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Abstract

An ensemble, or sample, of competing numerical models has been used in many
applications to represent different predictions of the true state of a physical system.
Ensembles of computer models (e.g. weather, climate, air quality, ocean models, etc.)
are often used to forecast future states of a physical system and to quantify uncertainty
in the numerical model predictions. Various statistical methods have been proposed to
improve ensemble predictions from deterministic computer simulations based on actual
measurements of the physical systems (e.g. data assimilation, Bayesian model
averaging). Ensemble data mining methods have also been developed for a wide
variety of applications to combine different versions of a statistical model (e.g. time
series models, simple regression models, neural networks, etc.) to improve the
predictive model performance. We present different statistical criteria that have been
proposed to select or weight ensemble members for both numerical model-based and
statistical model-based ensembles.
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Ensembles of Computer Models

Ensemble forecasting has been used for operational numerical weather prediction in the
US and Europe since the early 1990s. An ensemble of weather or climate forecasts is
used to characterize the two main sources of uncertainty in computer models of
physical systems: (1) initial conditions and forcing variables (i.e. parametric uncertainty);
and (2) imperfections in the formulation of the physical model, such as those due
mathematical approximations or lack of understanding about the fundamental
mechanisms underlying the physical process (i.e. structural uncertainty) (Pinder et al.
2009). Ensemble models have also been used for improving prediction of and
quantifying uncertainty in models of other physical systems such as air quality modeling,
ocean modeling, land surface modeling and hydrological modeling. Ensemble models
may be created by using simulations from different physical models that have been
developed independently by different research organizations. Alternatively, ensemble
models may be propagated by using different formulations of a single modeling system.
In this case, multiple model simulations are generated by perturbing initial conditions
(e.g. based on breeding or singular vectors), using different forcing fields (e.g. different
boundary conditions or other uncertain model inputs), or using competing (but
scientifically defensible) parameterizations of a single process within the system. The
advantage of using ensemble models is that the ensemble mean prediction is typically
more accurate than the predictions from the individual ensemble members. More



importantly, the spread of the ensemble provides an estimate of the reliability of the
ensemble prediction which can vary over time and space (Kalnay 2003).

In the geophysical sciences the modeled state vector that describes the state of the
atmosphere or other physical system is usually of very high dimension (e.g. 10°-10°)
and integrating the model forward in time can require a great deal of time and
computational resources. As a result, only a relatively small number of simulations of
computer models are often feasible (e.g. 10 -100). Thus ensemble members must be
carefully selected and/or weighted in order to adequately characterize uncertainty in the
model output. Many statistical approaches have been developed to address these
problems by combining numerical model output with observations. In the field of climate
modeling, it is often unclear how to utilize observational data that have very different
spatial and temporal coverage from the model output. In this case, hierarchical
statistical models have been applied to combine climate model output from a limited
number of model runs to better characterize the distribution of the state including cross-
dependencies between different state variables (e.g. Sain et al. 2011).

Combining Model Output and Observations

Statistical methods have been used to enhance ensemble models by combining model
and observed information to create more accurate initial conditions for a forecast or
prediction cycle. This process is a type of state space estimation problem and is
referred to as data assimilation. A wide variety of ensemble data assimilation methods
have been developed in the last twenty years. In particular, the ensemble Kalman Filter
(EnKF, Eversen 2003) uses an optimal weight matrix (i.e. the Kalman gain matrix) to
update the forecast or “first guess” of the state vector based on the difference between
the observed values and the first guess. The weight matrix is a function of the forecast
error covariance and the observation error covariance. With careful treatment of the
sample forecast covariance structure, the EnKF has been successfully applied even
when the ensemble size is much smaller than the dimension of the state vector
(Houtekamer and Mitchell 2001; Hamill et al. 2001; Bickel and Levina 2008). A
limitation of the EnKF is that the underlying Kalman filtering algorithm is based on the
assumption that the system being modeled is linear with Gaussian errors. The particle
filter improves on the Monte Carlo approach applied in the EnKF by utilizing an
importance sampling framework. The particle filter is applicable to highly non-Gaussian
probability distributions, but thus far has only been implemented in relatively low
dimensional numerical models (see Snyder et al. 2008 for further discussion on the use
of particle filters for geophysical systems). Bocquet et al. (2010) present a review of
several advanced non-Gaussian data assimilation methods, including the particle filter.

Another approach for combining an ensemble of model predictions and observed data
is to post-process the ensemble of model runs based on past observations and past
simulations. Bayesian model averaging (BMA) can be used to estimate a set of weights
for the ensemble members based on how closely they match observations over a given
training period (Raftery et al. 2005). The BMA predictive probability density functions
are more accurate and better calibrated than the original ensemble and the estimated
weights are used to evaluate the usefulness of individual ensemble members. Recent



extensions of the BMA approach include using non-Gaussian component distributions
(Sloughter et al. 2007), incorporating spatially correlated error fields (Berrocal, Raftery,
and Tilmann 2007), and applying Markov Chain Monte Carlo (MCMC) estimation
techniques (Vrugt, Kiks, and Clark 2008).

Ensemble Data Mining Methods
Ensemble data mining methods are machine learning methods that utilize information

from multiple statistical models to improve the predictive model performance compared
to the performance of any one model (Oza 2006). Since the mid-1990s, much has been
published in machine learning literature on how to train a set of base models and then
combine or weight predictions from competing models. Two common ensemble
methods for classification machine learning problems are Bagging (Breiman 1994) and
Boosting (Freund and Schapire 1996). The key feature of these methods is that they
promote diversity across ensemble members by training each base model with a
different subset of input data or, in the case of Boosting, with different sets of weights
applied to the input data. In Bagging, the ensemble member predictions are combined
using simple majority or plurality voting techniques. Bagged ensembles have been
shown to improve upon their base model predictions if differences in the training sets
create significant differences in the models (Breiman 1994). In Boosting, the base
models may be combined by simple averaging or weighted averaging based on the
probability values for each base model produced by the algorithm. Different weighting
methods have been proposed, e.g. Mixtures of Experts (Jordan and Jacobs 1994:
Titsias and Likas 2002), and Principle Component Regression (Merz and Pazzani
1999). Boosting algorithms have also performed well in practice, however performance
has been shown to degrade when the training data is noisy (Dietterich 2000).
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