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ABSTRACT  

This study applied a phenology-based land-cover classification approach across the Laurentian 

Great Lakes Basin (GLB) using time-series data consisting of 23 Moderate Resolution Imaging 

Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) composite images (250 m) 

from calendar year 2007.  Two classification products (levels III and IV) were evaluated within one level 

IV Omernik Ecoregion in the GLB using both point-based and area-based “maplets” assessment 

methodologies.  Classification accuracies were assessed at both stratification levels using 127 

homogeneous reference pixels (single cover type) for three cover types (deciduous, coniferous, and grass).  

Error matrices indicated an overall level III classification accuracy of 87.9% (KHAT = 0.78) compared to 

95.3% (KHAT = 0.9109) at level IV.  Also, there was a statistically significant difference between the two 

matrices (Z = 2.03; p=0.05).   

Level IV classification extent proportions performed better than level III when compared with 

reference maplets, especially with respect to the deciduous and coniferous cover classes.  The reference 

deciduous and coniferous proportions were 51.7% and 40.7%, respectively.  The level IV classification 

comparisons were deciduous 44.7% (r2 = 0.49) and coniferous 54.8% (r2 = 0.65) compared to 75.8% (r2 = 

0.34) and 19.6% (r2 = 0.37) at level III.  Error matrices generated at 6 pixel-purity (PP) levels (≥ 50%, ≥ 

60%, ≥ 70%, ≥ 80%, ≥ 90% and 100%) within the maplet areas resulted in an overall minimum accuracy 

of 67.9% (>50% PP) and a maximum accuracy of 89.6% (100% PP).  Only 7.4% of the (250 m) pixels 

had 100% PP.  
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I. INTRODUCTION 
 

For regional scale mapping with moderate-to-coarse spatial resolution satellite imagery, a number of 

primary issues have to be addressed prior to project initiation. Satellite sensor selection is based on optimizing 

spatial, spectral, temporal, and radiometric resolutions appropriate to capture the vegetation and anthropogenic 

variations seen across the landscape.  Next, image classification (supervised, unsupervised, neural network, etc.) 

and accuracy assessment methodology are determined. Should training data extend over a regional or a sub-

regional level?  Will the traditional point-based accuracy assessment method suffice in informing the 

categorical confusion of the map?  Variability is introduced across large geographical extents due to sub-

regional differences in vegetation types, climate, geology/soil types, etc.  Accordingly, across what 

geographical extent should the classification algorithms be applied to capture the local variation of land-cover?  

The issue of cover type heterogeneity existent across the landscape within the grid framework also has a basis in 

deciding how to assess the accuracy of the mapping project.  In this study we have applied a phenology-based 

land-cover classification across the Laurentian Great Lakes Basin (GLB) at two ecoregion scales using a 2007 

time series of 23 Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation 

Index (NDVI) composite images (250 m pixel size).  Land-cover products were evaluated using both the 

traditional point-based accuracy methodology and area-based (maplets) comparisons. 

  Regional to global scale land-cover maps have been derived from numerous satellite remote sensing 

systems including the MODIS, SPOT Vegetation (VGT), ENVISAT, and the National Oceanic and 

Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR). Land-cover 

classification algorithms used at the global scale have been limited in capturing the local and regional variations 

in land-cover, partially due in part to limitations in the number of training sites available to accurately represent 

regional areas.  For example, the MODIS classification algorithm uses a database of cover types (n = 2000) to 

represent the entire globe. The MODIS team has established these training sites to be geographically and 

ecologically comprehensive [1].   

An earlier global product developed from 1 km AVHRR NDVI composites (1992–1993) addressed the 

large geographic extent issue by defining pseudo ecoregions via an unsupervised classification clustering of the 
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NDVI data to identify areas of spectral similarity [2].  A total of 961 clusters were identified globally with 205 

located in North America.  Friedl et al. [3] suggested that subregional imagery differences between areas of 

similar vegetation composition on the ground may be responsible for inducing a unique spectral signature. This 

effect seems to preclude the use of smaller areas of interest when classifying large regional imagery datasets.  It 

was posited that clouds may obscure two similar sites, creating a low NDVI signature in the shadowed area. 

Cover type confusion also has been documented at higher latitudes for phenology-based NDVI classification 

[2], [3].  It should be noted that geographic stratification may not yield significant differences based on the 

classification algorithm employed when comparing classification accuracies from the whole to the part.  Shao 

and Lunetta [4] found that there were no advantages to stratification of the entire GLB to a regional level using 

a neural network (NN) classifier.  However, in that study, the limiting factor seemed to be the small percentage 

of pixels chosen for NN training. 

Assessing the accuracy of these moderate-to-coarse resolution maps requires a deviation from the 

normal one-to-one assessment process where one homogeneous reference pixel, typically derived from higher 

resolution data (e.g., aerial photography, Landsat ETM+, etc.), is compared to the similar pixel with associated 

thematic label. At issue is the dominance of non-homogeneous reference data, where data ranging spatially 

from 102 –103 m has been shown to contain multiple land-cover types [5].  A study in the Albemarle-Pamlico 

Watershed of NC and VA found that only 6.0% of all the 250 m pixels were composed of a single landcover 

type [6].  Some have suggested that the more reasonable assessment process for moderate-to-coarse resolution 

land-cover is to derive areal sampling documenting the fractions of cover types present [6, 7]. One method, 

referred to as the maplet method, allows the level of ‘correctness’ to be assessed based on the agreement 

between the maplet reference cover proportions and the classification cover proportions of the same maplet 

areas [7].  

Maplets are higher resolution maps of small geographic areas used to assess the accuracy of coarser 

resolution maps [8].  Maplets were developed as a validation approach for large area datasets to deal with the 

issue of assessing class accuracies across a large number of classes. This methodology was first posited by 

Chrisman [8] and further elucidated in practice by Stoms [9].  Lioubimtseva and Defourny [10] compared the 
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total area of cover types throughout three large maplet areas ranging from approximately 5,137 – 6,225 km2. 

Beyond the comparison of landscape proportions, they also assigned dominant cover type labels to each 30 m2 

pixel within the maplet areas to generate contingency tables to compare total, user’s and producer’s accuracies 

between areas.  Stoms [9] used only one large maplet (2,240 km2) for San Diego County, CA.  Cihlar [5] used a 

tiling design (i.e. maplets) to refine mapping cover type proportions from 1.0 km AVHRR data to compare 

proportions derived from the coarser AVHRR data resampled to 30 m spatial resolution.  Comparative Landsat 

ETM+ data was classified in order to directly correlate areal estimates of the two mapping products. Schneider 

et al. [11] implemented three maplet methods to supplement traditional accuracy assessment procedures in 

urban areas by fusing multiple sources of coarser resolution imagery.  They indicated that the benefit of the 

areal comparisons allowed a better understanding of the nature and quantity of errors.  For example, a 

comparison of reference maplets derived from the National Landcover Dataset (NLCD), provided locational 

information leading to the identification of error type that revealed registration errors as the primary error 

component associated with urban cover extent.  They also cautioned that the maplet aggregation method may 

introduce additional errors [11]. 

The objectives of this study were (1) to investigate the regional to sub-regional effect on GLB 

classification of 250 m multi-temporal NDVI imagery for 2007 and (2) to compare two accuracy assessment 

processes: non-site specific (area-based) and site-specific (point-based).  We first classified the larger (115,934 

km2) Omernik Level III (OL3) ecoregion (‘Northern Hardwood Forest’) using ENVI’s Spectral Angle Mapper 

(SAM), a hyperspectral image classification technique applied to continuous time-series NDVI for six cover 

types.  We then applied the same classification algorithm across the thirty smaller Omernik Level IV (OL4) 

ecoregions nested within this larger OL3.  We compared both OL3 and OL4 classifications against a reference 

dataset derived from the 2006 NLCD.  Finally, both classifications were assessed over one OL4 extent (Toimi 

Drumlins) using point-based and area-based accuracy assessment procedures. 
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II. STUDY AREA  

We applied our classification to an ecoregion sub-basin for the United States section of the GLB 

corresponding to the Omernik Ecoregion Classification System.   Omernik developed the ecoregions for the 

conterminous United States at four levels, with subdivisions predicated on ‘perceived patterns of a combination 

of causal and integrative factors including land use, land surface form, potential natural vegetation, and soils’ 

[12].  The United States portion of the GLB is composed of 12 OL3 ecoregions covering 328,128 km2 (Table 

1), with over one-third of the area composing the Northern Lakes and Forests Ecoregion.  OL3 designations are 

designed to address regional analysis, whereas OL4 designations provide useful information at the local level of 

analysis.  The OL3 Northern Lakes and Forests Ecoregion is further segmented into 30 distinct OL4 ecoregions 

ranging from 1–7% of the OL4 parent region (Table 2: Figure 1).   

For the area-based versus point-based accuracy assessment comparisons we concentrated our research 

within the OL4 Toimi Drumlins ecoregion (5,472.7 km2) nested within the larger OL3 ecoregion.  The Northern 

Lakes and Forests ecoregion is characterized by nutrient-poor glacial soils dominated by coniferous and 

northern hardwood forests.  The glacial processes on this ecoregion have produced undulating till plains, 

morainal hills, broad lacustrine basins and sandy outwash plains.  The Toimi Drumlins, located north by north-

east of Duluth, Minnesota, are described by a rolling topography of ridge and troughs where drumlins are 

typically 1.6 km long, 0.4 km wide, 9–16 m high, and oriented in a southwest–northeast direction.  Soils are 

medium to coarse-textures of Superior and Rainy Lobe glacial till.  Inter-drumlin areas are poorly and very 

poorly drained and vegetation is dominated by aspen-birch, spruce-fir, white-red-jack pine, and oak-hickory 

cover types.  

 

II. METHODOLOGY 

A. Overview 

A two-tiered experimental design was developed (1) to assess the impacts of mapping at regional and 

sub-regional scales, and (2) to evaluate accuracy assessment information derived from both non-site specific 

area-based ‘maplets’ and traditional site-specific point-based approaches. Classifications were performed using 
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biweekly time-series MODIS NDVI (2007) at two ecoregional levels (OL3 and OL4) with training sites 

selected specific to those two ecoregions. In order to allow for direct comparison between the two 

classifications, the OL3 classification was masked to the 30 OL4 ecoregions existent within the OL3 geographic 

extent (Figure 1). Traditional point-based accuracy metrics were generated for the 30 OL3 and OL4 

classifications using a reference dataset developed from the 2001 NLCD.  The second-tier of this study focused 

on comparing site-specific ‘traditional’ point-based accuracy methods with non-site specific ‘maplets’ area-

based procedures in assessing accuracy metrics over one OL4 Omernik ecoregion (Toimi Drumlins).  

 

B. Reference Data  

To first address the scale issue with classification of medium-to-coarse resolution imagery we attempted 

to geolocate point-sample locations that were 100% homogeneous with respect to pixel purity (i.e. PP100).  To 

achieve the minimum number of samples per class (n = 50), ≥ 9,000 PP100 pixels would be needed based on 

the 30 OL4 regions for the six cover types [13]. To ensure pixel purity, areas containing numerous PP100 pixels 

are commonly used for sub-sampling to offset any geometric registration issues and minimize spectral 

contamination from adjacent pixels.  Only 750 pixels across all 30 OL4 ecoregions met these criteria. Also, a 

majority of the available reference pixels were predominantly deciduous and coniferous.  To compare 

classifications across the OL4 ecoregions, we relaxed the pixel purity requirement to PP70 and utilized isolated 

pixels.  We used the NLCD 2001 to create a majority reference map identifying all 250 m pixels dominated (> 

70%) by one cover type (n = 611,636). To identify PP70 pixels, NLCD cover type proportions were calculated 

using Matlab software for every 250 m pixel location within the U.S portion of the GLB.  Each NLCD cover 

class was converted to an ERDAS IMAGINE IMG file and stacked to provide all 15 NLCD classes in one IMG 

file using ERDAS Model Maker.   

Point-based and area-based reference datasets were developed for the Toimi Drumlin OL4 ecoregion.  

For the point-based dataset, a total of 127 PP100 pixels completely contained within similar land-cover pixels 

were identified within this OL4 ecoregion.  To ensure correct labeling of the reference pixels, ancillary datasets 

were compared to the 127 reference pixels.  These datasets included (1) Landsat 7 SLC-on (1999-2003) leaf-off 
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imagery including NDVI, (2) USDA 2007 digital orthophoto quarter quadrangles (DOQQs), and (3) Minnesota 

Department of Natural Resources forest cover inventory data (Forest Inventory Management (FIM)).  The area-

based maplet reference dataset was developed by creating a 25 x 25 grid with each cell 5 x5 km (n = 625). This 

grid was developed using the ‘create fishnet’ tool under the X Tools dialogue in ESRI ArcMap.  We selected all 

5 x 5 km cells (n = 173) that were completely contained within this OL4 ecoregion and randomly selected 30 of 

these cells (i.e. maplets) for processing (Figure 2).  Next, we downloaded two October 5, 2002, Landsat ETM+ 

scenes for image processing (Path/Rows: 26/27 and 26/28). These scenes met the requirements of spectral 

similarity, low cloud cover (< 10%), and leaf-off/snow-free landscape conditions. To ensure that cover 

composition did not change within the 30 maplet areas, the imagery was checked against the 2006 leaf-on 

DOQQs.  All maplets within the ecoregion showed no significant change compared to the 2006 DOQQs and the 

Landsat ETM+ imagery and thus were appropriate to support the analysis.  However, visual inspection was 

limited due to the difficulty in distinguishing deciduous from coniferous cover types.  Therefore, a secondary 

dataset was used to check general cover pattern similarity by comparing the NLCD 2006 data with Landsat 

ETM+ imagery from 2002.  This confirmed that there were no significant changes between the dates ― change 

within the 30 selected maplets was < 2.1%.   

The Landsat imagery was subset to the 30 maplet areas and each area was independently classified using 

the unsupervised Iterative Self-Organizing Data Analysis Technique (ISODATA), where spectrally similar 

clusters were later labeled as (a) water, (b) urban, (c) barren, (d) deciduous woody vegetation, (e) coniferous 

woody vegetation, and (f) grassland.  This maplet classification approach was also implemented by 

Lioubimtseva and Defourny [10] where they combined a maximum likelihood supervised classification with an 

unsupervised algorithm (ISODATA) to produce maplets with 4–7 cover types.  The dominant and the percent 

cover by class for each 250 m pixel per maplet area were calculated.  Each 5 x 5 km maplet was also reduced to 

four additional resolutions (1 x 1 km, 2 x 2 km, 3 x 3 km, and 4 x 4 km) to test the appropriate maplet resolution 

for assessments. The same supplemental datasets used to confirm the cover types for the 127 pixels in the point-

based reference dataset were also used to ensure label accuracy with the 30 selected maplets. 
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B. MODIS NDVI Preprocessing 

The MODIS 250 m NDVI product (MOD13Q1) was downloaded for a 7-year period (2000–2007) from 

the USGS Land Processes Distributed Active Archive Center (https://lpdaac.usgs.gov/) to support phenology-

based classifications across the GLB. The MOD13Q1 product consists of 23 scenes developed from 16-day 

composites over the one calendar year. Though data for all seven years was collected in order to provide the 

necessary inputs for a missing data/cleaning algorithm developed internally at EPA [6], only the 2007 (n=23) 

was used in this study. Data were reprojected from the native sinusoidal projection to the Albers-equal area 

conic projection using a nearest-neighbor operator.  Next, each individual scene was clipped to the GLB 

boundary layer and sequentially stacked.  A series of filtering and cleaning steps were applied to the NDVI data 

stack based on the filtering and cleaning algorithm detailed in Lunetta et al. [14].  The resulting filtered and 

cleaned 2007 NDVI datastack for the GLB was then temporally subset to 12-bands corresponding only to the 

growing season, thereby reducing the contamination of snow and ice existent over a significant portion of the 

calendar year.  

 

C. Water and Agricultural Masks 

Both the water and agricultural classes were excluded from the classification and accuracy assessment 

procedures.  Water pixels were excluded because they were not pertinent to the study and agricultural pixels 

were previously assessed by Shao et. al. [15].  A water mask was created from cloud-free Landsat ETM+ and 

TM imagery collected close as possible to the target 2007 year.  Then, an ISODATA unsupervised classification 

algorithm was implemented in ERDAS Imagine to cluster the imagery into 20 distinct classes. The water and 

non-water classes were relabeled per class as “1’s” and “0’s” respectively.  The resulting image was then 

resampled from 30 m to 10 m pixels to match the 250 m MODIS NDVI grid format then subsequently degraded 

to the 250 m resolution.  Using the relational operator within ERDAS Imagine Model Builder, 250 m pixels 

greater than 50% water were identified and included as the water mask.  An agricultural mask was created using 

the 2001 NLCD to identify 250 m pixels >50% agriculture cover.   
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D. Classifications 

The complete GLB land-cover classification system includes seven classes: (1) water, (2) urban, (3) 

barren, (4) deciduous woody vegetation, (5) coniferous woody vegetation, (6) grass, and (7) agriculture.  The 

water and agricultural classes were first masked out of the NDVI datastack.  Next, we applied the Sequential 

Maximum Angle Convex Cone (SMACC) endmember model [16] to identify urban endmembers from the time-

temporal data.  The SMACC algorithm, initially designed for multi-spectral imagery analysis, uses an iterative 

process that identifies spectral similarity based on bright and dark pixel differences.  This technique was 

previously used to identify urban pixels within the Albemarle-Pamlico (NC and VA) watershed [6], but proved 

ineffectual in the GLB due to the large geographic extent of this basin. Therefore, our mapping would be 

constrained only to the other four cover classes (barren, deciduous, coniferous, and grass).  For these remaining 

classes, we used a hyperspectral classifying algorithm (Spectral Angle Mapper) to classify the 12 time-series 

NDVI images across the GLB.  Training data was identified using 2007 DOQQs, forest inventory data 

(previously discussed), and 100% homogeneous 250 m pixels as determined by the 2001 NLCD.  Temporal 

training signatures, defined as endmember spectra in ENVI, were retrieved using ERDAS Imagine, then saved 

as a text file and later imported into ENVI. The Spectral Angle Mapper (SAM) algorithm uses an n-dimensional 

angle to match unclassified pixels to a reference signature. Here, temporal NDVI value similarity between the 

training data and the unclassified pixel is determined by comparing the angle between the two values, treating 

these values as vectors in a space with dimensionality equal to the number of bands [17]. Finally, the completed 

OL3 classification was subset to the OL4 (n=30) ecoregion boundaries to facilitate direct comparisons. 

 

E. Accuracy Assessments  

Regional and Sub-regional (OL3 and OL4) classifications were assessed across the OL4 extents for 

basic correspondence to the selected reference dataset using the GIS Analysis Summary Module in ERDAS 

Imagine.  Results were transferred to error matrices and accuracy statistics were generated for overall accuracy, 

commission and omission errors, Kappa and z-statistics.  Both a point and area-based analysis of classification 

accuracies were compared across the Toimi Drumlins OL4 ecoregion.  The barren class was eliminated from 
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the assessment process due to the insignificant representation resulting in a three class assessment.  A point-

based accuracy assessment was first applied to both the OL3 and OL4 classification results using randomly 

selected reference points (n = 127; PP100).  Overall map and per-class accuracy was calculated through map-

reference comparisons using contingency tables [18].  Errors of omission and commission were ascertained 

though the calculation of user’s and producer’s accuracies.  Kappa statistics were also generated to determine if 

the values contained in an error matrix represented a result significantly better than random [19].  A z-statistic 

was generated for both error matrices using a pair-wise comparison [13] to test the independent of Khat values.  

Proportional cover type values were compared across the 30 maplet areas (25 km2 or 5 x 5 km) within this same 

OL4 ecoregion and point-based assessments (PP > 50% – 100%) were only generated for only the 250 m pixels 

within the 30 maplet areas to observe the effects of pixel heterogeneity on overall accuracy.   Finally, we 

investigated the impact of maplet size classes versus accuracy results for five resolutions (1 x 1 km, 2 x 2 km, 3 

x 3 km, 4 x 4 km, and 5 x 5 km per side of pixel). 

 

IV. RESULTS AND DISCUSSION 

A. Classification Accuracy 

Overall classification accuracies were similar for both the OL3 (83.3%) and OL4 (85.8%) products 

(Figure 3).  A pairwise Z-statistic test indicated that both overall classifications were significantly different (z-

statistic = 22.55; p=0.05). A comparison of the OL4 sites (n=30) for both classifications indicated that at the 

finer OL4 results were superior to the OL3.  The pairwise comparisons showed that 19 of 30 OL4 sites had 

higher accuracies with > 50% of these 19 OL4 sites exhibiting a > 5% accuracy differential and > 21% 

exceeding the 10% differential (Table 3; Figure 4).  Eleven OL3 classifications exhibited a > 5% accuracy 

differential compared to the OL4 classification.  The mean accuracy improvement across the OL4 sites was 

3.0% compared to OL3 classifications (84.6% vs. 81.6%).  OL3 versus OL4 classification z-statistic differences 

(p=0.05) were observed in 25 of the 30 ecoregions (Table 3).  Kappa coefficients for the OL3 classifications 

showed moderate agreement across most ecoregions (68%), similar to that achieved for OL4 classifications 

(73%).  Also, commission and omission errors were lowest for the deciduous and coniferous classes for both 
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classifications, with the deciduous being lowest (Figure 5).  This may have been a result of wetter soil 

conditions within the coniferous areas because wetland categories were not considered.  A majority of the 

wetlands within the study area are spruce dominated. 

OL4 classifications performed consistently better across all 30 sites when compared to the OL3. This 

was attributed to a number of underlying issues specific to the GLB area that tended to increase the variability 

of temporal NDVI signatures.  These included climatic variability due to lake influences, snow cover 

periodicity, and data quality issues associate with high latitude areas. Also, the wide MODIS scan angle can 

cause regional variation in NDVI values. It has been shown that as the view angle increases beyond nadir the 

sensor field of view includes fewer shadowed components and more illumination of the canopy elements [20].  

Approximately 83% of OL3 showed significant differences between the two classification levels. Locations 

with no significant differences (n = 5) can be attributed to robust similarity between training signatures and 

NDVI values of a particular cover type across multiple OL4 ecoregions.  Also, if we assume that accuracy 

differences of < 5% between sites were a function of classification noise and intrinsic reference database errors 

[21]; the OL4 classifications soundly outperformed OL3.  Results demonstrated that 19 OL4 classifications 

outperformed the classification; of which 83% resulted in > 5% accuracy differences. Only 18% of the 11 OL3 

accuracy exceedance sites exceeded the >5% differential.  Although an overall accuracy difference of 2.5% was 

seen when combining all 30 sites, subregional differences can be seen when the coarser geographic extent is 

classified at the fine resolution.  

 

B. Maplet versus Point-Based Assessments 

The low proportion of homogeneous reference pixels within a classification scene affects applying the 

standard confusion matrix-based accuracy assessment approach for medium-to-coarse resolution mapping 

products. One issue associated with assessing the accuracy of moderate-to-coarse spatial resolution map 

products by applying a standard confusion matrix-based approach is the low proportion of homogeneous pixels.  

Statistics generated from the confusion matrix are statistically valid based on the assumption that samples are 

derived from pure pixels of discreet cover classes [22].  For example, the Kappa coefficient implicitly assumes 
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that the testing sample is homogeneous.  Typically, reference samples are constrained to areas that are 

homogeneous with respect to one cover class.  Additionally, to ensure that homogeneous pixels are not 

contaminated with spectral bleeding from adjacent pixels of different land-cover, reference pixels are usually 

selected embedded within a cluster of pixels of the same cover type. Accuracy statements made from 

contingency tables generated from these pure reference pixels tend to be optimistically biased [23].  The lack of 

pure reference pixels also affects selecting a sample size capable of generating statistically valid accuracy 

statements across all cover classes.  

A traditional point-based accuracy assessment was performed for the OL3 and OL4 classifications for 

the one OL4 Toimi Drumlins ecoregion extent using a randomly selected subset (n=127) of the PP100 reference 

pixels (n=750) previously identified across the entire OL3 ecoregion. Point-based accuracy metrics indicate that 

there was a significant difference (Z = 2.03; p = 0.05) between the OL3 classification (overall accuracy = 

87.9%; KHAT = 0.79) and the OL4 classification (overall accuracy = 95.3%; KHAT = 0.91). Producer’s and 

user’s accuracies were high for both classifications within all three cover types (deciduous, coniferous, and 

grass).  The only exception was the producer’s accuracy of only 14.3% for the OL4 classification for grass 

(Table 4).  

The proportional-based assessment design incorporated 30 maplets randomly distributed throughout the 

one OL4 ecoregion (Toimi Drumlins).  We found that the OL4 cover type proportions were better correlated 

than OL3 classifications, especially with respect to the deciduous and coniferous classes. The reference 

deciduous and coniferous proportions were 51.7% and 40.7%, respectively.  The OL4 deciduous and coniferous 

proportions of 44.7% and 54.8% can be compared to the OL3 proportion of 75.8%and 19.6%.  This extreme 

OL3 deciduous overestimation is also apparent by visual comparison of both classifications (Figure 6).  A 

simple correspondence plot was used to compare the deciduous and coniferous maplet areas comparing 

reference data and classification results for the OL4. This graph illustrates that the OL4 classification (i) 

overestimated conifer in areas of high (> 30%) coniferous content, and (ii) underestimated areas with low (< 

50%) deciduous cover while overestimating areas with high (> 50%) deciduous cover (Figure 8).  Regression 

analysis using maplet reference data for deciduous (r2 = 0.49) and coniferous (r2 = 0.65) classes for OL3 and 
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OL4 indicated that the OL4 results were superior to OL3 (r2 =0.37 coniferous; r2 =0.34 deciduous) (Figure 8).  

The grass class accounted for 3.5% of the total maplet area.  Regression coefficients showed that the OL4 

classification had moderate correlation with the reference dataset (r2 = 0.58, SE = 6.2 ha), whereas the OL3 had 

no agreement (r2 = 0.01, SE = 118.2 ha).  

We explored the affect of varying pixel purity for maplet reference pixels on overall accuracy using the 

point-based procedure within the 30 (5 x 5 km) maplet sites. Maplet pixels were identified for percent purity 

with respect to one cover type across six PP levels corresponding to  ≥ 50%, ≥ 60%, ≥ 70%, ≥ 80%, and ≥ 90% 

and 100%.  Results showed that accuracy values varied by 21% with a minimum overall accuracy of 67.9% (> 

50% PP) and a maximum of 89.6% (PP100) (Table 8).  The PP100 class represented 7.4% of pixels within the 

study area.  

A research objective was to determine optimal maplet resolutions and numbers (n) for classification 

assessments.  Resulting OL4 regression coefficients for deciduous (r2 = 0.34–0.48) and coniferous (r2 = 0.44–

0.65) across the five maplet grid resolutions (1 x 1 km –5 x 5 km) are listed in Table 5.  For both cover types 

regression coefficients increased significantly between 1 x 1 and 2 x 2 km resolutions and thereafter stabilized, 

suggesting maplet resolutions > 1 x 1 km would produce the highest correlation values.  Using pixels coded to a 

simple majority within all 30 maplets, we compared the OL4 classifications using accuracy metrics generated 

from point-based accuracy assessments for all five maplet resolutions.  The results indicated that both 

accuracies (67.9–70.2%) and Khat (0.40–0.44) statistics remained relatively stable across all resolutions (Table 

6).  The cover type proportions remained constant except for the finer resolutions (< 4 x 4 km), where some 

lesser represented cover types (bare and urban) dropped out completely (Table 6).  The Producer’s and User’s 

accuracies remained relatively unchanged across all resolutions.   Results also indicated no benefit associated 

with maplet numbers > 15 (Table 7).   In summary, the spatial resolution of the maplet had more significance as 

to the representation of proportionally minor cover types when compared to the actual number of maplets 

required to make statistically relevant statements.  The 5 x 5 km maplet with a count of 15 or more maplets 

proved relevant to the assessment OL4 classifications. 
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V. CONCLUSIONS 

The issue of applying moderate-to-coarse spatial scale remote sensor data for regional-local scale 

classifications has been well documented in the literature.  Overall, reported accuracies have been quite variable 

compared to that achieved from finer spatial scale data.  Herold et al. [24] cited three global land-cover products 

that ranged from 66.9% to 78.3% in overall accuracy.  To complicate matters, confidence intervals may have 

previously been overestimated due to the low number of reference samples and inherent positive bias by 

ignoring spatial autocorrelation impacts in the reference data sampling design.  Also, accuracy values calculated 

at the global scale are frequently not applicable at continental scales.  With this in mind, it was our intent to 

investigate the mapping of moderate-to-coarse spatial resolution time-series imagery at regional-local scales.  

Our findings indicate that classification products generated from training sites at the local level resulted in 

higher accuracy values across the majority of the broader regional area when compared to those derived from 

regional level training data.  Our results include the caveat that the reference data derived from the NLCD 2006 

had inherent error (not 100% accurate) and was highly spatially auto-correlated.  This same issue exists for the 

maplet dataset where point-based accuracy metrics were generated for comparisons. 

Many global classification products employ accuracy statements that are vague and non-site specific 

[24]. Employing the traditional point-based assessment on these medium-to-coarse data types to produce 

accuracy metrics has numerous limitations. The assumption of ‘pure pixels’ that underlies the standard 

approach of assessing error through a contingency matrix approach is often invalid.  In this study, 

approximately 7% of the 250 m pixels across the study area were homogenous with respect to one cover type.  

Due to the limited number of 250 m homogenous pixels available (n=750) obtaining the minimum number of 

reference pixels (i.e., 50 per class) for all six cover classes was not possible.  Also, error assessments based on 

homogeneous pixels makes no statements concerning the accuracy of the vast majority of the pixels being 

evaluated.  Supplementary information can be obtained through the incorporation of proportional assessment 

procedure to determine the goodness-of-fit.  In this study, the random distribution of these maplets allowed us 

to determine the correlation of cover classes with the reference data.  Also, accuracy patterns were evident as 

cover types proportions changed.  Finally, we calculated pixel heterogeneity which allowed us to create point-
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based error matrices that could account for pixel purities ranging from 50–100%. In summary, point-based 

accuracy methods are valid on finer spatial data (i.e., 30 m Landsat) where the mixed pixel issue is of lesser 

relevance. We encourage the implementation of the maplet design for assessment of medium-to-coarse 

resolution land-cover over large regional extents. Within maplet areas both site- and non-site-specific accuracy 

metrics can be evaluated. Identification of all levels of reference pixel purity within these maplet areas allows 

the user to understand areas of confusion over a heterogeneous landscape. 
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Table 1. A listing of 12 OL3 Ecoregions that comprise the United States portion of the GLB including code 
name, identification numbers, area and representative percentages of total area. The Northern Lakes and Forests 
(35.3%) and S. Michigan/N. Indiana Drift Planes (20.3%) represented 55.6% of the total US OL3 region. 
 
OL3 (Name)    OL3 (Code Id) Area (km2)  Percent 

Northern Lakes and Forests   50  115,935  35.3 

North Central Hardwood Forests  51  20,480   6.2 

Southeastern Wisconsin Till Plains  53  15,631   4.8 

Central Corn Belt Plains   54  3,787   1.2 

Eastern Corn Belt Plains   55  16,922   5.2 

S. Michigan/N. Indiana Drift Plains  56  66,529   20.3 

Huron/Erie Lake Plains   57  24,860   7.6 

Northeastern Highlands   58  8,061   2.5 

N. Appalachian Plateau and Uplands  60  10,350   3.2 

Erie Drift Plain    61  3,631   4.2 

North Central Appalachians   62  928   0.3 

E. Great Lakes and Hudson Lowlands 83  31,015   9.5 

TOTAL       328,128  100.0 
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Table 2. OL4 Ecoregional area distribution within the OL3 Northern Lakes and Forests (#50) including code 
identifications and area percent of OL3 by code (n=30).  Area percents vary by a factor of approximately 19x 
ranging from 9.4% (50ae) to 0.5% (50h). 
 

OL4 (Name)      OL3 (Code)  Percent 
Lake Superior Clay Plain    50a   5.2 
Menominee-Drummond Lakeshore   50aa   5.2 
Cheboygan Lake Plain    50ab   2.6 
Onaway Moraines     50ac   3.7 
Vanderbilt Moraines     50ad   2.9 
Mio Plateau      50ae   9.4 
Cadillac Hummocky Moraines   50af   6.3 
Newaygo Barrens     50ag   3.5 
Tawas Lake Plain     50ah   2.5 
Minnesota/Wisconsin Upland Till Plain  50b   2.8 
St. Croix Pine Barrens    50c   1.3 
Superior Mineral Ranges    50d   4.1 
Chequamegon Moraines & Outwash Plain  50e   1.1 
Perkinstown End Moraines    50h   0.5 
N. Wisconsin Highlands Lakes Country  50i   1.8 
Brule and Paint River Drumlins   50j   5.4 
Wisconsin/Michigan Pine Barrens   50k   3.5 
Menominee Drumlins & Ground Moraine  50l   4.9 
Mesabi Range      50m   0.9 
Boundary Lakes and Hills    50n   2.7 
Glacial Lakes Upham and Aitken   50o   3.7 
Toimi Drumlins     50p   4.4   
Nashwauk/Marcell Moraines and Uplands  50s   0.9 
North Shore Highlands    50t   2.3 
Keweenaw-Baraga Moraines    50u   1.9 
Winegar Dead Ice Moraine    50v   5.1 
Michigamme Highland    50w   2.6 
Grand Marais Lakeshore    50x   4.5 
Seney-Tahquamenon Sand Plain   50y   3.0 
Rudyard Clay Plain     50z   1.3 

TOTAL         100.0 
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Table 3. Accuracy (ACC), Kappa (KHAT) and Pairwise Z-statistic results for OL3 and OL4 classifications 
across the OL4 ecoregions (n=30). 
 
OL3 (Code) ACC (OL3) ACC (OL4)  KHAT (OL3)  KHAT (O L4) Z-statistic 
50a  84.6  77.0   0.52   0.38   19.86 
50aa  73.5  79.6   0.47   0.54   8.03 
50ab  66.3  70.4   0.40   0.40   0.13 
50ac  76.4  76.1   0.37   0.32   4.74 
50ad  86.8  88.8   0.42   0.45   2.56 
50ae  85.7  84.5   0.73   0.71   4.29 
50af  78.9  86.2   0.47   0.53   5.75 
50ag  86.2  88.2   0.66   0.67   0.88 
50ah  82.8  77.5   0.59   0.54   3.21 
50b  94.4  95.4   0.48   0.45   1.48 
50c  85.1  83.6   0.64   0.58   6.66 
50d  74.1  85.7   0.40   0.46   9.03 
50e  88.7  86.7   0.43   0.37   2.10 
50h  98.9  96.2   0.43   0.17   3.41 
50i  82.7  93.8   0.56   0.79   12.56 
50j  89.5  94.5   0.30   0.47   13.39 
50k  93.6  93.5   0.58   0.56   1.03 
50l  87.3  88.5   0.36   0.36   0.12 
50m  65.6  82.6   0.37   0.71   24.20 
50n  74.4  75.9   0.47   0.51   5.59 
50o  92.8  89.7   0.48   0.41   4.54 
50p  85.8  86.7   0.72   0.73   3.19 
50s  66.8  74.9   0.37   0.49   7.11 
50t  87.2  85.6   0.67   0.63   5.17 
50u  86.9  99.8   0.46   0.99   44.88 
50v  80.9  88.8   0.46   0.59   14.19 
50w  83.9  93.8   0.40   0.66   18.87 
50x  76.6  81.9   0.52   0.58   9.93 
50y  65.6  70.1   0.33   0.30   2.14 
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Table 4. Classification metrics for point-based accuracy assessment of the Toimi Drumlins (OL4) ecoregion for 
deciduous (DEC), Coniferous (CON), and grassland (GRS) cover types.  Accuracy metrics include both 
producers (P) and users (U) accuracies (%), overall accuracy (%), and Kappa (KHAT) coefficients. 
 
CLASSIFICATION  DEC (P/U) CON (P/U) GRS (P/U) Accuracy KHAT 

OL3    100.0/ 80.6 74.1/ 100.0 100.0/ 88.9 87.9  0.78    

OL4    100.0/ 98.3 100.0/ 92.4 14.3/ 100.0 95.3  0.91 

 

 

 

 
Table 5. Maplet regression coefficients mean standard error (SE), and root mean square error  
(RMSE) comparing OL4 (n = 30) classification results across the OL3 Toimi Drumlin ecoregion.   
Note the consistently better results for coniferous versus deciduous forest. 
 
Resolution Cover Type  n r2 SE (ha) RMSE (ha) 

1x1 km Deciduous  30 0.34 15.7  28.6 

2x2 km Deciduous  30 0.48 58.4  100.3 

3x3 km Deciduous  30 0.44 139.4  214.3 

4x4 km Deciduous  30 0.45 263.6  373.7 

5x5 km Deciduous  30 0.48 411.8  560.5 

 

1x1 km Coniferous  30 0.44 10.9  26.7 

2x2 km Coniferous  30 0.61 38.2  86.8 

3x3 km Coniferous  30 0.60 85.3  181.9 

4x4 km Coniferous  30 0.63 145.9  306.5 

5x5 km Coniferous  30 0.65 220.1  461.8 
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Table 6. Accuracy metrics including Kappa coefficient (KHAT) lower limit (LL) and upper limit (UL), over 
accuracy (ACC), and cover type percentages for water (WAT), urban (URB), barren (BAR), deciduous (DEC), 
coniferous (CON), and grasslands (GRS) across maplets (n=30) within OL4 for five maplet resolutions.  
 

Maplet   LL  UL   ACC WAT  URB BAR DEC CON GRS 
Size KHAT KHAT  KHAT  (%) (%) (%) (%) (%) (%) (%) 

5x5 km 0.40 0.39 0.42 67.9 1.2 0.2 0.0 54.7 40.4 3.5 

4x4 km 0.40 0.38 0.42 68.3 1.1 0.1 0.0 54.0 41.7 3.1 

3x3 km 0.41 0.38 0.44 68.7 0.9 0.1 0.0 53.9 42.4 2.7 

2x2 km 0.42 0.38 0.46 69.8 0.4 0.0 0.0 52.8 44.2 2.6 

1x1 km 0.44 0.36 0.51 70.2 0.0 0.0 0.0 55.6 42.1 2.3 

 

 
Table 7. Mean cover type percentages generated from 20 iterations each of randomly  
selected maplets from the original 30 maplets across the OL4 Toimi Drumlin ecoregion to assess the impact on 
maplet numbers on classification results.  The range of 15 to 30 maplets had little impact on  
classification outcomes. 
 

  30 Maplets 25 Maplets 20 Maplets 15 Maplets 

WAT (%) 2.03 1.99 2.09 2.07 

URB (%) 0.94 0.95 0.93 0.89 

BAR (%) 0.02 0.02 0.02 0.02 

DEC (%) 51.72 51.67 51.42 51.82 

CON (%) 40.73 40.68 40.92 41.01 

GRS (%) 4.56 4.69 4.62 4.20 
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Table 8. Accuracy metrics for multiple reference pixel purity (PP) levels for OL4 classification  
across 30 maplet sites.  Note that only 7.4% of pixels were 100% homogeneous for one cover type. 
The majority class represents the standard “majority call” commonly used to label moderate-to-coarse 
resolution pixels. 
 
MATRIX  

Class KHAT 
LL 

KHAT 
UL 

KHAT 
Accuracy 

(%) 
Total  

Area (%) 
Majority 0.40 0.39 0.42 67.9 100.0 

PP50 0.42 0.40 0.43 69.1 94.8 

PP60 0.49 0.47 0.51 72.9 75.4 

PP70 0.57 0.55 0.58 77.3 56.0 

PP80 0.64 0.62 0.66 81.6 38.3 

PP90 0.72 0.69 0.74 85.7 21.6 

PP100 0.79 0.75 0.83 89.6 7.4 
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Figure 1. The OL4 ecoregions (n=30) within the OL3 Northern Lakes and Forests  
Ecoregion of the GLB. 
 
 

 
 
Figure 2. The Toimi Drumlin OL4 ecoregion (50p) and the distribution   
of randomly selected 5 x 5 km maplets (n=30). 
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Figure 3. Overall accuracy box and whisker plots + 1.0  standard deviations about the mean, median, minimum, 
and maximum value outliers for OL3 and OL4 classifications (n=30). 
 
 

 
 
Figure 4. Accuracy differentials across thirty OL4 ecoregions = (OL4 accuracy) - (OL3 accuracy).  Dash lines: 
±5.0% difference levels. 
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Figure 5. Omission (a) and Commission (b) error boxes and whisker plots bracketing + 1.0 standard deviation 
about the mean, and minimum and maximum value outliers for two classification scales (OL3 and OL4) across 
the OL4 (n=30). 
 
 
 
 

 
 
 
Figure 6. A comparison classification scale results for OL3 (a) and OL4 (b) classifications across the OL4 (dark 
green – coniferous forest and light green – deciduous forest). 
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Figure 7. The correspondence between deciduous and coniferous for reference maplets data (n = 30) across the 
OL4.  The line indicates a 1:1 correspondence. 
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Figure 8.  The regression coefficient results for OL3 (a, b) and OL4 (c, d) scale classifications for deciduous and 
coniferous forests across the OL4. 
 
 
 
 
 
 
 
 
 
 
 
 


