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Abstract

Numerical air quality models are being used for assessing emission control strategies for

improving ambient pollution levels across the globe. This paper applies probabilistic modeling

to evaluate the effectiveness of emission reduction scenarios aimed at lowering ground-level

ozone concentrations. A Bayesian hierarchical model is used to combine air quality model

output and monitoring data in order to characterize the impact of emissions reductions while

accounting for different degrees of uncertainty in the modeled emissions inputs. The proba-

bilistic model predictions are weighted based on population density in order to better quantify

the societal benefits/disbenefits of four hypothetical emission reduction scenarios in which

domain-wide NOx emissions from various sectors are reduced individually and then simul-

taneously. Cross validation analysis shows the statistical model performs well compared to

observed ozone levels. Accounting for the variability and uncertainty in the emissions and at-

mospheric systems being modeled is shown to impact how emission reduction scenarios would

be ranked, compared to standard methodology.
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Introduction

The United States Environmental Protection Agency (US EPA) sets national ambient air quality

standards (NAAQS) for six major pollutants to protect against their harmful effects on human

health (primary standards) and vegetation, ecosystems, visibility, climate, etc. (secondary stan-

dards). Similar regulations exist in Europe and elsewhere. One of the six major pollutants regulated

by the NAAQS is ozone. Human exposure studies have repeatedly shown compelling evidence of

human health effects (e.g. increased medical visits for asthmatics) directly attributable to acute

exposures to ozone (1). In addition, satellite data and model simulations have recently been used

to estimate the annual damage to US crops due to an increase in background surface ozone levels

to be in the hundreds of millions of dollars (2, 3). Such findings have led EPA to propose stricter

ozone standards which would require states to develop and implement emission control strategies

for lowering ambient ozone levels. Since environmental regulations to improve air quality can be

costly, federal, state and local agencies use deterministic air quality models (AQM) to compare the

potential gain in public health and environmental protection from different control strategy options,

prior to implementing them.

Deterministic AQM allow scientists and policy makers to explore “what if” scenarios, such as

the impact of more stringent fuel economy standards for motor vehicles. While there have been

significant advances in the sophistication and accuracy in air quality modeling in past decades,

AQM will always be based on imperfect knowledge of the atmosphere and pollutant emissions.

Furthermore, certain aspects of the modeling system are inherently more uncertain than others.

For example, estimated NOx emissions from power plants are typically based on direct observa-

tions, whereas VOC emissions from anthropogenic sources are known with much less accuracy

(4). Thus, the impact of these data gaps on the decision-making process needs to be transparent

and clearly communicated.

Probabilistic modeling can be used to quantitatively incorporate information on uncertainty

and/or variability in the AQM outputs in order to improve the information leading to a particular

decision. Rather than using a single AQM simulation as the “best estimate” for a specific out-
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come (e.g. bright line test of whether or not an area will attain the national ozone standard under

a given emission control), a probabilistic approach can provide information on the probability of

the event occurring (5). A probabilistic modeling approach can provide insight on whether a par-

ticular managment option is more likely to be successful compared to another and by how much.

Implementing probabilistic methods in a regional or global-scale air quality modeling system is

particularly challenging, because the models are highly complex and require input from multiple

other deterministic models (e.g. meteorological models, global models for boundary conditions,

models of anthropogenic and biogenic emissions).

The first step in developing a probabilistic modeling approach is to identify and quantify the

main sources of uncertainty in model inputs and options. Several studies have used sensitivity

analyses to determine what model parameters and inputs have the largest impact on modeled ozone

concentrations (6–8). These findings and the development of reduced form air quality models

(RFMs) have been used to efficiently generate probabilistic estimates of ozone levels based on

an ensemble of model predictions that represent uncertainty in emissions and meteorology inputs,

model settings, and boundary conditions (4, 9). Evaluation of these probabilistic estimates against

observations demonstrates that even assuming large uncertainty in specific model inputs does not

necessarily account for the differences between modeled and observed ozone levels (9, 10). A

limitation of these approaches is that the uncertainty attributed to inputs is often a simplification or

approximation. In addition, it is not computationally feasible to simulate the ozone values under

all possible, scientifically valid model configurations even when using RFMs.

Here we extend upon previous RFM approaches by using observational data and a Bayesian

statistical model to calibrate probabilistic estimates generated from a reduced form regional air

quality model. The uncertainty in specific emissions inputs and boundary conditions is updated

based on ozone observations. Posterior estimates of ozone concentration are then used to compare

the probability of success of different NOx emission reduction scenarios in attaining the ozone

NAAQS for a case study in the southeast US during the summer of 2005. Results are also weighted

by population density to better quantify the societal benefits of the different emissions reductions
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in terms of human exposure.

Methods

Modeling system and observations

The Community Multiscale Air Quality (CMAQ) model (11) version 4.7.1 (12) was used to sim-

ulate ozone concentrations in the southeastern United States. The model simulation was run

from July 1, 2005 to September 30, 2005 using an Eulerian grid structure with a 12 km by

12km horizontal grid spacing and 14 vertical layers from the surface to 100 hPa. The inputs in-

clude meteorological fields developed using the fifth generation mesoscale model (MM5) version

3.6.3 (13) and anthropogenic pollutant emissions based on the 2001 National Emissions Inven-

tory (NEI; http://www.epa.gov/ttn/chief/emch/index.html\#2001) processed

using the SMOKE processor, version 2.3.2 (http://www.smoke-model.org). To estimate

emissions for 2005, the 2001 NEI was updated with year 2005 specific emissions data for elec-

tric generating units equipped with Continuous Emission Monitoring systems (CEMS), mobile

emissions processed by MOBILE 6 (http://www.epa.gov/otaq/m6.htm), and meteoro-

logically adjusted biogenic emissions from the Biogenic Emission Inventory System (BEIS) 3.13

(14). The Higher-Order Decoupled Direct Method in three dimensions (DDM-3D) (15) is imple-

mented in CMAQ for the Statewide Air Pollution Research Center (SAPRC99) gas-phase chemical

mechanism (16). Boundary and initial conditions were specified from the output of a simulation

with 36km grid resolution covering the entire contiguous US.

Ozone predictions from the CMAQ model are paired in time and space with hourly average

ozone observations obtained from EPA’s Air Quality System (AQS; http://www.epa.gov/

ttn/airs/airsaqs/). This analysis focuses on the daily maximum eight-hour average ozone

concentrations (MD8 O3) at 307 monitoring stations in the southeastern US. The MD8 is the

averaging metric of interest, because it is used for determining compliance with the EPA’s ozone

standards. Specifically, the current EPA standard for ozone is based on the average of the annual
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fourth highest MD8 ozone concentration across three summers, referred to as the ozone design

value. The results presented here focus on the ozone levels for one summer, but could easily be

extended to multiple years for a regulatory application.

Reduced-form CMAQ model

A reduced form of the CMAQ model was developed based on sensitivity coefficients calculated

using DDM-3D (17) updated for the CMAQ model version 4.7.1. DDM-3D was used to calculate

first-order and second-order semi-normalized sensitivity coefficients to perturbations in a set of

input parameters. Taylor series expansion was then applied to approximate the ozone concentra-

tions, C, as a function of perturbations in the set of chosen parameters. Generally, the reduced-form

CMAQ model for one species and d parameters can be represented by:

C(s, t|α) = C0(s, t)+
d

∑
j=1

α jS
(1)
j (s, t)+

1
2

d

∑
j=1

α
2
j S(2)j (s, t)+ ∑

k< j
α jαkS(12)

jk (s, t) (1)

where C(s, t|α) is the species concentration due to a specific set of perturbations α = (α1, . . . ,αd)

at location s on day t, C0(s, t) is unperturbed concentrations from the base simulation, α j is the

perturbation in input parameter j, and S(1)j (s, t), S(2)j (s, t), S(12)
jk (s, t) are first-order, second-order,

and cross-sensitivities, respectively. For example for a 10% decrease in NOx emissions, α j =

−0.10. In application, the coefficients α can represent a combination of input uncertainty and

emissions reductions from a control as detailed in the Results section below. More details on the

use of sensitivity coefficients in Taylor series expansions including examples for other air quality

applications can be found elsewhere (4, 10).

The sensitivity coefficients produced by DDM-3D vary in space and time, providing a compu-

tationally efficient calculation of ozone under different perturbations in emissions inputs through

the RFM. For example, in urban centers, NOx emissions frequently act as a sink of ozone resulting

in negative sensitivity to sectors involving NOx emissions (see supplemental Figure S1). In this

analysis we consider sensitivity to d = 6 inputs: mobile-source NOx emissions (MNOx), point-
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source NOx emissions (PNOx; e.g. power plants, industrial boilers), other NOx emissions (ONOx;

e.g. construction equipment, large ships, biogenic soil sources), anthropogenic VOCs emissions

from all sectors (AVOC), biogenic VOCs emissions (BVOC), and ozone boundary conditions (O3

BC).

Statistical model

A Bayesian hierarchical framework can be used to estimate the optimal perturbations in emission

and boundary conditions in (1) for accurately predicting observed ozone concentrations while ac-

counting for additional sources of bias and error in the deterministic model. Let y(s, t) be the

observed AQS ozone measurement at spatial location s on day t. We model y(s, t) as:

y(s, t) = β0(s)+β1(s)C(s, t|α)+w(s, t), (2)

where β0(s) and β1(s) are additive and multiplicative biases, respectively, C(s, t|α) is the reduced-

form CMAQ model in (1) where the sensitivity coefficients are treated as known covariates and

the α js are unknown scaling factors, and the residual errors are independently and identically dis-

tributed as w(s, t) ∼ N(0,σ2
e ). The spatial bias terms account for systematic differences between

the CMAQ output and observed data during these summer months. For example, errors in the

meteorological inputs (e.g. a temperature bias) can induce systematic biases in the ozone predic-

tions. In addition, there may be other discrepancies, because the CMAQ output represents a grid

cell average, while the AQS observation measures ozone at a point location. The bias terms are

modeled as spatial Gaussian processes with mean E[βi(s)] = bi and stationary exponential spa-

tial covariance Cov[βi(s),βi(s′)] = τ2
i exp(−||s− s′||/ρi). We denote this spatial model as βi ∼

GP(bi,τ
2
i ,ρi), i = 0,1.

We use uninformative priors for the model’s hyperparameters to determine the amount of in-

formation in the data about these parameters. The means have priors bi ∼ N(0,1002) and the

variances have priors τ2
i , σ2

e ∼ InvGamma(0.1,0.1). After scaling the spatial locations to [0,1]2,
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the spatial range parameters have priors log(ρi) ∼ N(-2,1), to have prior median 0.14 and prior

95% interval (0.02,0.96). The scaling factor hyperparameters have priors α j
iid∼ N(0,102). (Note

that sensitivity tests showed that the final model fit was not sensitive to the choice of prior for the

α js.) We also compare a set of RFM results using informative priors for the α js based on previous

studies. This is discussed further in the following section.

The Bayesian hierarchical model is fit using Markov chain Monte Carlo (MCMC) (18) sam-

pling implemented in the statistical language R (http://www.r-project.org/). The like-

lihood parameters β0 and β1 have Gaussian full conditionals and are updated as blocks using Gibbs

sampling. Similarly, the hyperparameters bi, τ2
i , σ2

e are updated from their full conditionals using

Gibbs sampling (19). The scaling factors α and spatial ranges log(ρi) do not have conjugate full

conditionals and are updated using Metropolis sampling. The algorithm is tuned following the

recommendations in (20). For the analysis in the Results section below, we have sampled 25,000

draws and have discarded the first 10,000 as burn-in. Convergence was monitored using trace plots

and autocorrelations of several representative parameters. For the full model, this algorithm takes

a few hours on an ordinary PC.

Model Comparisons

Bayesian model comparison and validation

Using the modeled and observed data described above, we fit several special cases of the statistical

model to determine the effect of each model component on predictive performance (Table 1). We

compare the fits of the base CMAQ model with and without the residual error term (Models 1, 2).

We also compare a RFM using informative priors for α based on previous studies and without any

Bayesian updating, i.e., using samples from the informative prior directly as predictions (Model

3). Following Digar et al. (4), log Normal distributions were used (e.g. for mobile NOx sources:

αeMNOX + 1 ∼ logN(0,σu), for uncertainty level σu). The uncertainty parameters used to sample

α were: 0.25, 0.15, and 0.50 in mobile, point and all other NOx sources, respectively (21); 0.33,
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and 0.40 in anthropogenic and biogenic VOCs, respectively (4); 0.15 in ozone boundary conditions

(based on model - observed differences at the AQS monitoring sites near the boundary of the model

simulation). Finally, we apply several versions of the Bayesian RFM described in the previous

section by fitting the model with no bias (β0 = 0, β1 = 1), constant bias, and spatially varying bias

terms (Models 4-6).

Table 1 presents five-fold cross-validation results comparing the six models. For each of the five

subsamples, or folds, complete days are randomly selected to be withheld from the model fitting

as testing data. Using this approach, all observations are used for both training and validation,

with each observation being used for validation exactly once. For each site/day in the training

dataset, the MCMC algorithm produces several equally-likely samples for each parameter in the

statistical model. For each sample, we make a prediction following Equation (2). This provides

many samples from the predictive distribution for y(s, t), which are used to summarize various

characteristics of the posterior distribution. For example, a 90% prediction interval is computed by

taking the 5th and 95th percentiles of these samples.

We compute the root mean squared error RMSE=(∑t ∑ j[ŷ(s j, t)−y(s j, t)]2/N)
1
2 , where y(s j, t)

are observed values, ŷ(s j, t) are the posterior predictive means for the fit without data from day t,

and N is the total number of observations in the dataset. Mean bias is calculated in a similar fashion.

We also compare the average predictive standard deviation and the coverage probabilities of 90%

prediction intervals for the testing observations. To compare classification of extreme events, we

compute the Brier score for exceedance probabilities for a threshold c = 75ppb, that is,

BSc =
1
N ∑

t
∑

j
(P[y∗(s j, t)> c]− I[y(s j, t)> c])2 (3)

where P[y∗(s j, t) > c] is the posterior predictive probability that y(s j, t) > c and I[y(s j, t) > c]

equals 0 or 1 indicating whether or not the corresponding observation was greater than c. Models

with small Brier scores are preferred.

The comparison in Table 1 reveals several things. First, the base CMAQ model (Model 1)
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tends to over estimate ozone concentrations for this domain and time period. Adding mean zero

independent Gaussian errors to the base model (Model 2) can be used to create prediction intervals

with proper coverage (COV90=90) but that are very wide (SD=10.16) and still biased high. Ideally

we wish to have estimates that are well calibrated with low variance, so that they provide reliable

information with low uncertainty. The RFM based on informative priors with no Bayesian updating

(Model 3) retains the high bias seen in Models 1 and 2. Model 3 does have the best Brier score for

a threshold of 75ppb, the current ozone NAAQS, however it is very poorly calibrated, with only

56% of the cross validation data falling within the 90% predictive intervals. This reinforces the

idea that there are remaining sources of uncertainty and/or bias not captured by the uncalibrated

RFM. In terms of the Bayesian RFMs, we see that the model with spatially varying bias terms has

the best performance. Thus, results from Model 6 will be the focus of the remaining analysis.

Validation of probability of exceedance of ozone standard

The cross validation analysis showed the Bayesian RFM used in this case study is well calibrated

across the entire range of observed ozone levels (see supplemental Figure S2 for additional eval-

uation). However the final application of the model in this study is based on only the fourth

highest MD8 value at a given location rather than the entire summer ozone distribution across

all sites. Consequently, there is need for additional evaluation of the model results based on the

performance for this specific metric of interest. Reliability diagrams (22) are used to validate the

posterior probability predictions of the daily MD8 and the fourth highest concentration exceeding

the current ozone standard of 75ppb (Figure 1). Reliability, or conditional bias, summarizes the

conditional distribution of the observations for specific predicted values. Model predicted proba-

bilities of the daily MD8 concentration exceeding a threshold are paired with the observed MD8

value for each site/day. Similarly, the predicted probabilities of the fourth highest ozone value

exceeding a threshold are paired with the fourth highest observed value at each site. For both met-

rics, the predicted probabilities are sorted into bins (e.g. [0, 0.2],(0.2, 0.4], etc.) and the mean for

each bin is compared to the observed relative frequency of the event for that bin in the reliability
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diagram.

Perfectly calibrated model predictions should fall on the 1 to 1 line. For both the daily dataset

and the fourth highest values, the base model simulation line is attenuated to the no resolution ref-

erence line (i.e. the observed relative frequency of an exceedance across all sites), meaning that the

base model does a poor job of separating exceedance events from non-exceedance events. Looking

across all summer days, Model 3 tends to be biased high for predicted probabilities >0.2. How-

ever when the data are subset to only the fourth highest MD8 at every site, Model 3 is consistently

biased low. While Model 3 tends to overpredict the mean ozone across all days, as we saw in Table

1, this model underpredicts at higher observed concentrations levels, a deficiency also seen in the

base model simulation.

For the daily MD8 values, Model 6 is much better calibrated, although it also exhibits some

high bias for predicted probabilities >0.5. For the fourth highest MD8 data, Model 6 performs very

well when it predicts an ozone exceedance with probability falling within [0.0, 0.2] or (0.8, 1.0],

meaning these very confident predictions are also very accurate. The barplot inserts show that

the Model 6 predictions are also sharper than Model 3, with many more predicted probabilities

falling within these two extreme bins. Model 6 does overpredict the probability of exceedance for

the intermediate probability bins, suggesting some high bias for the fourth highest summer ozone

value (however note the sample sizes for these bins are very small, on the order of 10-25 pairs). A

companion study addresses this performance issue for high concentrations by proposing a Bayesian

RFM based on a combination of flexible semiparametric quantile regression for the center of the

ozone distribution and a parametric extreme value distribution for the tail (23). Note that for other

model applications, such as evaluating the impact of emissions reductions on the secondary ozone

standard, accurate predictions of lower and mid-range ozone values are emphasized more than

extreme values. Thus it is important to have a modeling approach that is well calibrated across the

entire ozone distribution.
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Results

Estimated scaling factors

Posterior summaries for the scaling factors in the reduced form CMAQ model as well as for the

bias and error variance terms in Model 6 are given in Table 2. The posterior distributions for the

six scaling factors are consistently negative. This agrees with the cross validation results described

earlier which showed the base model predictions tended to be too high for this study period. The

estimates for the NOx factors are consistent with the inverse modeling analysis described in Nape-

lenok et al. which also found that urban NOx emissions are overestimated in this domain. The

largest overestimation is in anthropogenic VOCs which have the largest ozone sensitivities in At-

lanta and other urban areas (see supplemental Figure S3). Note that the NOx and VOC scaling

factors represent time-invariant domain-wide bias in the emission inventory for this simulation pe-

riod. The true range of uncertainty in emissions inputs likely changes over time and space. The

posterior distributions of the scaling factors presented here are estimates of the aggregate uncer-

tainty levels in the emissions from this specific emissions inventory, for this simulation domain

and time period. In addition, while these empirical estimates fit the data well, it is possible that

they are affected by deficiencies in other aspects of the CMAQ modeling system not included in

the reduced form model.

Even after adjusting the CMAQ model based on the six parameters in the RFM, spatially

varying bias remains in the C(s, t|α) predictions. The RFM model with adjusted emissions and

boundary conditions tends to overpredict the lower observed ozone concentrations indicated by

the estimates for β0 < 0 at most grid cells. More importantly, the model tends to underpredict

the higher ozone concentrations, indicated by β1 > 1 at most grid locations. These statistical bias

factors are used to account for uncertainty in the emissions inputs not captured by the DDM sensi-

tivity fields, as well as uncertainty from other inputs such as the MM5 meteorological model and

issues of incommensurability that arise when comparing a point measurement to a grid cell average

model prediction. The error variance, σ2
e , indicates how much variability in the observations is not

11



explained by the bias-adjusted RFM. Without this term, the range of predicted values would be too

narrow compared to observed values, as we saw with Model 3.

Estimation of the RFM parameters provides insight into the model inputs with the greatest

bias and uncertainty. Such results can help prioritize what additional data need to be collected

to produce more informed decisions. Of main interest in this application is how to apply these

parameter estimates in order to predict ozone concentrations under multiple emission reduction

scenarios. The following section compares the probability of exceeding the ozone standard under

four different types of hypothetical NOx reductions.

Evaluating emission reduction strategies

Traditionally, evaluation of emissions reductions is based on two modeling simulations: one repre-

senting current conditions and one representing conditions under a specific set of reductions. The

impact of the emissions reductions is then estimated based on the difference (or ratio) in predicted

concentrations from the two simulations. Due to the computational cost of running regional-scale

air quality models, RFMs have been proposed as an efficient method for characterizing the pollu-

tant response to many different types of emissions reductions (24, 25). For example, for the current

case study, the CMAQ RFM in (1) is used to estimate the ozone response to a 45% reduction in

mobile NOx emissions by setting the scaling factor for mobile NOx sensitivities to -0.45 with the

remaining scaling factors set to 0.0 (see the top row of Figure 2). However, such an approach does

not account for bias and uncertainty in the deterministic model used for simulating the pollutant

response.

Digar et al. (26) demonstrate that the DDM-based RFM can be used to simultaneously charac-

terize the impact on model concentrations from uncertainty in model inputs and from a decrease

in the true emission rates due to a specific reduction. To model ozone simulations that capture

both of these changes we apply α?
j = (1+α j) ∗ (1+ φ j)− 1 as the scaling factor for parameter

j where α j represents the correction to the baseline emissions described in the previous section

and φ j is the additional change from the proposed reduction. For example, for a 10% reduction
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in mobile NOx emissions, where the modeled emissions inputs are estimated to be 20% too high

under current conditions, αeMNOX for current conditions is -0.20 and under the reduction scenario

α∗eMNOX
= −0.28. In this case, the underlying bias in the emissions input dampens the impact of

the emissions reduction, i.e. the change in the ozone concentration (neglecting second order effects

for simplicity) would be -0.08S(1)eMNOX
rather than -0.1S(1)eMNOX

.

To develop a set of emissions reductions to compare for this case study, the CMAQ RFM is used

to calculate the ozone response to changes in sector-specific NOx emissions without accounting for

input uncertainty (hereafter referred to as non-Bayesian RFM). Using different sets of α values,

we simulate ozone data under four different emission reduction scenarios: 45% cut in mobile NOx,

50% cut in point NOx, 50% cut in other NOx, and 15% cut in all NOx sources. All four of these

scenarios lower the base model predicted fourth highest MD8 by an average of approximately 3ppb

across the entire domain (excluding areas with zero population), although the spatial locations with

the largest decreases in ozone changes depending on the emissions sources being reduced (see

supplemental Figure S4, top row). For example, the reduction in mobile NOx results in decreases

in ozone in areas downwind of high traffic, with some small increases in very urban grid cells

containing sources high of NOx emissions. In these locations, high levels of NOx can inhibit ozone

formation through titration and removal of radicals. In contrast, the largest decreases under the

50% reduction in other sources of NOx occur along the coast due to a reduction in emissions in

shipping lanes.

Using the MCMC samples from Model 6 for (α , β0, β1, σe) and different values of φ =

(φ1, . . . ,φp), we compute the CMAQ RFM corresponding to input α? = (α?
1 , . . . ,α

?
p) for the four

different emission reduction scenarios. The estimated decreases in the fourth highest MD8 under

the reduced emissions conditions are smaller compared to the non-Bayesian RFM results as shown

in the second row of supplemental Figure S4. In addition, areas with the largest posterior mean

decrease in ozone also have the largest variability in the posterior predicted value, shown in the

bottom row of the same figure. These results reflect that the Bayesian predictions for the fourth

highest values account for sources of uncertainty and persistent biases that are not accounted for
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in the base and non-Bayesian models.

Another way to compare the emissions reductions is to use the posterior distributions of the

fourth highest MD8 to calculate the probability of a predicted exceedance of the NAAQS at any

grid location. The probability of exceedance can be used to communicate the relative success of

different emissions reductions in meeting the target air quality level. For example, the posterior

probability of exceeding the current ozone standard of 75ppb based on the Bayesian RFM after a

45% reduction in mobile NOx emissions is less than 0.50 throughout much of the domain, however

the probability of exceedance in the largest urban areas is still very high (Figure 2). Table 3 shows

the aggregate impact of each emission reduction across all monitoring locations and across the

entire domain. Results are also weighted by population density to better quantify the societal

benefits of the different emissions reductions in terms of human exposure. The ranking for each

emission reduction is shown for the non-Bayesian and the Bayesian RFM output. Based on the

non-Bayesian regional mean values (row 2), mobile NOx reductions are favored over the other

types of reductions. Population weighting of the non-Bayesian RFM results leads to point NOx

reductions being preferred over mobile NOx reductions. This is due to the high population areas

in Atlanta, DC, and Baltimore where NOx acts as a sink of ozone, reducing the benefits from the

mobile source reductions (see middle left-hand plot in supplemental Figure S4).

The Bayesian-RFM provides different rankings. For both the regional and population-weighted

mean, reducing other NOx sources produces the smallest probability of exceedance, whereas these

sources were ranked last in the non-Bayesian comparison. The impact of reduction in NOx from

other sources, seen in supplemental Figure S4 are more wide-spread compared to the mobile and

point-source reductions, although the magnitude of the decrease in urban areas is much less. More

importantly, the uncertainty in the model estimates for the ozone response to other NOx sources,

characterized by the spread of the posterior distribution at each grid cell, is much smaller across

most of the domain compared to the mobile and point reductions (see bottom row of S4). This is

consistent with the results in Table 2 which shows the posterior distribution for αeONOX has much

less bias compared to the other variables, which translates to less dampening of the impact of the
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emissions reduction on the ozone response. Note that these rankings are specific to the simplified

emission reduction scenarios used in this case study. In a regulatory application, the control options

would likely be more targeted to specific regions/sectors, thus leading to different conclusions. The

important result here is that through this approach, the observation-based estimates for the bias

and uncertainty in the input parameters have been propagated to the final model output used for

comparing different scenarios.

Discussion

The statistically calibrated RFM presented here is shown to provide predicted ozone concentrations

and predicted probabilities of exceedances that are both accurate and reliable. While the results

of the emission reduction scenario comparisons are specific to the emissions inventory and AQM

simulation used in this case study, these examples demonstrate how this approach can be used to

refine and supplement the evaluation of traditional emission reduction pathways. Propagating the

uncertainty in the modeling inputs to the model output metric of interest, in this fashion can help

to improve confidence in air quality management decisions.

Several extensions to this methodology would be of interest. For example, a more comprehen-

sive RFM could include explicit representation of uncertainties in the meteorological inputs. Such

a model could be developed with existing technology by utilizing an ensemble of meteorological

model inputs similar to the approach in (27). An additional modification to the RFM would be

to introduce spatially varying emission adjustments by developing DDM-3D sensitivities to emis-

sions in specific geographic regions. Furthermore, the sector definitions used in this study could

be refined. For example, separating point-sources with continuous emissions monitoring data (e.g.

large electrical generating units) from other point sources would allow for improved estimates

of the bias and uncertainty in each sector type. In terms of the statistical model, the approach

presented in (23) utilizing extreme value theory could be used to improve the calibration of the

Bayesian RFM for high ozone concentrations.
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Table 1: Model description for various statistical models and cross-validation results on the entire
testing dataset. α Prior equal to "None" refers to α j=0, j = 1, . . . ,6. Similarly, Bias equal to
"None" refers to β0 = 0;β1 = 1. The summaries are root mean squared error (RMSE), mean bias
(Bias), mean predictive standard deviation (SD), coverage probability of 90% intervals (COV90),
and the Brier score for exceedances of 75ppb (Brier75).

Model Results
CMAQ α Prior Bias Residuals RMSE Bias SD COV90 Brier75

1 Base None None None 10.14 2.92 0.00 0.00 0.055
2 Base None None Indep 10.14 2.92 10.16 0.90 0.047
3 RFM Informative None None 10.10 3.05 4.80 0.56 0.043
4 RFM Uninform None Indep 9.66 0.08 9.63 0.90 0.051
5 RFM Uninform Constant Indep 9.51 0.04 9.47 0.90 0.049
6 RFM Uninform Spatial Indep 8.70 0.03 8.62 0.90 0.048

Table 2: Posterior summaries of the scaling factors for the six parameters of the reduced form
CMAQ model as well as for β̄0, β̄1 (average bias across space) and σe. Results are based on the
parametrization in Model 6.

Posterior
Variable Mean 95% Interval
eMNOx -0.242 (-0.303, -0.186)
ePNOx -0.203 (-0.260, -0.143)
eONOx -0.087 (-0.180, 0.005)
eAVOC -0.736 (-0.819, -0.648)
eBVOC -0.265 (-0.302, -0.229)
bcO3 -0.113 (-0.128, -0.100)
β̄0 -7.927 (-8.765, -7.051)
β̄1 1.204 ( 1.187, 1.222)
σe 8.547 ( 8.473, 8.621)

This material is available free of charge via the Internet at http://pubs.acs.org/.
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Figure 1: Reliability diagrams for the predicted probability of (a) the daily maximum eight-hour
(MD8) ozone and (b) the fourth highest MD8 ozone value exceeding a threshold of 75ppb. Re-
sults are shown for the base simulation (Model 1), the RFM based on informative priors with no
Bayesian updating (Model 3), and the Bayesian RFM (Model 6). The observed relative frequency
of exceedance across all monitoring sites is shown by the dotted grey line (no resolution). The
barplot inserts indicate how many model/observation pairs fall within each of the 5 predicted prob-
ability bins indicated on the x-axis (e.g. [0.0, 0.2], (0.2, 0.4], etc.).

(a) Daily MD8 Values, TH=75

predicted probability

ob
se

rv
ed

 r
el

at
iv

e 
fr

eq
ue

nc
y

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

[0,0.2] (0.2,0.4] (0.4,0.6] (0.6,0.8] (0.8,1]

●

●

●

●

●

●

●

●

●

●

No resolution
●

●

●

●

●

Base (Model 1)
Informative Prior (Model 3)
Posterior (Model 6)
Obs Rel Freq # Mod/Obs pairs per bin

103

104

(b) 4th Highest MD8 Values, TH=75
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Table 3: Average probability of exceeding a standard of 75ppb for each of the four emission re-
duction scenarios based on the fourth highest MD8 ozone value at every grid cell in the domain
(excluding areas with zero population). Population weighting is based on 2000 Census Tract Pop-
ulation Totals. Emission reduction scenario ranks for each row are shown in parentheses.

No Reduction Scenario 1 Scenario 2 Scenario 3 Scenario 4
-45% MNOx -50% PNOx -50% ONOx -15% NOx

Non-Bayesian Mean at AQS Sites .358 .230 (3) .209 (1) .238 (4) .227 (2)
RFM Regional Mean .122 .067 (1) .068 (2) .073 (4) .070 (3)

Pop-weighted Mean .306 .215 (2) .212 (1) .229 (4) .219 (3)
Bayesian RFM Mean at AQS Sites .610 .486 (3) .483 (2) .479 (1) .492 (4)

Regional Mean .368 .271 (3) .269 (2) .261 (1) .273 (4)
Pop-weighted Mean .529 .426 (2) .430 (3) .422 (1) .434 (4)
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Figure 2: Spatial plots of fourth highest summer MD8 ozone concentration (ppb) under current
conditions (top left) and after a 45% reduction in mobile NOx emissions (top right) based on the
base model simulation and the non-Bayesian RFM, respectively. Bottom row shows the posterior
probability of the fourth highest MD8 ozone value exceeding a standard of 75ppb before (bottom
left) and after (bottom right) the reduction in mobile NOx emissions based on the Bayesian RFM
output (Model 6). Results for the other emission reduction scenarios showed only minor spatial
differences and are not plotted. Ozone monitoring locations are shown in black.
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Figure 3: TOC ART

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Modeled Ozone Concentration and Ozone Sensitivities at Atlanta Site

July, 2005
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