An Application of Passive Samplers to Understand Atmospheric Mercury Concentration and Dry Deposition Spatial Distributions

Jiaoyan Huang\(^1\), Hyun-Deok Choi\(^1, a\), Matthew S. Landis\(^2\), Thomas M. Holsen\(^1, *\)

\(^1\) Clarkson University, Civil and Environmental Engineering Department, 8 Clarkson Ave.
Potsdam, NY, USA, 13699-5710

\(^2\) U.S. EPA, Office of Research and Development, Research Triangle Park, North Carolina, USA, 27711

\(^*\) Corresponding author: Thomas M. Holsen
Email: tholsen@clarkson.edu; Phone: 315-268-3851; Fax: 315-268-7985.

\(^a\) Now with the National Institute of Aerospace
Abstract

Two modified passive samplers were evaluated at multiple field locations. The sampling rate (SR) of the modified polyurethane foam (PUF)-disk passive sampler for total gaseous mercury (TGM) using gold-coated quartz fiber filters (GeQFF) and gaseous oxidized mercury (GOM) using ion-exchange membranes (IEM) were 6.4 ± 1.4 and 15.3 ± 0.3 m3 day$^{-1}$, respectively. The relative percent difference between TGM and GOM concentrations measured by a Tekran system and the passive samplers averaged 19 ± 14 and 13 ± 12% and ranged between 4-44 and 1.5-41%, respectively. The GeQFF and IEM substrates were also evaluated as collection media for surrogate surface dry deposition measurements. Mercury (Hg) concentration and dry deposition gradients were observed using these samplers at an urban/industrial site and compared to a rural/remote site. The Hg dry deposition rates measured by the surrogate surfaces were always higher than when calculated by a widely used inferential modeling method (1.3 – 50 fold). This Hg dry deposition measured at urban and suburban sites were comparable to those calculated from model. However, they were much different at a rural site, probably due to the low concentration. Both methods are relatively low cost and will aid in understanding spatial distributions of Hg ambient air concentrations and dry deposition.

Keyword: Mercury, air concentration, dry deposition, passive sampler, surrogate surface
Introduction

Mercury (Hg) is classified as a hazardous air pollutant by the United States EPA. In the atmosphere, it exists as three important forms: gaseous elemental Hg (GEM), gaseous oxidized Hg (GOM), and particulate-bound Hg (PBM) (Schroeder and Munthe, 1998). Concentrations of all three forms are influenced by nearby and distant sources, atmospheric chemistry, and deposition. Deposited Hg is a major input to ecosystems, and generally dry and wet deposition are thought to contribute equally in locations not impacted by significant anthropogenic sources.

Hg wet deposition has been widely investigated in part due to measurements made by the United States Mercury Deposition Network (MDN). Dry deposition is less well understood, primarily due to the difficulty in making these measurements.

Micrometeorological techniques are one method to measure dry deposition to natural surfaces. However, this approach is typically deployed during relatively short intensive studies since it requires strict siting criteria, expensive instrumentation, careful oversight, and works only under limited meteorological conditions. Another approach is using surrogate surfaces to measure Hg dry deposition. Most surrogate surface studies use one of two common aerodynamic designs, a knife-edge (KSS) and a frisbee-shape (FSS). The surrogate surfaces used for Hg dry deposition measurements are generally designed to capture gas and particle phase deposition and often have low surface resistance; therefore, it is a challenge to extrapolate the measured data using these surfaces to natural surfaces. A multiple-resistance model (MRM) has been developed to predict Hg dry deposition rates and compared with measured Hg dry deposition rates obtained with a surrogate surface.
Ambient Hg concentrations of GEM, GOM, and PBM have been routinely monitored over the last decade using manual and automated sampling systems consisting of selective adsorption surfaces followed by thermal decomposition and analysis by cold vapor atomic fluorescence spectroscopy (CVAFS)\(^{20-23}\). However, these systems are relatively expensive, requires maintenance by well-trained operators, supplies, and substantial sampling site infrastructure. Therefore, passive sampler will play an important role in remote, intensive spatial, and other focused studies.

Passive air samplers (PAS) for Hg are a low-cost and relatively simple method to measure atmospheric concentrations and could be widely used to explore long-term Hg spatial distributions\(^ {24-27}\). Previous studies have also used bio-makers, such as lichen, tree core, and moss to understand atmospheric Hg changes over longer time periods\(^ {28-30}\). Although PASs have been widely used to measure concentrations of SO\(_2\), NO\(_2\), NH\(_4\), and semi-volatile organics in the atmosphere\(^ {31}\), Hg has rarely been measured using this technology. Recently, Lyman et al.\(^ {25}\) made GOM concentration measurements using a passive sampler containing a cation-exchange membrane, and the sampling rate (SR) was found to be weakly correlated with wind speed.

In this study, modified PASs containing gold-coated quartz fiber filters (GcQFF) and ion exchange membranes (IEM) were evaluated for their efficiency in measuring total gaseous Hg (TGM) and GOM concentrations at multiple sites in 2009. In addition, a KSS with various collection media was deployed to directly measure Hg dry deposition. An inferential MRM was used to estimate Hg dry deposition rates for comparison to the measured values. These devices have been previously evaluated in a wind tunnel and using computational fluid dynamics (CFD)\(^ {18,32}\).
Methods

Sampling sites

Hg concentrations were measured at three sites in northeast United States (Table 1). The first was a United States EPA designated non-attainment site for PM$_{2.5}$ located in an urban/industrial location near Cleveland, Ohio (G.T. Craig (GTC), Ohio). The site is located north of the Ohio industrial valley, 3 km south of downtown Cleveland, adjacent to a large integrated iron and steel mill, and near the intersection of I-90 and I-77 (Figure 1). During the same period, the site was used as an intensive air quality monitoring site by the United States EPA. Two Tekran speciation systems were run asynchronously to obtain continuous hourly average GEM, GOM, and PBM concentrations. At two other sites located in New York, single Tekran speciation systems measured 2 hour integrated Hg concentrations. The suburban site (Rochester (ROC), New York) was located in the central New York, close to the intersection of I-490 and I-590, and 5-30 km southeast of downtown and most industries. The rural site (Huntington Forest (HF), New York) was located in the forest of Adirondacks of New York State Park. For this site, there were no significant point sources within a radius of 100 km; however, the site may be influenced by local wood combustion during winter33,34 and forest fires from Quebec35. Meteorological data, including wind speed at 10 m, temperature, solar radiation, and relative humidity were also available at HF from United States EPA Clean Air Status and Trends Network (CASTNET (site HWF 187)). For sites without detailed meteorological data, friction velocity was calculated using Eta Data Assimilation System (EDAS) 40-km from National Oceanic and Atmospheric Administration (NOAA).
Automated Hg Monitoring

A Tekran 1130, 1135, and 2537 ambient speciation system (Tekran Instruments Corporation, Knoxville, TN) was used to measure GEM, GOM, and fine PBM (PBM_{2.5}). The system was operated at a flow rate of 10 L min^{-1}. Sampling intervals were two-hours in suburban and rural sites and one-hour at the urban site followed, in all cases, by a one-hour thermal desorption period. Additional details are given by Landis et al. and Choi et al. The uncertainties of GEM and GOM concentrations measured by the Tekran system are approximately 10 and 40%, respectively.

Passive Hg Monitoring

The Tisch PAS (TE-200-PAS, Tisch Environmental Inc. Cleves, Ohio) containing a polyurethane foam (PUF) disk has been used extensively and successfully for ambient air measurements of semi-volatile compounds. In this study, the PUF disk was replaced with an acrylic plate (the same size as the PUF disk, 14 cm x 0.9 cm). Four filters were placed on the top and bottom of the plate in filter holders to ensure filters and the surface of the plate were at the same level. GcQFF and IEM were used to collect TGM and GOM, respectively. A detailed description as well as wind tunnel testing results and computational fluid dynamic simulations are available in May et al. Ideally, the SR of a passive sampler would be independent of external wind speed so that the captured mass could be directly converted to an air concentration. However, most passive samplers allow air to enter the sampler and capture the chemicals by both diffusion and dispersion, making SRs dependent on wind speed. For the commonly used PUF disk sampler, a linear correlation has been found between external wind speed and SR. SR is also dependent on sampler orientation, with the lowest SR found if the PUF-disk sampler was
oriented 10° against the wind. The PAS was deployed at GTC a times ranging from 8 hours to 5 days and at ROC and HF for 7 to 14 days based on the expected concentrations at the different sites (the intent was for the samples to collect significantly higher Hg mass than in the blanks, but not to exceed their maximum capacity) and site access. At GTC, the filters were used to examine passivation and to determine suitable exposure times for these surfaces. In general, three or four IEMs and two GcQFFs were deployed for each sampling period. There were 27 (5 periods), 29 (9 periods), and 16 IEM (4 periods) samples collected using passive samplers at HF, ROC, and GTC, respectively. Twenty-four GcQFFs were deployed at GTC during this intensive campaign.

Surrogate Surface Direct Hg Dry Deposition Measurements

Four circular KSSs holding GcQFF (47 mm), IEM (47 mm, Pall Life Science, I.C.E. 450), deionized (DI) water, and 0.5% (v/v) acidified BrCl solution (BrCl) were used to measure Hg dry deposition fluxes manually at GTC. At the ROC and HF sites, IEMs on a KSS were deployed on an automated Hg dry deposition sampler which is exactly the same dimension as the manual one but installed on a MIC-B with a precipitation sensor. During precipitation, it will automatically cover the KSS; otherwise, the KSS would be exposed the weather. Detailed information about these surrogate surfaces including wind tunnel testing results and computational fluid dynamic simulations are available in Huang et al. Field blanks were collected during every sample deployment, and all samples were blank corrected using their corresponding blanks.

A Hummer VI-A sputter coater (Anatech Ltd., Union City, CA) was used to coat gold on QFFs at 215 Å min⁻¹ rate for two minutes. Detailed analytical methods for
GcQFFs preparation and analysis can be found in Huang et al. \(^{18}\), Lai et al. \(^{14}\), and is summarized in supporting information (SI). The detailed QA/QC procedures are also included in the SI.

Hg Dry Deposition Estimation Using a Multiple-Resistance Model (MRM)

For comparison to the measured values dry deposition was estimated using models described in Zhang et al. \(^{39}\) for particles and Zhang et al. \(^{19}\) for gaseous forms, as described in Zhang et al. \(^{40}\). The land usage category (LUC) for GTC and ROC were urban, and for HF was mixed wood forest.

Source of Modeling Uncertainty

Zhang et al. \(^{19,40-42}\) summarized the uncertainties of the inferential dry deposition model. The uncertainties for aerodynamic and boundary layer resistances were relatively small (up to a 30% error during strongly stable conditions) \(^19\). Although Zhang et al. \(^{19,41,42}\) determined the air-surface exchange related parameters for O\(_3\) and SO\(_2\) for different land usage categories, those parameters for Hg forms were calculated using their corresponding chemical and physical properties \(^{41}\), which are not well understood. The calculated Hg dry deposition velocity was corrected for land usage based on Zhang et al. \(^{19,39}\); however, there are only general trends for these land usage categories and are not easy to determine for specific sites.

The uncertainties associated with using the passive sampler and surrogate surface for Hg concentrations and dry deposition measurements has been investigated by Lai et al. \(^{14}\), Huang et al. \(^{18}\), and May et al. \(^{32}\). For passive samples, the uncertainties arise from the sampler orientation (which influence the sampling rate, from -40 to 40%), the influence of wind speed on sampling rate, and the sampling rate conversion from one species to
another (~20%) \(^{32}\). For surrogate surfaces, the uncertainties are caused by the sampler orientation (30-50%), non-linear wind speed effects, low surface resistances, passivation, and species competition \(^{14,18}\). Both of these field measurements also include analytical uncertainties, which are low (<10%) based on QA/QC results.

Results and Discussion

Sampling Rate of Passive Air Samplers

The SR of a passive sampler (m\(^3\) day\(^{-1}\)) is the ambient air volume that contains the mass of the pollutant taken up by the sorbent each day. Mathematically, it is equal to the mass transfer coefficient multiplied by the sorbent collection area. Since the mass transfer coefficient is difficult to measure directly, the SR was calculated from the uptake rate divided by ambient air concentration measured by the Tekran speciation system. The measured SR for TGM was 6.6 ± 1.4 m\(^3\) day\(^{-1}\)\((r^2 = 0.70)\) at GTC (Figure 2) if two outliers are not included. One of the outliers was a long exposure time sample (148 hrs), and the other one was exposed during a high pollutant episode (average TGM was 3.4 ng m\(^{-3}\) and up to 6 ng m\(^{-3}\)). For these two samples, the Hg mass collected was still below the maximum capacity (~15 ng) measured in the lab; however, the gold-surface may have been passivated by other species present in the air. The Hg mass of the field blanks (0.17 ± 0.08 ng filter\(^{-1}\); mean ± std dev; n = 16) were insignificant (\(\alpha = 0.05\)) relative to the amount captured in ambient samples; however, all measurements were field-blank corrected. Note that the regression line was forced through the origin since all measurements were field blank corrected.

In a previous wind tunnel study using the same modified PUF sampler, the measured TGM SR was approximately 10 m\(^3\) day\(^{-1}\) at 3 m s\(^{-1}\) external wind speed when
the sampler was oriented parallel to the flow. Previous studies reported a linear correlation between wind speed and SR. In this study, the average wind speed was 2.0 m s\(^{-1}\) at GTC suggesting the SR of TGM should be less than 10 m\(^3\) day\(^{-1}\) consistent with wind tunnel measurements. In addition, dew was usually observed in the early morning at the sampling site and is hypothesized to create another resistance layer for the GcQFFs and reduce the SR of TGM. The gold surface might also be passivated by the chemical constituents in dew, similar to the passivation of gold traps by other chemicals in KCl-coated denuders. Gustin et al. also reported the gradual passivation of gold surfaces used for Hg measurements in passive samplers that limited the ability to reuse the gold coated surface.

Overall, the measured SR of GOM was 15.3 ± 0.3 m\(^3\) day\(^{-1}\) (r\(^2\) = 0.99) (Figure 2, bottom) at all three sites. Based on a diffusivity conversion, the SR of GOM should be lower than that of TGM because of its higher molecular weight. However, for GOM, it is hypothesized that dew on the sampling media enhances the mass transfer rate between the atmosphere and collection surface because of GOM’s high water solubility. Another potential reason for the SR of GOM to be too low is the underestimation of GOM concentrations using KCl-coated denuder.

The GOM SR measured in this study was more dependent on the external wind speed and sampler orientation than the sampler designed by Lyman et al. Unlike the Lyman et al. sampler which only allows a small amount of air to reach to the collection surface primarily via diffusion, the passive sampler used in this study was modified from a commercial sampler which allows more air flow to enter the sampler. For this sampler,
May et al. \cite{32} reported an increasing SR when the sampler was facing or against the wind which resulted in increased turbulence inside the samplers.

In addition to greater dependence on wind speed, a larger SR would allow for shorter sampling times to reach method detection limits (MDL) if blank levels are similar. Based on the calculated sampling rates of TGM/GOM and the blank Hg mass for this sampler, the MDLs (three times standard deviation of blanks) for TGM and GOM for two-week exposure times were 20 pg m$^{-3}$ and 0.3 pg m$^{-3}$, respectively. This MDL is approximately ten times lower than that of Lyman’s design which has an IEM that is 8.5 times larger than used in this study (107 vs. 12.6 cm2) and a higher MDL (2 pg m$^{-3}$).

Relative percent differences (RPD) between Hg concentrations measured from Tekran systems and passive samplers were calculated as:

$$\text{RPD} = \frac{|P - T|}{T}$$ \hspace{1cm} \text{Eq-3}

where P and T are the Hg concentrations measured by passive samplers and Tekran systems, respectively. The RPD for TGM and GOM were 4.0 – 44% and 1.5 – 41%, respectively (Figure 3). Similar with what was found in a previous study; higher RPDs were observed at lower ambient concentrations. In general, the RPD is lower in this study than in the previous study using a different sampler design \cite{25}. However, the RPD measured by Lyman et al. \cite{25} is around same level (40%) at GOM concentrations above 20 pg m$^{-3}$.

Ambient TGM concentrations measured using the PAS at GTC were 1.9 ± 0.4 ng m$^{-3}$, which are in the range of the TGM concentration measured in an urban (Detroit) and a rural Michigan site (Dexter) recently by Liu et al. \cite{45}. GOM concentrations measured by the passive samplers at HF, ROC, and GTC were 1.9 ± 0.5 (mean ± standard deviation),
4.2 ± 2.0, and 29.5 ± 4.9 pg m$^{-3}$, respectively. Since these measurements were taken at different periods during the year, a direct spatial comparison is not possible (Table 1). However, the concentration gradient for GOM from the industrial area to rural areas observed is consistent with expectations.

Mercury Dry Deposition Fluxes Measured at Different Sites

During this study, different surrogate surfaces were deployed to quantify Hg dry deposition; GcQFFs, IEM, DI water, and BrCl were used to collect total Hg, GOM+PBM, GOM+PBM, and partial GEM+GOM+PBM, respectively. Total Hg dry deposition fluxes to GcQFFs at GTC were 110 ± 50 (n = 47) ng m$^{-2}$ h$^{-1}$. Lai et al. reported that the Hg dry deposition measured by GcQFFs on a KSS were ~80 ng m$^{-2}$ h$^{-1}$ at a rural site in summer. While on the same order, the higher ambient dry deposition to GcQFF at GTC is due to higher Hg concentrations in the urban/industrial area.

Hg dry deposition to the IEM at GTC, ROC, and HF were 1.8 ± 0.5 (n = 12), 0.5 ± 0.3 (n = 9), and 0.1 ± 0.1 (n = 12) ng m$^{-2}$ h$^{-1}$, respectively. These values are lower than the Hg dry deposition to an IEM measured at rural (0.5-1.2 ng m$^{-2}$ h$^{-1}$) and suburban (0.1-4.5 ng m$^{-2}$ h$^{-1}$) sites in Nevada using downward facing surrogate surfaces. Higher GOM concentrations were observed in the western United States than in the eastern United States and likely cause the higher GOM dry deposition fluxes in Nevada. The values measured at ROC were similar to those measured in Maryland.

The Hg fluxes to DI water and BrCl at GTC were, 1.1 ± 0.8 ng m$^{-2}$ h$^{-1}$ (n = 6), and 4.6 ± 3.9 ng m$^{-2}$ h$^{-1}$ (n = 5), respectively. In rural areas, GEM is expected to be the dominant Hg form of dry deposition to water containing BrCl due to the low GOM concentration and the reaction between GEM and BrCl. In a previous study, the Hg dry
deposition flux to a BrCl solution was usually 10-30% of that to GcQFFs. In urban/industrial areas, where GOM concentrations can be significantly higher (300 pg m$^{-3}$, 30-fold higher than in rural areas), GOM and GEM dry deposition to a BrCl solution may both be important. Although GOM dry deposition is expected to be higher at GTC than in Potsdam due to its higher atmospheric concentration, the SO$_2$ concentration is also much higher at GTC than in Potsdam, NY (BrCl solution was only used in Potsdam for Hg dry deposition measurements; therefore, the data collected at GTC was compared to samples collected in Potsdam, NY). Reduction of Hg$^{2+}$ by S (IV) in aqueous systems is a fast first order reaction and the most important Hg reduction pathway. This reaction would cause Hg reduction followed by GEM volatilization. If these processes are occurring, they would result in a lower net dry deposition for GOM in urban/industrial areas and may explain why Hg dry deposition to DI and BrCl solutions at the urban and rural sites were similar.

Modeled Hg Dry Deposition

Average Hg (GOM+PBM) dry deposition fluxes to IEM (upward facing) at HF, ROC, and GTC were 0.1, 0.5, and 2.0 ng m$^{-2}$ h$^{-1}$, respectively (Table 3). Modeled GOM and PBM dry deposition fluxes (GOM+PBM$_{2.5}$+PBM$_{coarse}$) at these three sites were 0.03, 0.42, and 0.90 ng m$^{-2}$ h$^{-1}$, respectively (Table 4). In a previous study, Hg dry deposition fluxes measured using the surrogate surfaces were usually higher (2- to 5-folds) than the fluxes estimated from MRM (Lyman et al., 2007). The difference between measured and modeled results could be due to sampler orientation, underestimated GOM concentrations by Tekran, and an underestimated coarse PBM flux by the MRM model (as is discussed below). However, the large difference between measured and modeled fluxes at the rural
site is probably due to the relatively low flux (the Hg mass was 0.4-0.7 ng, only slightly
above the MDL (0.3 ng)). This finding suggests that surrogate surfaces should be
deployed with increased sampling times in rural locations so as to reliably measure Hg
dry deposition. Zhang et al. \(^{41}\) concluded that the uncertainties in modeled dry deposition
are approximately a factor of two, similar to the difference in measured and calculated
Hg dry deposition fluxes at the GTC and ROC sites.

In this study, there was a significant difference (Wilcoxon Signed Rank Test, \(\alpha =
0.05\) between Hg dry deposition fluxes measured by upward facing (2.0 ± 0.5 ng m\(^{-3}\) h\(^{-1}\))
and downward facing (1.7 ± 0.6 ng m\(^{-3}\) h\(^{-1}\)) IEMs at GTC. This difference is likely to be
due to PBM. Fine PBM can deposit on the downward facing filter due to diffusion;
however, Brownian motion has a small impact on coarse particles, and, therefore, gravity
and inertia control their movement \(^{48}\). Hence large particles would not be deposited to a
downward facing filter. The dry deposition fluxes of GOM, PBM\(_{2.5}\), and coarse PBM
were calculated from their modeled dry deposition velocity multiplied by measured
atmospheric concentrations. Since only PBM\(_{2.5}\) was measured by the Tekran system,
coarse PBM was estimated to be 30% of the total PBM, based on Landis et al. \(^{49}\), with
mass median diameters of 0.68 and 3.78 µm \(^{50}\). Unlike measured fluxes, this calculation
indicates only a 2% of difference should exist in fluxes between up (total PBM and GOM
deposition) and down (fine PBM and GOM deposition) facing IEMs. This difference
between measurements and simulations is probably due to different size distribution of
PBM in the varying airsheds and suggests that coarse particle Hg deposition was
important at the urban site.
The higher dry deposition on GcQFFs might reflect the high collection efficiency of GEM on the gold surface and would be similar to other surfaces in which uptake is limited by diffusion through the boundary layer (no surface resistance) and would be the upper limit of GEM dry deposition to natural surfaces. However, GOM dry depositions measured by IEM are comparable to these calculated from model since for GOM surface resistance is not very important. The total modeled Hg dry deposition at HF, ROC, and GTC based on their corresponding LUCs were 1.2 ± 1.2, 3.2 ± 1.5, and 4.5 ± 3.1 ng m\(^{-2}\) h\(^{-1}\), respectively (Table 4). Although GOM usually has much higher dry deposition velocity than GEM (average 1.2 cm s\(^{-1}\) vs. average 0.05 cm s\(^{-1}\)), ambient air GEM concentrations are 1000 times higher than GOM. Therefore, GEM is the dominant form in Hg dry deposition in the modeled results.

The relative percentage of GOM dry deposition to total Hg dry deposition decreased from GTC (14 %) to HF (1%). This implies GOM dry deposition is a significant input to ecosystems in urban/industrial areas; however, in rural/remote areas total Hg dry deposition is roughly equal to GEM dry deposition. In general, the dry deposition flux of GEM in areas not impacted by large anthropogenic sources has been neglected in previous studies due to the low deposition velocity\(^{51}\) and the belief that deposited GEM revolatilizes into the atmosphere. However, a significant GEM deposition flux was observed in this study, especially in forested ecosystems; therefore, understanding GEM emissions from leaves, soil, and other surfaces is required to close the Hg mass balance in these ecosystems. A recent study found that GEM dry deposition dominates Hg dry deposition (from ~50 to >90%) even when the re-emission was considered\(^{10}\).
Conclusions

Modified Hg passive air samplers provide a relatively simple and low-cost alternative method to understand Hg dry deposition spatial distributions. The SR of TGM and GOM measured in this study by passive samplers varied from those measured in previous studies in a wind tunnel due to different wind speeds, sampler orientations, surface conditions including dew formation, and Tekran uncertainty. Although the relationship between sampling rate, wind speed, and sampler orientation have been explored in previous studies32, 37, little work has been done on the influence of wet surface conditions on SR. Based on the measurements presented, the passive samplers were able to measure a GOM concentration gradient from GTC to HF, probably due to its rapid removal by deposition and the distance from the emission sources. Surrogate surfaces were also used to measure Hg dry deposition and compared with modeled results at three sites. Based on the results in this study, Hg dry deposition measured by surrogate surfaces was found to be reasonable in urban/industrial areas using three day sampling times. It was found that reliable measurements in rural/background locations required longer sampling periods (more than two weeks). This method should be deployed at multiple sites for long-term measurements to examine the performance of the Hg dry deposition sampler at various locations.

Acknowledgments

This work was funded wholly or in part by the U.S. Environmental Protection Agency Office of Research and Development and the Office of Air Atmospheric Clean Air Markets Division, NADP Hg Monitoring Network (EP08H000270 and EP08H000271), and a NYS Energy Research and Development Authority (NYSERDA)
grant (Charles Driscoll, Syracuse University PI). It has been subjected to Agency review and approved for publication. Mention of trade names or commercial products do not constitute an endorsement or recommendation for use. We gratefully acknowledge the substantial assistance of NY DEC (Dirk Felton and Tom Everts) and SUNY-ESF (Charlotte L. Demers), and Leiming Zhang (Environmental Canada) for the dry deposition model.

Literature Cited

Figure List

Figure 1 – The map showing the locations of the sampling site at Huntington Forest, New York (HF), Rochester, New York (ROC), and Cleveland, Ohio (GTC). The negative number indicates longitude.

Figure 2 – The collection rates of TGM (Top)/GOM (Bottom) by passive samplers and their ambient air concentrations measured from Tekran system in HF (black squares), ROC (open circles), and GTC (grey dots). The error bar indicates a standard deviation with the triplicate measurements using different samplers. The slopes of regression curve represent the sampling rates of the samplers.

Figure 3 – The relative percent difference (RPD) of TGM (black dots) and GOM (open circles) concentrations measured by passive samplers and Tekran systems in HF, ROC, and GTC. RPD = abs [concentrations measured by PAS – concentrations measured by Tekran]/average.
Figure 1 – The map showing the locations of the sampling site at Huntington Forest, New York (HF), Rochester, New York (ROC), and Cleveland, Ohio (GTC). The negative number indicates longitude.
Figure 2 – The collection rates of TGM (Top)/GOM (Bottom) by passive samplers and their ambient air concentrations measured from Tekran system in HF (black squares), ROC (open circles), and GTC (grey dots). The error bar indicates a standard deviation with the triplicate measurements using different samplers. The slopes of regression curve represent the sampling rates of the samplers.
Figure 3 – The relative percent difference (RPD) of TGM (black dots) and GOM (open circles) concentrations measured by passive samplers and Tekran systems in HF, ROC, and GTC. RPD = abs [concentrations measured by PAS – concentrations measured by Tekran]/average.
Table List

Table 1 – Brief description of the three sampling sites.

Table 2 – Blanks of different samples at different sites (ng per filter), mean ± 1σ.

Table 3 – Hg dry deposition fluxes collected by different materials at different sites, mean ± 1σ, using knife edge surrogate surfaces. n is the samples number. Up and down represent the direction the filter is facing.

Table 4 – Modeled Hg dry deposition fluxes, mean ± 1σ, model Hg dry deposition velocities were calculated based on the model in Zhang et al. (2009). For PBM\(_{2.5}\) and coarse PBM, the particle sizes were assumed to be 0.68 and 3.8 µm, respectively. Their concentrations were assumed to be 70 and 30% of total PBM concentrations, respectively.
<table>
<thead>
<tr>
<th>Location</th>
<th>Type</th>
<th>Sampling methods</th>
<th>Location</th>
<th>Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Huntington, NY (rural)</td>
<td>AMNet site<sup>a</sup></td>
<td>Tekran speciation system
Passive air sampler (IEM)
Automatic Hg dry deposition collectors</td>
<td>43º 58’ 23.34” N
74º 13’ 21.76” W
510 meters elevation</td>
<td>Apr, 2009 ~ May, 2009
Nov, 2009 ~ Jan, 2010</td>
</tr>
<tr>
<td>Rochester, NY (suburban)</td>
<td>NY DEC site<sup>b</sup></td>
<td>Tekran speciation system
Passive air sampler (IEM)
Automatic Hg dry deposition collectors</td>
<td>43º 08’ 46.09” N
77º 32’ 53.62” W
136 meters elevation</td>
<td>Jan, 2009 ~ Feb, 2009
June, 2009 ~ Nov, 2009</td>
</tr>
<tr>
<td>Cleveland, OH (urban)</td>
<td>CMAPS, EPA<sup>c</sup></td>
<td>Tekran speciation systems
Passive air sampler (GeQF, QFF, and IEM)
Manual Hg dry deposition collectors</td>
<td>41º 29’ 31.47” N
81º 40’ 42.60” W
206 meters elevation</td>
<td>Aug 5~Aug 15, 2009</td>
</tr>
</tbody>
</table>

^a Atmospheric Mercury Network

^b New York State, Department of Environmental Conservation

^c G.T. Graig Site - Cleveland Multiple Air Pollutant Study
Table 2 – Blanks of different samples at different sites (ng per filter), mean ± 1σ

<table>
<thead>
<tr>
<th></th>
<th>HF</th>
<th>ROC</th>
<th>GTC</th>
</tr>
</thead>
<tbody>
<tr>
<td>GcQFF</td>
<td>0.17 ± 0.08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IEM</td>
<td>0.02 ± 0.01</td>
<td>0.04 ± 0.03</td>
<td>0.03 ± 0.01</td>
</tr>
<tr>
<td>DI water</td>
<td>0.01 ± 0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BrCl</td>
<td>0.05 ± 0.05</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3 – Hg dry deposition fluxes collected by different materials at different sites, mean ± 1σ, using knife edge surrogate surfaces. n is the samples number. Up and down represent the direction the filter is facing.

<table>
<thead>
<tr>
<th>Location</th>
<th>Measured Dry deposition flux (ng m(^{-2}) h(^{-1}))</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEM (up) HF</td>
<td>0.1 ± 0.1 (n = 12)</td>
<td>GOM + PBM (automatic sampler)</td>
</tr>
<tr>
<td>IEM (up) ROC</td>
<td>0.5 ± 0.3 (n = 9)</td>
<td>GOM + PBM (automatic sampler)</td>
</tr>
<tr>
<td>IEM (down)</td>
<td>1.7 ± 0.6 (n = 6)</td>
<td>GOM + PBM(_{2.5}) (manual sampler)</td>
</tr>
<tr>
<td>IEM (up)</td>
<td>2.0 ± 0.5 (n = 6)</td>
<td>GOM + PBM (manual sampler)</td>
</tr>
<tr>
<td>DI water</td>
<td>1.1 ± 0.8 (n = 6)</td>
<td>GOM + PBM (manual sampler)</td>
</tr>
<tr>
<td>BrCl</td>
<td>4.6 ± 3.9 (n = 5)</td>
<td>GEM (partial) + GOM + PBM (manual sampler)</td>
</tr>
<tr>
<td>GcQFF (total)</td>
<td>110 ± 50 (n = 47)</td>
<td>GEM + GOM + PBM (manual sampler)</td>
</tr>
</tbody>
</table>
Table 4 – Modeled Hg dry deposition fluxes, mean ± 1σ, model Hg dry deposition velocities were calculated based on the model in Zhang et al. (2009). For PBM$_{2.5}$ and coarse PBM, the particle sizes were assumed to be 0.68 and 3.8 µm, respectively. Their concentrations were assumed to be 70 and 30% of total PBM concentrations, respectively.

<table>
<thead>
<tr>
<th></th>
<th>Modeled Hg dry deposition flux (ng m$^{-2}$ h$^{-1}$)</th>
<th>Modeled Hg dry deposition velocity (cm s$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>GEM</td>
</tr>
<tr>
<td>HF</td>
<td>1.2 ± 1.2</td>
<td>1.2 ± 1.1</td>
</tr>
<tr>
<td>ROC</td>
<td>3.2 ± 1.5</td>
<td>2.7 ± 1.3</td>
</tr>
<tr>
<td>GTC</td>
<td>4.5 ± 3.1</td>
<td>3.6 ± 3.0</td>
</tr>
</tbody>
</table>
Supporting Information for

An Application of Passive Samplers to Understand Atmospheric Mercury Concentration and Dry Deposition Spatial Distributions

Jiaoyan Huang¹, Hyun-Deok Choi¹a, Matthew S. Landis², Thomas M. Holsen¹,¹

¹ Clarkson University, Civil and Environmental Engineering Department, 8 Clarkson Ave.
 Potsdam, NY, USA, 13699-5710

² U.S. EPA, Office of Research and Development, Research Triangle Park, North Carolina, USA, 27711

¹ Corresponding author: Thomas M. Holsen
 Email: tholsen@clarkson.edu; Phone: 315-268-3851; Fax: 315-268-7985.

a Now with the National Institute of Aerospace
Analytical Methods

Clean GcQFFs were stored in new acid-cleaned plastic Petri dishes sealed with parafilm and Teflon tape in double-zipped bags, stored in a freezer at -10°C. All GcQFFs used in this study were new and coated a week before use. After sampling, GcQFFs were returned to new acid-cleaned Petri dishes and frozen until analysis by thermal desorption CVAFS. Before heating, the Hg level in the chamber was verified to be below 0.5 ng m$^{-3}$. After sampling, all IEMs were immersed into 45 mL DI water, and treated as aqueous samples (EPA method 1631 version E). Hg was quantified using a Tekran 2600 as described by Huang et al. (2011b).

Quality Assurance/Quality Control

The thermal desorption system was calibrated using saturated Hg vapor injections from a Tekran Model 2505 primary calibration standard. The injections were made using a Hamilton Company (Reno, NV) Model 1702RN National Institute of Standards and Technology (NIST) traceable airtight digital syringe. The calibration curve was validated using NIST standard reference materials (SRM) 1633b coal fly ash and diluted NIST1641d (aqueous Hg, HgCl$_2$). The Hg recovery from SRM 1633b and 1641d was 85 ± 12 and 95 ± 6%, respectively. SRM 1641d was also diluted to 0.5, 1, 5, 25, and 100 ppt to calibrate the Tekran 2600 (sample concentrations were 24 ± 31 ppt). Recovery was 99%. The initial and on-going precision and recovery were measured after every twelve samples and ranged from 90 to 110%. Field blanks results were similar with those found in a previous study (Lai et al., 2011).

The relative percent difference of collocated GcQFF samples and the range of standard deviations of collocated IEM samples were 33 ± 30% and 13-32%, respectively (Figure 2). Lai et al. (2011) reported no significant ($\alpha = 0.05$) difference between collocated GcQFF measurements using the same surrogate surface. The Hg mass captured on GcQFFs samples ranged from 1.1-5.2 ng with two ~ 0.75 ng. The average field blank was 0.17 ± 0.08 ng. Therefore, the Hg mass on blanks was 23% of those collected on the lowest two samples. For IEMs, the blanks were less than 10%, 20-30%, and 20-50% of actual samples for the GTC, ROC, and HF sites (Table 2).
