spectral
contamination from adjacent pixels. Only 750 pgxatross all 30 OL4 ecoregions met these critAtsn, a
majority of the available reference pixels weredominantly deciduous and coniferous. To compare
classifications across the OL4 ecoregions, we egldRe pixel purity requirement to PP70 and utdim®olated
pixels. We used the NLCD 2001 to create a majoatgrence map identifying all 250 m pixels domaub(>
70%) by one cover type (n = 611,636). To identiB7B pixels, NLCD cover type proportions were caited
using Matlab software for every 250 m pixel locatwithin the U.S portion of the GLB. Each NLCD eov
class was converted to an ERDAS IMAGINE IMG filedastacked to provide all 15 NLCD classes in one IMG
file using ERDAS Model Maker.

Point-based and area-based reference datasetsleaieped for the Toimi Drumlin OL4 ecoregion.
For the point-based dataset, a total of 127 PPi#spcompletely contained within similar land-coyexels
were identified within this OL4 ecoregion. To eresgorrect labeling of the reference pixels, aagjlldatasets

were compared to the 127 reference pixels. Thatseselts included (1) Landsat 7 SLC-on (1999-20&} dff
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imagery including NDVI, (2) USDA 2007 digital orthboto quarter quadrangles (DOQQs), and (3) Minesot
Department of Natural Resources forest cover irorgrdata (Forest Inventory Management (FIM)). ahea-
based maplet reference dataset was developed &tynga 25 x 25 grid with each cell 5 x5 km (n BB2This
grid was developed using the ‘create fishnet’ taader the X Tools dialogue in ESRI ArcMap. We stdd all

5 x 5 km cells (n = 173) that were completely corgd within this OL4 ecoregion and randomly selé@8 of
these cells (i.e. maplets) for processing (FigyreNkext, we downloaded two October 5, 2002, Lah&3aVi+
scenes for image processing (Path/Rows: 26/27 éf28p These scenes met the requirements of spectra
similarity, low cloud cover (< 10%), and leaf-offtsw-free landscape conditions. To ensure that cover
composition did not change within the 30 mapletay¢he imagery was checked against the 2006 teaf-o
DOQQs. All maplets within the ecoregion showedsmgmificant change compared to the 2006 DOQQs lamd t
Landsat ETM+ imagery and thus were appropriateippsrt the analysis. However, visual inspectios wa
limited due to the difficulty in distinguishing decous from coniferous cover types. Thereforege@adary
dataset was used to check general cover pattertastynby comparing the NLCD 2006 data with Lantdsa
ETM+ imagery from 2002. This confirmed that therere no significant changes between the dateshange
within the 30 selected maplets was < 2.1%.

The Landsat imagery was subset to the 30 maplas @amed each area was independently classified using
the unsupervised Iterative Self-Organizing Datalpsia Technique (ISODATA), where spectrally similar
clusters were later labeled as (a) water, (b) ur@@rbarren, (d) deciduous woody vegetation, ¢eliferous
woody vegetation, and (f) grassland. This mapketsification approach was also implemented by
Lioubimtseva and Defourny [10] where they combiaadaximum likelihood supervised classification watn
unsupervised algorithm (ISODATA) to produce mapleith 4—7 cover types. The dominant and the pércen
cover by class for each 250 m pixel per maplet ase@ calculated. Each 5 x 5 km maplet was aldoaed to
four additional resolutions (1 x 1 km, 2 x 2 knx 3 km, and 4 x 4 km) to test the appropriate majgigolution
for assessments. The same supplemental datasdtusmnfirm the cover types for the 127 pixelsha point-

based reference dataset were also used to enbaetatzuracy with the 30 selected maplets.



B. MODISNDVI Preprocessing
The MODIS 250 m NDVI product (MOD13Q1) was downleddor a 7-year period (2000-2007) from

the USGS Land Processes Distributed Active Arclieater (https://Ipdaac.usgs.gptd support phenology-

based classifications across the GLB. The MOD13@#lyrct consists of 23 scenes developed from 16-day
composites over the one calendar year. Thoughfoiagdl seven years was collected in order to pevhe
necessary inputs for a missing data/cleaning dlgardeveloped internally at EPA [6], only the 2q6%23)
was used in this study. Data were reprojected flmmative sinusoidal projection to the Albers-dguaa
conic projection using a nearest-neighbor operai@xt, each individual scene was clipped to tha8GL
boundary layer and sequentially stacked. A safid¢i#tering and cleaning steps were applied toki&VI data
stack based on the filtering and cleaning algorittetailed in Lunetta et al. [14]. The resultingetied and
cleaned 2007 NDVI datastack for the GLB was thempiarally subset to 12-bands corresponding onlf¢o t
growing season, thereby reducing the contaminati@mow and ice existent over a significant portdithe

calendar year.

C. Water and Agricultural Masks

Both the water and agricultural classes were exaddtbm the classification and accuracy assessment
procedures. Water pixels were excluded becausenbee not pertinent to the study and agricultpraéls
were previously assessed by Shao et. al. [15].aemmask was created from cloud-free Landsat E&aht+
TM imagery collected close as possible to the ta207 year. Then, an ISODATA unsupervised classibn
algorithm was implemented in ERDAS Imagine to cushe imagery into 20 distinct classes. The waier
non-water classes were relabeled per class as&h@™0’s” respectively. The resulting image wasrt
resampled from 30 m to 10 m pixels to match the®3@ODIS NDVI grid format then subsequently degrde
to the 250 m resolution. Using the relational eparwithin ERDAS Imagine Model Builder, 250 m plixe
greater than 50% water were identified and incluaethe water mask. An agricultural mask was eckasing

the 2001 NLCD to identify 250 m pixels >50% agrtaué cover.



D. Classifications

The complete GLB land-cover classification systaoiudes seven classes: (1) water, (2) urban, (3)
barren, (4) deciduous woody vegetation, (5) coaiisrwoody vegetation, (6) grass, and (7) agricelturhe
water and agricultural classes were first maskaambthe NDVI datastack. Next, we applied the Sadial
Maximum Angle Convex Cone (SMACC) endmember moti6] fo identify urban endmembers from the time-
temporal data. The SMACC algorithm, initially dgrsed for multi-spectral imagery analysis, usesenative
process that identifies spectral similarity basedoght and dark pixel differences. This techmiquas
previously used to identify urban pixels within #hkemarle-Pamlico (NC and VA) watershed [6], butyed
ineffectual in the GLB due to the large geograpxtent of this basin. Therefore, our mapping wddd
constrained only to the other four cover classasréim, deciduous, coniferous, and grass). Foethegaining
classes, we used a hyperspectral classifying étgoriSpectral Angle Mapper) to classify the 12 tisegies
NDVI images across the GLB. Training data was fified using 2007 DOQQs, forest inventory data
(previously discussed), and 100% homogeneous 2pi@ts as determined by the 2001 NLCD. Temporal
training signatures, defined as endmember spetENVI, were retrieved using ERDAS Imagine, themesha
as a text file and later imported into ENVI. TheeSpal Angle Mapper (SAM) algorithm uses an n-disienal
angle to match unclassified pixels to a referemgeagure. Here, temporal NDVI value similarity beswn the
training data and the unclassified pixel is detesdiby comparing the angle between the two vatuesting
these values as vectors in a space with dimeng#ipegual to the number of bands [17]. Finally, duenpleted

OL3 classification was subset to the OL4 (n=30)egimn boundaries to facilitate direct comparisons.

E. Accuracy Assessments

Regional and Sub-region@L3 and OL4) classifications were assessed athes®L4 extents for
basic correspondence to the selected referenceaedatsing the GIS Analysis Summary Module in ERDAS
Imagine. Results were transferred to error matraged accuracy statistics were generated for dearaliracy,
commission and omission errors, Kappa and z-gtatisBoth a point and area-based analgtidassification

accuracies were compared across the Toimi Drur@lis ecoregion. The barren class was eliminatea fro
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the assessment process due to the insignificarégeptation resulting in a three class assessmeptint-
based accuracy assessment was first applied tal®(@L3 and OL4 classification results using rantjo
selected reference points (n = 127; PP100). Ovaig and per-class accuracy was calculated thronagh
reference comparisons using contingency tables [E&ors of omission and commission were ascezthin
though the calculation of user’'s and producer'sieamtes. Kappa statistics were also generatedtirmine if
the values contained in an error matrix represeatexult significantly better than random [19].zAtatistic
was generated for both error matrices using aeie-comparison [13] to test the independent oftKiatues.
Proportional cover type values were compared athes80 maplet areas (25 kor 5 x 5 km) within this same
OL4 ecoregion and point-based assessments §0P6> 100%) were only generated for only the 258xels
within the 30 maplet areas to observe the effelcpexel heterogeneity on overall accuracy. Fipalle
investigated the impact of maplet size classesugeascuracy results for five resolutions (1 x 1 Bw,2 km, 3

x 3 km, 4 x 4 km, and 5 x 5 kper side of pixel).

V. RESULTS AND DISCUSSION
A. Classification Accuracy

Overall classification accuracies were similarifoth the OL3 (83.3%) and OL4 (85.8%) products
(Figure 3). A pairwise Z-statistic test indicatbdt both overall classifications were significgrdifferent (z-
statistic = 22.55; p=0.05). A comparison of the Giités (n=30) for both classifications indicatedttat the
finer OL4 results were superior to the OL3. Thavwiae comparisons showed that 19 of 30 OL4 sites h
higher accuracies with > 50% of these 19 OL4 stdsbiting a > 5% accuracy differential and > 21%
exceeding the 10% differential (Table 3; Figure E)even OL3 classifications exhibited a > 5% aacyr
differential compared to the OL4 classificationhelmean accuracy improvement across the OL4 sdes w
3.0% compared to OL3 classifications (84.6% vs6®&l). OL3 versus OL4 classification z-statistideliénces
(p=0.05) were observed in 25 of the 30 ecoregidable 3). Kappa coefficients for the OL3 classifions
showed moderate agreement across most ecoregi@#g, (8milar to that achieved for OL4 classificato

(73%). Also, commission and omission errors weweelst for the deciduous and coniferous classelsdr
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classifications, with the deciduous being lowesgj(Fe 5). This may have been a result of wettdr so
conditions within the coniferous areas becauseandttategories were not considered. A majorithef
wetlands within the study area are spruce dominated

OL4 classifications performed consistently bettgoas all 30 sites when compared to the OL3. This
was attributed to a number of underlying issuesifipa@o the GLB area that tended to increase tugability
of temporal NDVI signatures. These included climagriability due to lake influences, snow cover
periodicity, and data quality issues associate Widgfh latitude areas. Also, the wide MODIS scanlamgn
cause regional variation in NDVI values. It hasrbskown that as the view angle increases beyond thad
sensor field of view includes fewer shadowed congpdsiand more illumination of the canopy elemedg. [
Approximately 83% of OL3 showed significant diffaces between the two classification levels. Locatio
with no significant differences (n = 5) can beibtited to robust similarity between training signmas and
NDVI values of a particular cover type across nplétiOL4 ecoregions. Also, if we assume that aagura
differences of < 5% between sites were a functioriassification noise and intrinsic reference batse errors
[21]; the OL4 classifications soundly outperforn@d3. Results demonstrated that 19 OL4 classiboeati
outperformed the classification; of which 83% résdlin > 5% accuracy differences. Only 18% of theD1 3
accuracy exceedance sites exceeded the >5% difldreAlthough an overall accuracy difference &% was
seen when combining all 30 sites, subregional giffees can be seen when the coarser geographint exte

classified at the fine resolution.

B. Maplet versus Point-Based Assessments

The low proportion of homogeneous reference pinéisin a classification scene affects applying the
standard confusion matrix-based accuracy assesspprdach for medium-to-coarse resolution mapping
products. One issue associated with assessingtheaay of moderate-to-coarse spatial resolutiop ma
products by applying a standard confusion matrigeblaapproach is the low proportion of homogeneow
Statistics generated from the confusion matrixséaéistically valid based on the assumption that@as are

derived from pure pixels of discreet cover clag@@$ For example, the Kappa coefficient impligilssumes
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that the testing sample is homogeneous. Typicadfgrence samples are constrained to areas that ar
homogeneous with respect to one cover class. idaddity, to ensure that homogeneous pixels are not
contaminated with spectral bleeding from adjacexelp of different land-cover, reference pixels aseally
selected embedded within a cluster of pixels ofstirae cover type. Accuracy statements made from
contingency tables generated from these pure refengixels tend to be optimistically biased [23he lack of
pure reference pixels also affects selecting a kasipe capable of generating statistically vatduaacy
statements across all cover classes.

A traditional point-based accuracy assessment wdesrmed for the OL3 and OL4 classifications for
the one OL4 Toimi Drumlins ecoregion extent usimgrdomly selected subset (n=127) of the PP100emede
pixels (n=750) previously identified across theiren©L3 ecoregion. Point-based accuracy metriceatd that
there was a significant difference (Z = 2.03; p.65) between the OL3 classification (overall accyra
87.9%; KHAT = 0.79) and the OL4 classification (méaccuracy = 95.3%; KHAT = 0.91). Producer’s and
user’s accuracies were high for both classificaiathin all three cover types (deciduous, conifs;and
grass). The only exception was the producer’sracguof only 14.3% for the OL4 classification failags
(Table 4).

The proportional-based assessment design incogab®t maplets randomly distributed throughout the
one OL4 ecoregion (Toimi Drumlins). We found thia OL4 cover type proportions were better coreglat
than OL3 classifications, especially with respediie deciduous and coniferous classes. The referen
deciduous and coniferous proportions were 51.7%4ant%, respectively. The OL4 deciduous and cooife
proportions of 44.7% and 54.8% can be comparelde®t_3 proportion of 75.8%and 19.6%. This extreme
OL3 deciduous overestimation is also apparent byalicomparison of both classifications (Figure A).
simple correspondence plot was used to compargeitiduous and coniferous maplet areas comparing
reference data and classification results for thé.Q'his graph illustrates that the OL4 classificat(i)
overestimated conifer in areas of high (> 30%) f@yous content, and (ii) underestimated areas Mth(<
50%) deciduous cover while overestimating areah tigh (> 50%) deciduous cover (Figure 8). Redoess

analysis using maplet reference data for decid(@6us0.49) and coniferous’(F 0.65) classes for OL3 and
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OL4 indicated that the OL4 results were superiddt® ( =0.37 coniferous:>r=0.34 deciduous) (Figure 8).
The grass class accounted for 3.5% of the totalehapea. Regression coefficients showed thaOth
classification had moderate correlation with tHenmence dataseti(r 0.58, SE = 6.2 ha), whereas the OL3 had
no agreement{= 0.01, SE = 118.2 ha).

We explored the affect of varying pixel purity fmaplet reference pixels on overall accuracy udneg t
point-based procedure within the 30 (5 x 5 km) rebpites. Maplet pixels were identified for percputity
with respect to one cover type across six PP le@i®sponding ta> 50%,> 60%,> 70%,> 80%, and> 90%
and 100%. Results showed that accuracy valuesd/bgi 21% with a minimum overall accuracy of 67.8%
50% PP) and a maximum of 89.6% (PP100) (Tabler8e PP100 class represented 7.4% of pixels witlen t
study area.

A research objective was to determine optimal ntapolutions and numbers (n) for classification
assessments. Resulting OL4 regression coefficfentieciduous fr= 0.34—0.48) and coniferous & 0.44—
0.65) across the five maplet grid resolutions (Lkin -5 x 5 km) are listed in Table 5. For bothartypes
regression coefficients increased significantlysstin 1 x 1 and 2 x 2 km resolutions and thereatsdilized,
suggesting maplet resolutions > 1 x 1 km would poedthe highest correlation values. Using pixelded to a
simple majority within all 30 maplets, we compatkd OL4 classifications using accuracy metrics gztee
from point-based accuracy assessments for alifiaplet resolutions. The results indicated thal bot
accuracies (67.9-70.2%) and Khat (0.40-0.44) stati;=mained relatively stable across all resohgi(Table
6). The cover type proportions remained constacet for the finer resolutions (< 4 x 4 km), whemme
lesser represented cover types (bare and urbappelicout completely (Table 6). The Producer’s dsdr’s
accuracies remained relatively unchanged acrosssalutions. Results also indicated no benefibaiated
with maplet numbers > 15 (Table 7). In summang, gpatial resolution of the maplet had more sicgnifce as
to the representation of proportionally minor cotygres when compared to the actual number of maplet
required to make statistically relevant statemeifise 5 x 5 km maplet with a count of 15 or moreplats

proved relevant to the assessment OL4 classifitsitio
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V. CONCLUSIONS

The issue of applying moderate-to-coarse spateésemote sensor data for regional-local scale
classifications has been well documented in tleeditire. Overall, reported accuracies have beia gariable
compared to that achieved from finer spatial sdata. Herold et al. [24] cited three global lami«er products
that ranged from 66.9% to 78.3% in overall accuraby complicate matters, confidence intervals imaye
previously been overestimated due to the low nurobegference samples and inherent positive bias by
ignoring spatial autocorrelation impacts in theesrefice data sampling design. Also, accuracy vaaileslated
at the global scale are frequently not applicableoatinental scales. With this in mind, it was mient to
investigate the mapping of moderate-to-coarse apasolution time-series imagery at regional-lszlles.
Our findings indicate that classification produgénerated from training sites at the local levsuhed in
higher accuracy values across the majority of thadber regional area when compared to those defiged
regional level training data. Our results inclulde caveat that the reference data derived fronNtt@D 2006
had inherent error (not 100% accurate) and wadyhgpatially auto-correlated. This same issuetex the
maplet dataset where point-based accuracy meteos generated for comparisons.

Many global classification products employ accursiatements that are vague and non-site specific
[24]. Employing the traditional point-based assemsinon these medium-to-coarse data types to produce
accuracy metrics has numerous limitations. Theraption of ‘pure pixels’ that underlies the standard
approach of assessing error through a contingeratgixrapproach is often invalid. In this study,
approximately 7% of the 250 m pixels across thdysarea were homogenous with respect to one cgper t
Due to the limited number of 250 m homogenous gigghilable (n=750) obtaining the minimum number of
reference pixels (i.e., 50 per class) for all 9ixer classes was not possible. Also, error assggsrbased on
homogeneous pixels makes no statements concehrerarturacy of the vast majority of the pixels gein
evaluated. Supplementary information can be obththrough the incorporation of proportional assesyg
procedure to determine the goodness-of-fit. 1a #tiidy, the random distribution of these maplitsvad us
to determine the correlation of cover classes Withreference data. Also, accuracy patterns wedeet as

cover types proportions changed. Finally, we dated pixel heterogeneity which allowed us to eqadint-
15



based error matrices that could account for pixeities ranging from 50-100%. In summapwint-based
accuracy methods are valid on finer spatial daga, 80 m Landsat) where the mixed pixel issud lesser
relevance. We encourage the implementation of thgleh design for assessment of medium-to-coarse
resolution land-cover over large regional extevighin maplet areas both site- and non-site-speeificuracy
metrics can be evaluated. Identification of alldisvof reference pixel purity within these mapletas allows

the user to understand areas of confusion oveteadgEneous landscape.
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Table 1. A listing of 12 OL3 Ecoregions that corsprthe United States portion of the GLB includingde
name, identification numbers, area and represgatpgrcentages of total area. The Northern Lakdd-anests
(35.3%) and S. Michigan/N. Indiana Drift Planes.@®0) represented 55.6% of the total US OL3 region.

OL3 (Name) OL3 (Code Id) Area (knf) Percent
Northern Lakes and Forests 50 115,935 35.3
North Central Hardwood Forests 51 20,480 6.2
Southeastern Wisconsin Till Plains 53 15,631 8 4.
Central Corn Belt Plains 54 3,787 1.2
Eastern Corn Belt Plains 55 16,922 5.2
S. Michigan/N. Indiana Drift Plains 56 66,529 0.2
Huron/Erie Lake Plains 57 24,860 7.6
Northeastern Highlands 58 8,061 2.5
N. Appalachian Plateau and Uplands 60 10,350 2 3.
Erie Drift Plain 61 3,631 4.2
North Central Appalachians 62 928 0.3
E. Great Lakes and Hudson Lowlands 83 31,015 9.5
TOTAL 328,128 100.0
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Table 2. OL4 Ecoregional area distribution withie 1OL3 Northern Lakes and Forests (#50) includimdec
identifications and area percent of OL3 by code3()= Area percents vary by a factor of approxityat®x
ranging from 9.4% (50ae) to 0.5% (50h).

OL4 (Name) OL3 (Code) Percent
Lake Superior Clay Plain 50a 5.2
Menominee-Drummond Lakeshore 50aa 5.2
Cheboygan Lake Plain 50ab 2.6
Onaway Moraines 50ac 3.7
Vanderbilt Moraines 50ad 2.9
Mio Plateau 50ae 9.4
Cadillac Hummocky Moraines 50af 6.3
Newaygo Barrens 50ag 3.5
Tawas Lake Plain 50ah 2.5
Minnesota/Wisconsin Upland Till Plain 50b 2.8
St. Croix Pine Barrens 50c 1.3
Superior Mineral Ranges 50d 4.1
Chequamegon Moraines & Outwash Plain 50e 1.1
Perkinstown End Moraines 50h 0.5
N. Wisconsin Highlands Lakes Country 50i 1.8
Brule and Paint River Drumlins 50j 5.4
Wisconsin/Michigan Pine Barrens 50k 3.5
Menominee Drumlins & Ground Moraine 50l 4.9
Mesabi Range 50m 0.9
Boundary Lakes and Hills 50n 2.7
Glacial Lakes Upham and Aitken 500 3.7
Toimi Drumlins 50p 4.4
Nashwauk/Marcell Moraines and Uplands 50s 0.9
North Shore Highlands 50t 2.3
Keweenaw-Baraga Moraines 50u 19
Winegar Dead Ice Moraine 50v 5.1
Michigamme Highland 50w 2.6
Grand Marais Lakeshore 50x 4.5
Seney-Tahquamenon Sand Plain 50y 3.0
Rudyard Clay Plain 50z 1.3
TOTAL 100.0
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Table 3. Accuracy (ACC), Kappa (KHAT) and Pairwiatatistic results for OL3 and OL4 classifications
across the OL4 ecoregions (n=30).

OL3 (Code) ACC (OL3) ACC (OL4) KHAT (OL3) KHAT (O L4) Z-statistic
50a 84.6 77.0 0.52 0.38 19.86
50aa 73.5 79.6 0.47 0.54 8.03
50ab 66.3 70.4 0.40 0.40 0.13
50ac 76.4 76.1 0.37 0.32 4.74
50ad 86.8 88.8 0.42 0.45 2.56
50ae 85.7 84.5 0.73 0.71 4.29
50af 78.9 86.2 0.47 0.53 5.75
50ag 86.2 88.2 0.66 0.67 0.88
50ah 82.8 77.5 0.59 0.54 3.21
50b 94.4 95.4 0.48 0.45 1.48
50c 85.1 83.6 0.64 0.58 6.66
50d 74.1 85.7 0.40 0.46 9.03
50e 88.7 86.7 0.43 0.37 2.10
50h 98.9 96.2 0.43 0.17 3.41
50i 82.7 93.8 0.56 0.79 12.56
50j 89.5 94.5 0.30 0.47 13.39
50k 93.6 93.5 0.58 0.56 1.03
50 87.3 88.5 0.36 0.36 0.12
50m 65.6 82.6 0.37 0.71 24.20
50n 74.4 75.9 0.47 0.51 5.59
500 92.8 89.7 0.48 0.41 4.54
50p 85.8 86.7 0.72 0.73 3.19
50s 66.8 74.9 0.37 0.49 7.11
50t 87.2 85.6 0.67 0.63 5.17
50u 86.9 99.8 0.46 0.99 44.88
50v 80.9 88.8 0.46 0.59 14.19
50w 83.9 93.8 0.40 0.66 18.87
50x 76.6 81.9 0.52 0.58 9.93
50y 65.6 70.1 0.33 0.30 2.14
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Table 4. Classification metrics for point-basedusacy assessment of the Toimi Drumlins (OL4) ecaorefpr
deciduous (DEC), Coniferous (CON), and grasslarR}scover types. Accuracy metrics include both
producers (P) and users (U) accuracies (%), ovacaliracy (%), and Kappa (KHAT) coefficients.

CLASSIFICATION DEC (P/U) CON (P/U) GRS (P/U) Accuracy KHAT
OL3 100.0/80.6  74.1/100.0 100.0/88.9 87.9 780.
oL4 100.0/98.3  100.0/92.4 14.3/100.0 95.3 910.

Table 5. Maplet regression coefficients mean stahdaor (SE), and root mean square error
(RMSE) comparing OL4 (n = 30) classification reswtross the OL3 Toimi Drumlin ecoregion.
Note the consistently better results for conifereeisus deciduous forest.

Resolution __ Cover Type n f SE (ha) RMSE (ha)
1x1 km Deciduous 30 0.34 15.7 28.6
2x2 km Deciduous 30 0.48 584 100.3
3x3 km Deciduous 30 0.44 1394 214.3
4x4 km Deciduous 30 0.45 263.6 373.7
5x5 km Deciduous 30 0.48 411.8 560.5
1x1 km Coniferous 30 0.44 10.9 26.7
2x2 km Coniferous 30 0.61 382 86.8
3x3 km Coniferous 30 0.60 85.3 181.9
4x4 km Coniferous 30 0.63 145.9 306.5
5x5 km Coniferous 30 0.65 220.1 461.8
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Table 6. Accuracy metrics including Kappa coefintidKHAT) lower limit (LL) and upper limit (UL), oer
accuracy (ACC), and cover type percentages fornféT), urban (URB), barren (BAR), deciduous (DEC)
coniferous (CON), and grasslands (GRS) across nsafpie30) within OL4 for five maplet resolutions.

Maplet LL UL ACC WAT URB BAR DEC CON GRS
Size  KHAT KHAT KHAT (%) (%) (%) (%) (%) (%) (%)
5x5km 040 039 042 679 12 02 00 547 404 5 3.

4x4 km 0.40 0.38 0.42 68.3 1.1 0.1 0.0 54.0 41.7 1 3.

3x3 km 0.41 0.38 0.44 68.7 0.9 0.1 0.0 53.9 424 7 2.

2x2 km 0.42 0.38 0.46 69.8 0.4 0.0 0.0 52.8 442 6 2.

1x1 km 0.44 0.36 0.51 70.2 0.0 0.0 0.0 55.6 421 3 2.

Table 7. Mean cover type percentages generatedZtonerations each of randomly

selected maplets from the original 30 maplets actios OL4 Toimi Drumlin ecoregion to assess theaohn
maplet numbers on classification results. The easfgl5 to 30 maplets had little impact on

classification outcomes.

30 Maplets 25 Maplets 20 Maplets 15 Maplets

WAT (%) 2.03 1.99 2.09 2.07
URB (%) 0.94 0.95 0.93 0.89
BAR (%) 0.02 0.02 0.02 0.02
DEC (%) 51.72 51.67 51.42 51.82
CON (%) 40.73 40.68 40.92 41.01
GRS (%) 4.56 4.69 4.62 4.20
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Table 8. Accuracy metrics for multiple referencegbipurity (PP) levels for OL4 classification

across 30 maplet sites. Note that only 7.4% odlpiwere 100% homogeneous for one cover type.
The majority class represents the standard “mgjoatl” commonly used to label moderate-to-coarse
resolution pixels.

MATRIX LL UL Accuracy Total
Class KHAT KHAT KHAT (%) Area (%)
Majority 0.40 0.39 0.42 67.9 100.0
PP50 0.42 0.40 0.43 69.1 94.8
PP60 0.49 0.47 0.51 72.9 75.4
PP70 0.57 0.55 0.58 77.3 56.0
PP80 0.64 0.62 0.66 81.6 38.3
PP90 0.72 0.69 0.74 85.7 21.6
PP100 0.79 0.75 0.83 89.6 7.4
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Kilometers

Figure 1. The OL4 ecoregions (n=30) within the QN@thern Lakes and Forests
Ecoregion of the GLB.

Figure 2. The Toimi Drumlin OL4 ecoregion (50p) @hd distribution
of randomly selected 5 x 5 km maplets (n=30).
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Figure 3. Overall accuracy box and whisker plofisG standard deviations about the mean, mediannmm,
and maximum value outliers for OL3 and OL4 classifions (n=30).
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Figure 4. Accuracy differentials across thirty Oéebregions = (OL4 accuracy) - (OL3 accuracy). Dasts:
+5.0% difference levels.
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Figure 5. Omission (a) and Commission (b) errordsoand whisker plots bracketindl# standard deviation
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the OL4 (n=30).

30

I K ilometers
(a) (b)

0 15 30
I K ilometers

Figure 6. A comparison classification scale resioltOL3 (a) and OL4 (b) classifications across @et (dark
green — coniferous forest and light green — deciddorest).

29



2500.0

® Deciduous . .
@ Coniferous o o

2000.0

1500.0

1000.0

500.0

OL4 Classification (ha)

0.0 500.0 1000.0 1500.0
Reference (ha)

2000.0

2500.0
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