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Key topic:  7 - Air quality effects on human health, ecosystems and economy 
 
The results from epidemiology time series models that relate air quality to human 
health are often used in determining the need for emission controls in the United 
States.  These epidemiology models, however, can be sensitive to collinearity 
among co-variates, potentially magnifying biases in the parameter estimates 
caused by exposure misclassification error or other deficiencies in the time series 
models by orders of magnitude.  As a result, we examined collinearity among sev-
eral covariates typically used in air quality epidemiology time series studies 
(ozone, fine particulate matter and its species, and temperature).  In addition, we 
examined the ability of a bias-correction technique applied to estimates simulated 
by the Community Multiscale Air Quality (CMAQ) model to “fill-in” for the spa-
tial and temporal limitations of observations for purposes of reducing exposure 
misclassification.  Specifically, we evaluated whether the bias-adjusted CMAQ es-
timates could replicate the correlation among variables seen in the observations.  
The results presented are for a domain east of the Rocky Mountains for the entire 
2006 year and indicate that collinearity among covariates varies across space.  
 

2.04.1  Introduction 
 
The United States Environmental Protection Agency (USEPA) relies predomi-
nantly on epidemiology time series studies to estimate future health impacts of 
emission controls [1].  High correlation among explanatory variables used in these 
studies can result in inaccurate results when applied in health impact assessments.  
In addition, the assignment of the wrong exposure value differentially (misclassi-
fication) can mask the true health effect of a pollutant [2].  To address these two 
issues, this study examines (1) the collinearity that exists among ozone, particulate 
matter and its species, and temperature; and (2) whether we can fully represent 
this natural relationship among covariates in the deterministic, 3-dimensional 
Community Multiscale Air Quality (CMAQ) model.  This latter objective is par-
ticularly relevant due to the paucity of measurements for some pollutants (e.g., 
speciated fine particulate matter) that are typically measured once- in-3-days at 
relatively few locations in the U.S.   
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Figure 2.04.1 shows an example of a typical time series model used in an epide-
miology study and the collinearity between ozone and temperature for 10 sum-
mers (1997-2006) in New York State.  Collinearity can also exist between ozone 
and fine particulate matter.  Multicollinearity among covariates can magnify the 
effect of bias introduced by autocorrelation, misclassification error or other model 
deficiencies by orders of magnitude.  Thus, while it doesn’t necessarily reduce the 
predictive power or reliability of a model when all collinear covariates are includ-
ed, it can affect calculations regarding individual predictors, such as when the 
main effects coefficients are used to assess health impacts.  If the covariates (and 
relationship among them) in the new dataset differ from the data that was fitted, it 
can introduce large errors in predictions [3].   
 

Misclassification (inaccurately assigning exposure across space or time differen-
tially) can also introduce errors in epidemiology time series studies.  Air quality 
models, such as CMAQ, can help fill in missing measurement data but contains 
some bias due to uncertain emissions and meteorology input data, as well as lim-
ited knowledge of the physical and chemical processes governing the formation of 
ambient pollutants.  Hence, CMAQ model estimates were combined with observa-
tions (Garcia et al., 2010) to produce bias-adjusted pollutant estimates with the ob-
jective of providing more spatially and temporally complete ambient air pollutant 
data for use in epidemiology studies.  As part of this study, we examined the abil-
ity of the model alone, and the bias-adjusted model to reproduce the relationships 
that exist in the observed covariates used in a standard epidemiology study.   
 
The objectives of this study were to (1) examine whether the model (CMAQ and 
“adjusted” CMAQ) are capturing the temporal variability seen in observations, (2) 
examine whether the relationships among pollutants and temperature estimated by 
CMAQ and adjusted CMAQ reflect those seen in observations and (3) understand 
what pollutants are correlated with each other and with temperature. 

Figure 2.04.1  Example of variables used in an epidemiology Poisson re-
gression model.  Scatter plot shows relationship between ozone and tem-
perature (R2 = .58). 
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Approach 
 
Maximum daily 8-hr averaged ozone (O3), and 24-hr averaged fine particulate 

matter (PM2.5), sulfate (SO4), nitrate (NO3), ammonium (NH4), elemental carbon 
(EC) and organic carbon (OC) were calculated from measurements obtained from 
the USEPA’s Air Quality System database  
(http://www.epa.gov/oar/data/aqsdb.html) for 2006.  Measurements of O3 and 
PM2.5 were available for each day, whereas, measurements for PM2.5 species were 
available for 1-in-3 days only.  Daily averages were also calculated from the hour-
ly concentrations simulated by the CMAQ model v.4.5 at a 12 km horizontal grid 
resolution.  The meteorology and emissions inputs for this simulation were from 
the Fifth-Generation NCAR / Penn State Mesoscale Model (MM5) and EPA’s 
2001 National Emissions Inventory, respectively.  The 12-km simulation encom-
passed most of the Eastern U.S. and was nested within a 36 km x 36 km horizontal 
grid simulation covering the contiguous U.S. using the same model configuration 
as the 12-km nested simulation.  Finally, the observations and modeled estimates 
were combined using a multiplicative adjusted bias approach described in [4] to 
produce daily averaged estimates as described above.  To summarize the process, 
the ratio of observed to modeled values was calculated for each grid cell contain-
ing an observation.  These ratios were interpolated using a kriging technique and 
then applied to the CMAQ estimates to produce a bias-adjusted value for each 
CMAQ grid cell.  Pearson correlation coefficient (R) was calculated to measure 
the temporal dependencies.   
 
Discussion and Results 
 
Bias-adjusted CMAQ estimates captured the temporal variability seen in observa-
tions for most pollutants (objective 1).  Challenges, however, still remain in esti-
mating EC because of the high spatial and temporal heterogeneity of this pollu-
tant.  In addition, spatial differences in capturing the observed temporal variability 
were seen for OC along the Southern coastline and NO3 along the Western edge of 
the domain and in the South.  With regard to collinearity among variables (objec-
tives 2 and 3), ozone is positively correlated with PM2.5, SO4 and temperature at 
most sites, reflecting the dominant SO4 component of PM2.5 mass and its common 
source with secondarily formed ozone from photolysis.  Strong spatial patterns ex-
isted for several pollutants, with very strong spatial correlations between ozone 
and nitrate and ammonium in the Southeastern U.S. (not shown).  As expected, 
PM2.5 is highly correlated with most of its constituents (Figure 2.04.2), but surpris-
ingly, not as correlated with NO3, perhaps due to seasonal differences (e.g., high 
correlation in winter, but relatively low correlation in summer for the domain 
studied).  The correlation between PM2.5, and EC and OC is strongest in the upper 
Northwest portion of the domain, most likely due to wood burning.  Correlation 
between PM2.5 and NH4 is dominant in the Eastern U.S.       
 
  



4  

 
 

 

 
 
 

 
 
 
 
 
 

 
Disclaimer:  The United States Environmental Protection Agency through its Office of 
Research and Development funded and collaborated in the research described here under 
EP-D-10-078 to Porter-Gego. It has been subjected to Agency review and approved for 
publication. 
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(a) 

Figure 2.04.2: Collinearity between PM2.5, and ozone and SO4 (panel a), EC and OC (panel b), and NO3 and NH4 (panel c).  Second 
row of each panel shows ability of bias-adjusted CMAQ to replicate the collinearity among observed pollutant concentrations shown in 
first row.  Each circle represents Pearson’s correlation (R) between the indicated pollutants across 365 days at each monitoring location. 
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