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Abstract
 

Biomonitoring studies of environmental stressors are useful 
for confirming exposures, estimating dose levels, and 
evaluating human health risks. However, the complexities 
of exposure-biomarker and biomarker-response relation­
ships have limited the use of biomarkers in exposure science 
studies. In this document, an updated source-to-outcome 
continuum is presented to better define biomarkers as tools 
for human health research; specific attention is given to 
biomarker applications in exposure research. This continuum 
links exposure sources and health outcomes using a compi­
lation of measurements, mathematical models, and model 

estimates. A tiered approach to biomonitoring analyses is 
presented, based on this continuum, to categorize the uses 
of biomonitoring data given various research objectives and 
the availability of specific measurements and models. Tools 
that can be used to infer critical model parameters and model 
estimates (when they are unavailable) also are discussed to 
improve biomarker utilization for exposure and risk assess­
ments. Finally, frequently encountered complications in 
biomonitoring studies are discussed, along with suggestions 
to address these challenges. 
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1.0 Introduction
 

Human exposure assessment for environmental chemicals 
traditionally has focused on identifying sources, determin­
ing chemical fate and transport, and quantifying the resulting 
microenvironmental concentrations in media with which 
humans come in contact. Exposure assessment provides 
information for use in risk assessment on the magnitude, 
frequency, and duration of the intersection between a stressor 
and a receptor. During the assessment process, uncertain­
ties can arise from numerous sources, including extrapola­
tions from external concentration to internal dose. Some of 
these uncertainties may be reduced by directly measuring 
chemicals and/or their metabolites in biological samples 
through biomonitoring studies. Historically, biomonitoring 
studies have been used to confirm environmental exposures. 
When carefully planned, these studies have the potential to 
provide estimates of internal dose or evaluate possible health 
risks. The full potential of biomonitoring, however, is yet to 
be realized because obtaining the maximum possible value 
from biomonitoring requires information, which is often 
lacking, about exposure, toxicology, pharmacokinetics, and 
epidemiology.1 

In 2006, the National Research Council (NRC) of the 
National Academy of Sciences (NAS) conducted an indepen­
dent study to review the current practices of interpretation 
and uses of conventional biomonitoring data (i.e., chemicals, 
their metabolites in human tissues/specimens). In its report, 
the NRC identified data gaps when considering biomarkers 
for specific applications, such as risk assessment. Specifi cally, 
the NRC recommended the need to “develop biomonitoring­
based epidemiologic, toxicologic, and exposure-assessment 
investigations and public-health surveillance to interpret 
the risks posed by low-level exposure to environmental 
chemicals.” 

NRC (National Research Council) (2006). Human Biomonitoring for 
Environmental Chemicals. National Research Council Committee on 
Human Biomonitoring for Environmental Toxicants. National Academies 
Press, Washington, DC. 

In response to the NRC’s recommendations, this document 
outlines the research strategies proposed by researchers in 
the U.S. Environmental Protection Agency (EPA) National 
Exposure Research Laboratory (NERL) to generate data and 
develop/refine tools for improving the use and interpretation 
of biomonitoring data in human exposure and risk assess­
ment. These research strategies will address the following 
key science questions. 

1. 	 What are the key elements of a source-to-outcome 
continuum that includes biomarkers as a critical link for 
exposure and health effects research? 

2. 	 How do we interpret biomonitoring data to improve 
exposure and risk assessments using the methods, 
measurements, and models developed or in use by the 
research community? 

3. 	 How do we develop and incorporate new biomarkers 
and apply emerging technologies to better assess human 
exposure and resulting health effects? 

The enhanced science and other products from this research 
program will lead to the following expected outcomes. 

1. 	 A framework that provides guidance for assessing expo­
sures and/or health risks using biomonitoring data. 

2. 	 Innovative application of emerging/evolving technologies 
for determining and analyzing biomarkers of exposure for 
small molecules. 

3. 	 Incorporation of biomonitoring data and relevant expo­
sure, pharmacokinetic, and toxicological data/tools for 
informing the Agency’s risk assessment and management 
decisions for human and wildlife health. 
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2.0 A Source-To-Outcome Continuum for Human 

Health Research 2
 

In this document, an updated source-to-outcome continuum 
is presented to better define biomarkers as tools for human 
health research. The components and linkages of this 
updated continuum (Figure 1) highlight specifi c research 
needs (i.e., measurements, models, estimated values) for 
observational studies of human populations. The left side 
highlights traditional components of exposure research 
whereas the right side highlights contemporary components 
of health effects research. Biomarker measurements are 
central to the continuum and, therefore, link the exposure 
and health effects components. The following sections define 
individual components of the continuum and describe how 
they can be used to answer exposure- and risk-based 
questions for human health research. 

The source-to-outcome continuum for human health research 
(shown in Figure 1) contains the following eleven compo­
nents (not including source and outcome). 

1. 	 Environmental measurements are observed stressors 
in environmental media that reflect (either directly or 
indirectly) an exposure source. Although stressors can 
be biological (e.g., bacteria), physical (e.g., radiation), or 
even psychosocial (e.g., stress), chemical stressors in the 
environment are the focus of this discussion. Examples 
include chemical concentrations in foods (chemical mass 
per unit food mass), in drinking water (chemical mass per 
unit water volume), in consumer products (chemical mass 
per item), and in outdoor and indoor air (chemical mass 
per unit air volume). 

2. 	 Exposure models generate exposure estimates by math­
ematically combining environmental measurements with 
human activity observations. Example human activities 
in exposure models include eating food, drinking water, 
applying consumer products, and spending time indoors 
versus outdoors. 

3. An exposure estimate is the predicted amount of chemical 
(total mass) that comes into contact with a human. These 
estimates can be route-specific (e.g., inhalation exposure, 
ingestion exposure, dermal exposure) or summed across 
all routes (i.e., aggregate exposure). An example expo­
sure estimate from the diet is food concentration (μg/ 
mg food) × food consumption (mg food/meal) = dietary 
exposure (μg/meal). Exposure levels generally are fixed 
in animal studies (e.g., mg/kg/day, referred to as “external 
dose”) but are inferred in observational exposure studies 
using environmental measurements and human activity 
observations. 

Context in this section has been summarized in a published article: Sobus 
et al. (2011). A biomonitoring framework to support exposure and risk 
assessments. Science of the Total Environment, 409(22):4875-4884. 

4. 	 Dose models generate dose estimates by mathemati­
cally combining exposure estimates with parameters 
that describe chemical movement into the body from 
the site(s) of contact. For inhalation, ingestion, and 
dermal exposure, chemical movement into the body 
(i.e., absorption) often occurs through the lungs, gut, and 
skin, respectively. Although exposure and dose models 
are shown separately in Figure 1, parameters describing 
chemical exposure and absorption often are included in 
combined exposure-dose models. 

5. A dose estimate is the amount of a chemical (total mass) 
that enters the body. In health effects studies, dose levels 
are unambiguous because conditions are generally 
deliberate and well controlled. Furthermore, dose levels 
in animal studies are adjusted by body weight (e.g., μg/ 
kg) to allow inter- and intraspecies comparisons and are 
a basis for toxicity reference values (e.g., reference dose 
[RfD]). Alternatively, dose estimates from observational 
exposure studies rely on environmental measurements, 
human activity observations, and absorption predictions 
and are, therefore, subject to uncertainty. 

6. 	 Kinetic models mathematically describe the movement 
of a chemical through the body; that is, the chemical’s 
distribution to various tissues, metabolism by vari­
ous processes, and ultimate elimination from the body. 
(Absorption parameters from dose models frequently 
are included in kinetic models to simultaneously address 
absorption, distribution, metabolism, and elimination). 
Parameters for these models generally are estimated using 
in vitro metabolism experiments, in vitro kinetic stud­
ies with animals, and controlled human exposure stud­
ies. Parameterized models from these experiments can 
be applied in observational exposure studies to predict 
tissue/fluid levels of chemicals and metabolites following 
exposure events. 

7. 	 Biomarker measurements are observations of chemicals, 
chemical metabolites, and target molecules in media, such 
as blood, urine, breath, fingernails, hair, milk, and feces. 
These observations can reflect exposure events (biomark­
ers of exposure), health status (biomarkers of effect), 
and systemic functions (biomarkers of susceptibility). 
However, discussions herein pertain strictly to biomark­
ers of exposure. As such, example biomarkers include 
native (unmetabolized) chemicals, phase-I metabolites 
(e.g., oxidized, reduced, or hydrolyzed chemicals), and 
phase–II metabolites (e.g., glutathione-, glucuronic acid-, 
and sulfate-conjugated chemicals). 

3
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Symbol Key Parameter Definition 

Estimated 
value 

1) Exposure estimate 
2) Dose estimate 
3) BR dose estimate 

1) Estimated level of human contact with an analyte 
2) Estimated level of analyte that enters a human 
3) Estimated level of analyte that reaches a target within a human 

Measured 
value 

1) Environmental 
measurement 
2) Biomarker measurement 
3) BR biomarker 
measurement 

1) Measured level of analyte in environmental media that refl ects an 
exposure source 

2) Measured level of analyte in biological media that reflects a dose 
3) Measured level of analyte in biological media that reflects a BR 

dose 

Empirical 
model 
Mechanistic 
model 

1) Statistical model (blue) 
2) Exposure model (red) 
3) Dose model (red) 
4) Kinetic model (red) 
5) Dynamic model (red) 

1) Model that evaluates observed variables for hypothesis testing 
2) Model that estimates exposure using environmental 

measurements and human activities 
3) Model that estimates how much analyte enters a human 
4) Models that describe how an analyte moves through and is 

removed from a human 
5) Model that describes the effect of an analyte on the human body 

Figure 1. A source-to-outcome continuum for human health research. 
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8. A biologically relevant (BR) dose estimate is the amount 
of the dose that reaches a target and is available to 
contribute to health impacts. For example, the BR dose 
of a neurotoxic chemical may be the amount of chemi­
cal or metabolite that reaches the brain. For a genotoxic 
chemical, the BR dose may be the amount of chemical 
or metabolite that interacts with genetic material. These 
values can be determined directly in some animal studies, 
generally via biopsies of target tissues. However, BR dose 
levels in observational exposure studies are estimated 
using kinetic models and rely on preceding exposure and 
dose estimates. 

9. 	 Dynamic models mathematically describe the impacts 
of the BR dose on biological systems. For example, 
dynamic models for neurotoxic chemicals may describe 
the rates of enzyme inhibition in the brain, whereas those 
for genotoxic chemicals may describe the rates of DNA 
damage and repair. In general, these models are param­
eterized using data from in vitro experiments and in vitro 
studies with animals. Combined kinetic and dynamic 
parameter estimates then can be applied in observational 
exposure studies to predict systemic changes as functions 
of the estimated BR dose. 

10. BR biomarker measurements are observations of analytes 
in biological media that reflect (directly or indirectly) 
the BR dose of a chemical or group of chemicals. BR 
biomarkers can be chemical metabolites, chemically 
altered molecules (e.g., adducts of reactive electrophiles), 
or non specific markers of systemic processes (e.g., levels 
of hormones, antibodies, or gene expression). They differ 
from “biomarkers of effect” in that they are not strictly 
markers of impaired function or disease endpoints. That 
is, they may be, but are not required to be, associated 
with key events in a disease process. For example, BR 
biomarkers for genotoxic electrophiles can be markers of 
genetic damage (direct markers) or products of reactions 
with blood nucleophiles (indirect markers). 

11. Statistical models are empirical models that compare 
observed random variables for hypothesis testing. For 
example, statistical models can evaluate associations 
between environmental and biomarker measurements 
of the same chemical and between biomarker measure­
ments and BR biomarker measurements. Statistical 
models also can evaluate the effects on these relationships 
of confounding variables, such as age, gender, human 

activities, health status, and time (e.g., when measure­
ments are made). Therefore, statistical models are used to 
attribute measurement variation to explanatory factors in 
observational human health studies. 

12. Figure 1 shows that components of the source-to­
outcome continuum align along two planes: (1) a plane 
of measured values (i.e., environmental, biomarker, and 
BR biomarker measurements) that are shown with blue 
boxes; and (2) a plane of estimated values (i.e., exposure, 
dose, and BR dose estimates) that are shown with red 
triangles. Exposure, dose, and BR dose can be linked 
to health outcome in controlled studies, yet all of these 
values are estimated in observational studies. As such, 
these values rely on measurements, activity observations, 
and model parameter estimates and are, therefore, subject 
to uncertainty. Biomarker measurements, which are at 
the center of the continuum, can reduce uncertainties 
by answering specific exposure- and risk-based ques­
tions. The following section demonstrates these uses of 
biomonitoring via the following five research tiers. 

Tier 1: Biomonitoring for exposure surveillance 

Tier 2: Biomonitoring to support exposure 
assessment 

Tier 3: Biomonitoring to support risk assessment 

Tier 4: Biomonitoring for exposure and risk 
assessment 

Tier 5: Biomonitoring to advance exposure and risk 
assessments 

Tier 1 considers only biomarker measurements, and subse­
quent tiers consider additional measurements, models, 
and estimated values. Example biomarkers for each tier 
are assumed to be measurable using reliable sampling and 
analytical methods and to reflect exposure to environmen­
tal chemicals (a discussion of these assumptions is given 
in section 5). Simple theoretical examples are given for the 
biomonitoring tiers to demonstrate how biomarker data can 
be used to answer important exposure- and risk-based ques­
tions. Theoretical examples are given, rather than results 
from published studies, to enable continuity from one tier to 
the next and to simplify the interpretation and discussion. 

5 





                

 

3.0 Biomonitoring Tiers for Exposure and    

Health Research3
 

Figure 2. Requirements and examples of tier 1 analyses of biomarker data. (Gray objects are 
unavailable in a tier 1 analysis.) 

3.1 Tier 1: Biomonitoring for exposure 
surveillance 

Tier 1 analyses of biomarker data aim to answer one or more 
of the following questions for exposure surveillance. 

1. 	 Who is exposed? 

2. 	 What are the exposure trends? 

3. 	 Which chemicals should be prioritized for higher tier 
analyses? 

Figure 2 is an adaptation of the source-to-outcome continuum 
that shows biomarker measurements as the only requirement 
for a tier 1 analysis. Specifically, cross-sectional biomarker 
measurements are used in tier 1 analyses for evaluating 
exposures across populations, and longitudinal biomarker 
measurements are used for evaluating exposure trends within 
3 Context in this section has been summarized in a published article: Sobus 

et al. (2011). A biomonitoring framework to support exposure and risk 
assessments. Science of the Total Environment, 409(22):4875-4884. 

a population. To demonstrate these uses, two theoretical 
examples are given in Figure 2. Example 1 displays cumula­
tive distributions of biomarker levels for two groups (a cross-
sectional analysis), and example 2 shows average biomarker 
levels for one group as a function of time (a longitudinal 
analysis). 

In example 1, the two distributions represent biomarker 
measurements that have been separated into groups for 
hypothesis testing. Example groups include those separated 
by gender (i.e., male versus female), geographic location 
(i.e., location 1 versus location 2), age (e.g., < 18 years 
old versus ≥ 18 years old), source impact (e.g., product 
users vs. nonusers), and health status (e.g., healthy versus 
heath impaired). Observed differences between grouped 
measurements indicate an effect of the grouping variable on 
biomarker levels, and suggest exposure differences between 
the groups. This type of tier 1 cross-sectional analysis is used 
for identifying populations with elevated exposure levels 
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(question 1 above) and increased risk of health impacts. In 
particular, these comparisons are used for evaluating expo­
sures among vulnerable and susceptible subpopulations. 

In example 2, longitudinal biomarker measurements for a 
population are shown decreasing over time, suggesting a 
similar decrease in exposure levels. Trends in longitudinal 
biomonitoring studies (either increasing or decreasing) can 
indicate a change in the source impacts on exposure (e.g., 
deregistration of a consumer product) or a change in human 
activities through which contact occurs (e.g., product use 
patterns). However, higher tier analyses of the biomarker 
data generally are needed to pinpoint the cause of a trend. 
As such, tier 1 longitudinal analyses of biomarker data are 
used to answer questions 2 and 3 above; that is, to identify 
chemicals with changing health risks from exposure and to 
prioritize chemicals for higher tier analyses. 

3.2 Tier 2: Biomonitoring to support exposure
 assessment 

Tier 2 analyses of biomarker data can answer the following 
questions to support exposure assessments. 

1. What are the likely exposure sources? 

2. What are the likely exposure routes? 

As shown in Figure 3, tier 2 analyses consider environmental 
and biomarker measurements (paired at the subject level) 
and focus on statistical comparisons of these data. A graph in 
Figure 3 shows a regression of spot biomarker measurements 
on corresponding environmental measurements. A positive 
linear trend is shown in this example w ith a R2 value of 0.3. 
This indicates that biomarker levels increased with increas­
ing environmental levels, and that 30% of the biomarker 
measurement variance was explained by corresponding 
environmental measurements. 

If, for example, the environmental measurements in this 
example were concentrations of a chemical in food, and the 
biomarker measurements were corresponding blood levels of 
the same chemical, then the results of the regression analysis 
would point to dietary ingestion as a likely exposure route. 
Furthermore, the results would point to food or, perhaps, a 
specific food item as an exposure source. 

Considerable unexplained variance in the biomarker data 
(i.e., 70%), however, would suggest additional exposure 
routes and/or considerable covariate effects (e.g., timing of 
sampling events) on biomarker levels. Therefore, additional 
data would be necessary to better explain the observed 
biomarker variance and to further support the exposure 
assessment. These data could be part of a more complex 
tier 2 analysis (e.g., environmental measurements collected 
of different media to identify additional exposure routes) or 
of a highertier analysis as described in the next sections. 

3.3 Tier 3: Biomonitoring to support risk 
assessment 

Human health risk assessments for environmental chemicals 
traditionally are based on environmental measurements, 
observations of human activities, and information on chemi­
cal toxicity. Tier 3 analyses of biomarker data can be used to 
support risk assessments because they can answer the follow­
ing questions: 

1. What are the likely exposure levels? 

2. What are the likely dose levels? 

The requirements of a tier 3 analysis of biomarker data 
are shown in Figure 4 and build on the tier 2 parameters 
by adding exposure and dose models. Exposure and dose 
estimates are not linked directly to biomarker measurements 
in tier 3 analyses (see Figure 4) but can be indirectly linked 
via statistical models (e.g., multiple regression models) that 
collectively consider environmental measurements, human 
activities, and other covariate effects. Given these linkages, 
and that exposure and dose estimates can be compared to 
risk-based reference values (e.g., RfDs), tier 3 analyses can 
evaluate biomarker measurements within a risk context. 

It is shown in Figure 4 that exposure and dose are estimated 
with environmental measurements, human activity data 
(included in exposure models), and uptake predictions but 
generally not with biomarker measurements. Biomarkers are, 
however, useful for evaluating exposure and dose estimates. 
If, for example, air levels of a chemical were not associated 
with corresponding biomarker levels, then exposure and dose 
estimates based on inhalation likely would be incorrect and, 
therefore, not comparable with reference values. On the other 
hand, strong associations between food and biomarker levels 
would support exposure and dose estimates based on dietary 
ingestion. 

In our tier 2 regression example (Figure 3), we showed how 
measurements of a chemical in food explained 30% of the 
observed biomarker variance. This result suggests that expo­
sure and dose estimates based on dietary ingestion would be 
reasonable, and therefore comparable to reference values for 
risk evaluation. However, given the added information in a 
tier 3 analysis, it would be possible to explain more bio­
marker variance, thus increasing confidence in the exposure 
and dose estimates. 

For example, a graph in Figure 4 shows a regression of 
biomarker levels on covariate-adjusted environmental levels 
(as an analogue for dose). Here, the adjusted environmental 
levels reflect for each individual the combined effects of 
food concentration, food consumption, and factors affecting 
dietary uptake (e.g., food allergies). A regression R2 value 
of 0.6 in this example suggests that the combined effects of 
food concentration and covariates could explain 30% more 
biomarker variance than food concentration alone (shown 
in Figure 3). Therefore, the additional information in tier 3 
analyses can highlight other determinants of exposure e.g., 
activities and support exposure and dose estimates for risk 
assessment. 

8 



Figure 3. Requirements and an example of a tier 2 analysis of biomarker data. (Gray objects are 
unavailable in a tier 2 analysis.) 

Figure 4. Requirements and an example of a tier 3 analysis of biomarker data. (Gray objects are 
unavailable in a tier 3 analysis.) 9 



Figure 5. Requirements and examples of tier 4 analyses of biomarker data. (Gray objects are 
unavailable in a tier 4 analysis.) 
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3.4 Special consideration for timed events, 
sampling strategies, and repeated

 measures 
Timed events (e.g., frequency and duration of exposure, time 
of biomarker sampling) for tier 2 and tier 3 analyses can 
impact the interpretation of biomarker measurements with 
respect to environmental measurements, exposure estimates, 
and dose estimates. The magnitude of these impacts largely 
depends on the between- and within-person components of 
biomarker variance. 

Figures 5A and B show repeated biomarker measurements of 
individuals from two theoretical groups. Both fi gures show 
10 consecutive measurements from 50 subjects, with the first 
measurements made at 6:00 a.m. and the fi nal measurements 
at midnight (12:00 a.m.) on the same day. The biomarker 
levels in these figures vary between- and within-individuals 
according to dose levels and kinetic processes. In Figure 5A, 
biomarker measurements are highly varied over time for each 
individual and overlap considerably across individuals. These 
observations suggest that individuals have similar dose levels 
(based on daily average biomarker levels), and that chemical 
uptake and elimination occurs rapidly throughout the day. 
In Figure 5B, biomarker measurements are less varied with 
time, and are more easily distinguished between individuals. 
These observations suggest that individuals have different 
dose levels (long-term averages) and that kinetic processes 
occur more slowly. 

Three example regressions of dose estimates on biomarker 
levels are given in both Figures 5A and 5B. Dose is approxi­
mated for each individual as their average biomarker level 
across all 10 measurements. In example 1 in both figures, 
dose is regressed on randomly selected spot biomarker levels; 
this simulates studies where one random biomarker measure­
ment is made for each subject. Example 2 in both figures 
shows a regression of dose on end-of-day biomarker levels; 
this simulates studies where one biomarker measurement is 
made for each subject at a specific time point. In 
example 3 in both figures, dose is regressed on the average of 
three randomly selected measurements; this simulates studies 
where repeated measurements are made for each subject, and 
the measurements (or the biological samples themselves) are 
pooled (averaged) prior to analysis. 

The regression results from the three examples in Fig 5B 
show very similar slopes (ranging from 0.92 to 1.0) and R2 
values (ranging from 0.93 to 0.99). These results indicate that 
timed events have little impact on biomarker interpretation 
with respect to dose when the between-person component 
variance is large. Specifically, these results suggest that the 
biomarker measurements from each of these examples could 
be used to accurately and precisely estimate dose levels. 

In contrast, dissimilar regression results are shown from the 
three examples in Figure 5A, indicating increased impacts of 
timed events on biomarker interpretation when the within-
person component of variance is large. The best linear 
association is shown in example 3 using the average of three 
random biomarker measurements (slope = 0.82, R2 = 0.76). 
This suggests that repeated biomarker measurements are 

preferred over spot measurements for improving the accuracy 
and precision of dose estimates. Furthermore, the regression 
slopes in Figure 5A show that spot biomarker measurements 
(collected randomly or at a fixed time) can severely under­
estimate dose levels when the within-person component of 
variance is large (attenuation bias). 

3.5 Tier 4: Biomonitoring for exposure and risk
 assessments 

Figure 6 shows that tier 4 analyses of biomarker data include 
the components for tier 3 analyses, as well as kinetic models 
to link dose estimates and biomarker measurements, and 
to predict BR dose levels. As such, tier 4 analyses can 
answer the following the questions for exposure and risk 
assessments. 

1. What are the predominant exposure routes? 

2. What are the best estimates of exposure and dose? 

3. What is the estimated BR dose? 

In the previous example of a tier 3 analysis (Figure 4), dose 
estimates and biomarker measurements were not directly 
linked. Rather, results from statistical comparisons were used 
as support for dose estimates. Risk-based decisions can be 
supported by statistical associations but can be further refined 
with an understanding of mass transfer from exposure to dose 
to biomarker levels; kinetic models are used to describe these 
mass transfer processes. More specifically, they are used to 
predict biological levels of chemicals and their metabolites 
following exposure events. 

Example 1 in Figure 6 shows a theoretical comparison of 
observed and predicted biomarker levels over time. Here, 
the predicted values are estimated blood levels of a chemi­
cal following three dietary exposure events (e.g., breakfast, 
lunch, dinner). Assuming a well-parameterized and calibrated 
model, good agreement between predicted and observed 
values support the diet as the primary exposure route and 
help validate exposure and dose estimates. Alternatively, 
overestimation of the observed values would suggest incor­
rect exposure and dose estimates, whereas underestimation 
could suggest additional exposure routes or endogenous 
sources of the biomarker. In these situations, exposure and 
dose estimates could be reconstructed to be consistent with 
model predictions (discussion of exposure reconstruction is 
given in section 4.1.2). 

Given the appropriate model parameters, the same kinetic 
models used to predict biomarker levels may be used to 
predict the BR dose. Example 2 in Figure 6 shows target 
levels over time of the same chemical from example 1. In 
this theoretical example, the parent chemical is neurotoxic, 
and the predicted values are brain tissue levels. As samples of 
brain tissue are generally unavailable in observational human 
studies, these predicted values are comparable only to obser­
vations from animals. Specifically, the area under the target-
level curve (AUCtarget, which is the time-integrated BR 
dose) or the maximum level at the target, could be interpreted 
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Figure 6.  Requirements and examples of tier 4 analyses of biomarker data.  (Gray objects are unavailable in 
a tier 4 analysis.) 

based on existing dose-response relationships. These types 
of comparisons can inform exposure impacts on health risks 
but may be refutable because of missing biomarker measure­
ments at the target (i.e., BR biomarker measurements). 

3.6 Tier 5: Biomonitoring to advance exposure
 and risk assessments 

Tier 5 analyses of biomarker data include all components 
of the source-to-outcome continuum, as shown in Figure 7. 
That is, tier 5 analyses predict biomarker and BR biomarker 
levels for comparison to measured values. These comparisons 
enable tier 5 analyses to answer the following research ques­
tions to advance exposure and risk assessments. 

1. 	 What are the best estimates of BR dose? 

2. 	 What are the likely impacts of exposure on health 
outcome? 

3. 	 What other factors may affect health outcome? 

The previous section demonstrated how, in tier 4 analyses, 
BR dose can be estimated and interpreted using existing 
dose-response relationships. Because the BR dose estimates 
in tier 4 analyses are not confirmed with measured values, 

there is uncertainty in model predictions. Tier 5 analyses 
can reduce this uncertainty via comparison of predicted and 
observed BR biomarker levels. 

Example 1 in Figure 7 shows predicted versus observed 
levels of a BR biomarker.  This is an extension of the 
examples in Figure 6 where the brain was a target tissue, and 
the stressor was a chemical neurotoxin found in food. In this 
example, enzyme inhibition (e.g., cholinesterase) in the brain 
was the desired outcome, but, because brain tissue is general­
ly inaccessible, blood enzyme levels were used as surrogates. 
Kinetic and dynamic models were used to predict blood 
enzyme levels following three theoretical dietary exposure 
events. Predicted and observed levels were then compared to 
evaluate the BR dose estimate. 

In example 1, good agreement between measured and 
predicted values indicates an accurate estimation of BR dose 
and a good understanding of dynamic processes. Therefore, 
the biomarker measurements in this example could be quan­
titatively linked backward to exposure (dietary intake) and 
forward to potential health outcome (effects caused by inhib­
ited enzyme levels). However, poor agreement between BR 
biomarker levels (observed versus predicted), combined with 
accurate dose estimates from tier 4 analyses, would suggest12 



 

 

 
 

Figure 7.  Requirements and examples of tier 5 analyses of biomarker data.  (Gray objects are unavailable in 
a tier 5 analysis.) 

an incomplete understanding of dynamic processes in vitro 
(possibly caused by uncertainties in interspecies extrapola­
tion). For example, overestimation of BR biomarker levels 
could suggest the omission of important recovery processes, 
whereas underestimation could suggest additional exogenous 
or endogenous sources. In these instances, clarifi cation would 
be necessary before utilizing biomarker measurements from 
observational studies for health effects research. 

In addition to kinetic and dynamic models, statistical compar­
isons of biomarker and BR biomarker measurements are used 
in tier 5 analyses to elucidate exposure impacts on health 
outcome. These comparisons are generally more complex 
than those in lower tier analyses, given repeated observations 
of individuals. For example, in vitro dose-response associa­
tions can be informed using regressions of BR biomarker 
levels (representing response) on biomarker levels (repre­
senting dose). Nondose related effects also can be observed 
by including in the models covariates such as age, gender, 
family health history, and genetic information. 

Example 2 in Figure 7 shows a regression of BR biomarker 
levels on covariate-adjusted biomarker levels. Continuing 
from the previous example, this plot suggests that blood 
enzyme levels decreased with increasing adjusted biomarker 

levels. In other words, normal biological activities were 
suppressed given elevated dose levels. The effects of indi­
vidual predictor variables on BR biomarker levels could be 
examined to further explain this observation. Moreover, the 
model results could help identify important in vivo processes 
that could improve dynamic models. Overall, the combined 
results of the kinetic, dynamic, and statistical models could 
inform exposure and susceptibility effects on health outcome. 

This section presented a simple biomonitoring framework 
aimed at improving biomarker use and interpretation in 
exposure and health research. Throughout the section, 
simple definitions and examples were given to articulate 
uses of biomonitoring data. These examples were not meant 
to represent all biomonitoring research options but, rather, 
to serve as a road map for establishing new studies and for 
interpreting existing biomarker data. A summary of the uses 
and requirements of the five biomonitoring tiers is given in 
Table 1. Table 1 lists specific questions that can be answered 
in a tiered analysis, as well as the measurements, models, and 
model estimates that are required to complete an analysis. 
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 Table 1. The uses and requirements of the five biomonitoring tiers. 

Tier Primary Uses Measurements Needed Models Needed Estimated Values

 1a Exposure surveillance: 
Who is exposed? 
What are the exposure trends? 
Which chemicals should be prioritized 
for higher tier analyses? 

1) Biomarker None None

 2a Supporting exposure assessment: 
What are the likely exposure sources? 

1) Environmental 
2) Biomarker 

1) Statistical None

 3a 

4b 

What are the likely exposure routes? 
Supporting risk assessment: 
What are the likely exposure levels? 
What are the likely dose levels? 
Exposure and risk assessment: 
What are the predominant exposure 
routes? 
What are the best estimates of exposure 
and dose? 

1) Environmental 
2) Biomarker 

1) Environmental 
2) Biomarker 

1) Statistical 
2) Exposure 
3) Dose 
1) Statistical 
2) Exposure 
3) Dose 
4) Kinetic 

1) Exposure 
2) Dose

1) Exposure 
2) Dose 
3) BR dose

 5b 

What are the likely BR dose levels? 
Advancing exposure and risk 
assessment: 
What are the best estimates of BR 
dose? 
What are the likely impacts of exposure 
on health outcome? 

1) Environmental 
2) Biomarker 
3) BR biomarker 

1) Statistical 
2) Exposure 
3) Dose 
4) Kinetic 
5) Dynamic 

1) Exposure 
2) Dose 
3) BR dose 

What other factors may affect health 
outcome? 

a Single or repeated measurements 
b Sepeated measurements only 
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4.0 Filling in Information Gaps
 

As described in the previous section, the ability to utilize 
biomonitoring data to assess human exposures and to evalu­
ate human health risks depends on the availability of various 
types of information. Besides collecting additional exposure, 
kinetic, or toxicity data, there are other approaches that can 
be used to inform missing elements in the source-to-outcome 
continuum, thus enabling biomonitoring data to be more 
fully utilized in exposure and risk assessments. Approaches 
presented in this section include exposure and dose modeling, 
in silico modeling, and chemical surrogates, as well as the 
exploration of ‘omics biomarkers. 

4.1 When data informing exposure estimates
 are missing 

Problem: When data that are used to inform exposure esti­
mates are insufficient (e.g., missing environmental measure­
ments), it is difficult to identify exposure pathways and routes 
based on biomarker measurements. In this case, biomarker 
measurements may only be useful as a surveillance tool 
(i.e., tier 1 approach) or for developing hypotheses for future 
research. 

Potential solutions: In quantitative exposure assessment, 
human exposures are estimated by combining environ­
mental measurements with information regarding human 
activities, demographic and activity attributes of the intake/ 
uptake rates, and other exposure factors. Given correspond­
ing measurement and activity data, simple formulas (e.g., 
concentration×contact time×exposure factors) with point 
estimate inputs can be used to estimate exposure. In the 
absence of corresponding exposure information, advanced 
probabilistic simulations and mathematical algorithms can be 
used to generate exposure and intake dose estimates. NERL’s 
Stochastic Human Exposure and Dose Simulation (SHEDS)4 

is an example of such an advanced model. The output of 
these probabilistic exposure models can be used as input 
terms into pharmacokinetic models to further describe the 
exposure- and dose-biomarker relationship. 

Limitations: Besides the technical quality of the model 
development process, the predictive ability of an exposure 
model depends largely on the representativeness, relevancy, 
and quality of the input data. When possible, input data 
should be obtained through carefully designed observa­
tional exposure or survey studies (e.g., the Food and Drug 
Administration’s Total Diet Survey) that are representative of 
a given population of interest. An exposure model that is built 

http://www.epa.gov/heasd/products/sheds_multimedia/sheds_mm.html 

based on these input data, however, is generally unsuitable 
for predicting biomarker levels at the subject level because 
of using population and non subject-specific inputs. Instead, 
it is more appropriate to use probabilistic models to gener­
ate a distribution of estimated biomarker concentrations to 
compare with an observed distribution of biomarker concen­
trations. These distributional comparisons may be helpful for 
identifying potential exposure sources, pathways, and routes. 

4.2 When kinetic information is missing 
Problem: Kinetic data inform the specifi c metabolism/ 
biotransformation pathways of xenobiotic chemicals within 
a biological system. Without this kinetic information, param­
eterization and performance of a pharmacokinetic model, 
which is a predictive tool for describing the time course 
of the exposure-biomarker relationship, become highly 
uncertain. 

Potential solutions: In the absence of kinetic data, chemoin­
formatics-based techniques, such as quantitative structure-
activity relationship (QSAR), can provide pragmatic estima­
tions of chemical-specific parameters for a provisional phar­
macokinetic model. Currently, many software packages (e.g., 
MOE5 or QikProP6) exist whereby one can develop, augment, 
and utilize new or existing QSAR. In addition, there are also 
“trainable” QSAR models, such as ACD/Labs’ “Suite of 
predictors for PhysChen, ADME, and Tox,” that may be used 
to adapt and filter a model’s predictive capability based on 
chemical similarity indices. 

Limitations: The effective use of QSAR or any molecular 
model relies on the understanding of a model’s domain of 
applicability. When developing a QSAR model, a specifi c set 
of chemicals (training set) is used to parameterize the model. 
Bounded by the molecular properties of the training set, a 
QSAR model is limited to a specific chemical space. In other 
words, a QSAR model is best suited for interpolating data 
within the model specification, but ill-suited for extrapolat­
ing outside the chemical space of the training set. To evaluate 
chemicals outside of this chemical space, one will need to 
reparameterize an existing model or to create a new one. In 
such cases, the best approach is to generate relevant in vitro 
chemical data to inform QSAR modeling efforts. 

5 MOE (Molecular Operating Environment) is a software package 
developed by Chemical Computing Group, Inc. It contains Structure-
Based Design, Pharmacophore Discovery, Protein & Antibody Modeling; 
Molecular Modeling & Simulations, Cheminformatics & HTS QSAR, and 
Medicinal Chemistry Applications. 

6 https://www.schrodinger.com/products/14/17/ 
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4.3 When toxicity information is missing 
Problem: Toxicity information provides an anchor for a 
chemical in a risk context. Although having toxicity data 
would not necessarily be sufficient to evaluate risk, in lieu 
of data on apical toxicity, no clear risk assessment or risk 
management activity can be performed. Thus, alternative 
methods for estimating non-existent toxicity information are 
discussed here. 

Potential solutions: In addition to being used to parameter­
ize pharmacokinetic models, chemical surrogates and in 
silico models may be used to infer toxicity when no such data 
exist. Chemical surrogates provide a starting point for inter­
polating toxicity between chemicals. For instance, nonane 
data may be an adequate surrogate for decane data if there 
is an established trend of toxicity or other relevant data with 
alkane chain length (i.e., in the case of nonane with C6, 7, 8, 
and 10 alkanes). When chemical surrogates are unavailable 
or deemed unreliable (e.g., low chemical similarity), the rela­
tionship of chemical structure to toxicity may be estimated 
using in silico predictions. Several in silico techniques exist 
by which predictions are made using chemical functional 
group approaches. In this approach, the potential for health 
risk is determined by a chemical substructure search against 
a precomputed set of structural fragments that give rise to 
toxicity alerts (e.g., the Osiris Property Explorer, http://www. 
organic-chemistry.org/prog/peo/, and ADME/Tox Boxes, 
http://pharma-algorithms.com/webboxes/). Aside from esti­
mating potential for health risks, QSARs can also be gener­
ated in the same manner to quantify toxicity on the basis of 
chemical descriptors – historically, this has been reported for 
biological outcomes such as Lethal Dose, 50% (LD50) in rats 
and mice. 

Limitations: The use of chemical surrogates relies heavily 
on the following two assumptions: (1) the mode of action is 
preserved across a class of chemicals, and (2) chemical simi­
larity among chemical class constituents is highly conserved. 
Experimental validation of actual toxicity still should be 
carried out when possible, and care should be exercised when 
choosing index chemicals in the context of chemical similar­
ity. For both chemical surrogates and in silico approaches, 
false positives and false negatives may reside in the predicted 
outcomes because of inherent model structure assumptions 
and/or training set limitations. In addition, to develop a reli­
able in silico approach, relevant toxicity data and relation­
ships must exist. 

4.4 	When biologically relevant biomarkers are
       unidentifi ed 
Problem: To date, few biomonitoring studies have incor­
porated both biomarkers and biologically relevant biomark­
ers to expand the traditional biomonitoring study through 
the further mapping of biologically relevant biomarkers to 
toxicity starting points. This paucity in the combined use of 
biomarkers and biologically relevant biomarkers stems, in 
part, from insufficient routine analytical methods with appro­
priate quality assurance documentation for known biomark­
ers of interest. 

Potential solutions: Researchers have incorporated new 
cost-effective, high-sample-capacity analytical methods into 
biomonitoring studies to help quantify chemical levels in 
environmental and biological samples and to determine new 
‘omics-based biomarkers and BR biomarkers with which to 
link exposure sources to health outcomes. A more detailed 
discussion of such ‘omics-based biomarker research is 
provided below. 

Proteomics is a bioanalytical tool that identifies proteins that 
are altered through interactions with environmental chemi­
cals. The concept of protein expression signatures is based 
on the measureable protein responses to chemicals in animal 
studies. Sensitive, precise, and fast multianalyte methods for 
measuring proteins in parallel can lead to protein fingerprint­
ing to aid in identifying new biomarkers and BR biomarkers. 
In addition, multiplexed immunoassays (e.g., microarrays) 
are becoming robust and reliable tools for high throughput 
proteomic analyses to study the structure and functional inter­
actions between proteins and how these interactions control 
complex processes in biological systems. 

Another emerging technology that shows promise in biomon­
itoring research is metabolomics. Metabolomics includes 
the study of toxicant-induced perturbations in endogenous 
metabolites that result from exposures. Metabolomic stud­
ies conducted on various species have shown that systematic 
patterns of change occur in the metabolome following expo­
sures to pesticides and other environmental chemicals. The 
integration of metabolomics with proteomics and genomics 
has great potential for providing the systems biology infor­
mation that will elucidate the complex relationships between 
measurements of biomarkers/BR biomarkers and health 
effects. 
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It is important to note that, in the context of the ‘omics tech­
nologies, a biomarker is a unique pattern of a large number 
and variety of endogenous gene/protein/metabolite/biochemi­
cal changes. It has been proposed that these signatures (or 
fingerprints) may be more informative and more chemical-
specific or exposure-pathway-specific than one or a few 
conventional biomarkers (chemical concentrations in blood, 
tissue, or excreta). Also, the flux (or dynamic time course) of 
changes in ‘omics pattern may yield a better estimate of the 
time of occurrence of a single-event exposure. Furthermore, 
‘omics pattern changes may persist well after the chemical 
stressor has cleared the body, which will be important when 
interpreting biomonitoring results for nonpersistent chemi­
cals. Finally, because ‘omic pattern changes often can be 
linked to a specific mechanism of action, they may enable 
identification of the harmful component following exposure 
to a chemical mixture. Although these concepts have not yet 
been fully tested and proven, preliminary work suggests that 
studies with conventional biomarkers could be improved 
significantly by augmenting them with information from 
‘omic techniques. 

Preliminary work in NERL suggests that Nuclear Magnetic 
Resonance (NMR)-based metabolomics may be particularly 
appealing in biomonitoring studies, in large part because the 
technique is well suited for relatively high-throughput analy­
sis. For example, the per-sample cost is low, little sample 
preparation is required, and the instrument can be configured 
for automated analysis. This is important when designing 
experiments to establish endogenous biomarkers as indicators 
of exposure because these investigations require analysis of a 

great many samples (e.g., as a function of contaminant iden­
tity, magnitude, duration and timing of exposure). In addition, 
the technique is readily amenable to blood as well as bioflu-
ids that can be taken noninvasively from humans (e.g., urine, 
saliva, breath condensate). 

Limitations: All of these highly multiplexed approaches 
require well-characterized methods that are cost-effective. 
Reagents must be standardized and screened in a 
multiplexed environment before use. Methods development 
must encompass quality assurance measures, standard operat­
ing procedures, data handling, interpretation, and reporting. 
Current informatic systems are pressed to keep pace with the 
increasing multiplexing capability of microarrays and flow 
cytometry methods as the interpretation of data is extremely 
challenging. Finally, linking ‘omics-based biomarkers’ or 
biologically relevant biomarkers to exposures or health 
outcomes requires signifi cant resources. 
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5.0 Additional Considerations for Interpreting 

Biomonitoring Data
 

Even when sufficient measurement data and predictive 
models exist to fill in each component of the source-to­
outcome continuum (Figure 1), there are still many uncertain­
ties and data gaps that can complicate the interpretation of 
biomonitoring data. In this section, some of these compli­
cations are discussed and approaches to minimize their 
impact on the interpretability of biomonitoring data are 
recommended. 

5.1 Categories and uses of biomarkers7 

The study design and interpretive options for a biomonitoring 
study depend largely on the category to which a biomarker 
belongs, as well as on the previously available information. 
As such, there are sometimes surprises lurking in otherwise 
simple biomonitoring strategies when a researcher misclas­
sifies a biomarker. Thus, it is important to be aware of the 
category to which a biomarker belongs, as well as the poten­
tial inferences and uses in each category. 

Biomarkers can be partitioned into four basic categories 
based on their origin. 

Group 1. Exogenous (native) chemicals are comprised 
of exogenous biomarkers that are anthropogenic in origin and 
are not formed via human oxygen/hydrocarbon metabolism. 
Examples of exogenous chemicals include dioxins, polycyclic 
aromatic hydrocarbons (PAH), benzene/toluene/ethylbenzene/ 
xylenes (BTEX), polychlorinated biphenyls (PCB), and 
organophosphate (OP) pesticides. Because these chemicals 
have no endogenous sources, they can usually be attributed to 
their respective environmental sources. It may be noted that 
there may be multiple sources and routes of exposures and, 
therefore, deducing the specific pathway requires additional 
metadata, such as personal activity, geographic location, 
occupation, and environmental measurements. 

Group 2. Endogenous metabolites are comprised of a 
great variety of “life process” chemicals widely studied in the 
medical community, and they may be mapped quantitatively 
to a toxicological initiating event. Examples of endogenous 
biomarkers include cholesterol, liver enzymes, fatty acid 

The four categories and uses of biomarkers are published in Tan et al. 
(2012). Reconstructing Human Exposures Using Biomarkers and Other 
“Clues”, Journal of Toxicology and Environmental Health, Par t B, 15(1), 
22-38. 

esters, urea, triglycerides, cytokines, and creatinine. These 
biomarkers generally have no major environmental sources. 
They, however, can be used to provide a baseline or a 
statistical range for “normality” within a non- or minimally 
exposed subpopulation; as such, outlier individuals can be 
spotted quickly and further evaluated to determine whether 
there is an environmental chemical that triggers those 
biological responses. 

Group 3. Ubiquitous organic compounds contain a 
wide variety of chemicals that are known, trace-level, human 
metabolites that are also present in similar concentrations in 
the environment. Examples of ubiquitous organic compounds 
include ketones, aldehydes, alcohols, phenols, amines, and 
organic acids. Mostly, these compounds pose a dilemma 
in microenvironments where, for example, an endogenous 
exhaled chemical from subject A becomes an exogenous 
inhalation exposure for subject B. As long as confounding 
sources are properly identified and monitored, this group of 
chemicals may aid in predicting health outcome or assessing 
current health status when case-control or pattern recognition 
strategies are used. 

Group 4. Phase-1 and Phase-2 metabolites are 
exogenous biomarkers but differ from Group 1 in that the 
biomarkers are metabolites formed by biological processes 
known as phase-1 and phase-2 metabolism. Group 4 
biomarkers are the most frequently used biomarkers in 
exposure assessment. Phase-1 and -2 metabolism generally 
results in formation of more polar species that can be 
eliminated readily eliminated in urine or feces. Phase-1 
metabolism involves oxidation, reduction, or hydrolysis of 
the parent chemical. Examples of phase-1 metabolites include 
3,5,6-trichloro-2-pyridinol (a metabolite of chlorpyrifos) and 
mono-ethyl phthalate (a metabolite of phthalate). Phase-2 
metabolites are the result of further conjugation reactions 
between phase-1 metabolites and larger biomolecules such 
as glutathione, glucuronic acid, sulfates, and other peptides. 
Some Phase-1 metabolites or their conjugated forms are 
electrophilic and form stable adducts with nucleophilic sites 
on proteins and DNA. Phase-2 metabolites are measured 
primarily in blood and urine, although analytical methods 
also exist for other media, such as exhaled breath condensate 
and bronchoalveolar lavage fluid. 

19 

7  



 

 

 

 

 

 

 

 

 

5.2 Different categories of chemicals based on
 their biological half life in relation to 
exposure patterns 

Information regarding the half-life of a chemical in the 
sampled tissue can be used determine the exposure period 
reflected by a biomarker measurement. If a chemical has long 
half-life, the biomonitoring data are likely to refl ect long-
term exposures. If a chemical has short half-life, the biomoni­
toring data often reflect the daily variation in exposure 
patterns. Based on a priori knowledge regarding a chemical’s 
biological persistence and exposure patterns, NRC (2006)8 

categorizes chemicals into one of four groups: (1) lipid-
soluble, bioaccumulative chemicals at steady state exposure; 
(2) lipid-soluble, bioaccumulative chemicals not at steady 
state exposure; (3) shorter half-life chemicals at pseudosteady 
state exposure; and (4) short half-life chemicals that do not 
approach steady state. For each category, NRC has provided 
an example to demonstrate how human pharmacokinetic 
models can be used to convert biomonitoring data to expo­
sure dose when kinetic and exposure data are available. 

Unfortunately, kinetic or exposure data do not exist for 
a majority of chemicals. When persistence data are lack­
ing for a chemical, QSAR can be used to infer persistence 
on the basis of structural similarity to chemicals of known 
persistence. In the absence of exposure data, NERL has the 
expertise to collect data on exposure pathways and environ­
mental concentrations. Given that exposure and persistence 
information is obtainable, different modeling approaches can 
be applied to estimate exposure/dose based on biomarker 
measurements. 

	 For persistent chemicals that have half-lives in the 
order of months to years, their long half-lives tend 
to smooth out daily variations in exposure. In other 
words, a biomarker measurement is more likely to 
reflect chronic exposures or a single historical expo­
sure. For these chemicals, a simple pharmacokinetic 
model with first-order clearance can be used to estimate 
exposure dose for a given biomarker measurement. For 
lipophilic chemicals, life-stage simulation will need to 
be considered. 

	 For semi-persistent chemicals that have half-lives in the 
order of days to weeks, their biomarker concentrations 
reflect exposures over a period on the order of a few 
half-lives prior to sampling. For these chemicals, it is 
critical to identify the time of biomarker collection with 
respect to exposure events (e.g., the last meal eaten). 
If this information is obtainable from biomonitoring 
studies, exposure-pharmacokinetic modeling can be 
conducted to identify key exposure events refl ected by 
a biomarker measurement. Otherwise, exposure 
pharmacokinetic modeling can be used only to identify 
the set of exposure scenarios plausibly associated with 
the biomarker measurements. 

8 	NRC (National Research Council) (2006). Human Biomonitoring for 
Environmental Chemicals. National Research Council Committee on 
Human Biomonitoring for Environmental Toxicants. National Academies 
Press, Washington, DC. 

	 For nonpersistent chemicals that have half-lives in the 
order of minutes to hours, their biomarker concentra­
tion is heavily influenced by recent exposure events. 
Uncertainties in time and duration of transient expo­
sures make interpreting these biomarker results chal­
lenging. One approach for dealing with nonpersistent 
chemicals for which limited exposure information 
exists is to use a probabilistic approach that estimates 
a distribution of exposures that is consistent with the 
observed distribution of biomarker measurements. 

5.3 Exposure reconstruction9 

Although most biomonitoring surveys only have data for 
a tier 1 analysis, the call for exposure reconstruction from 
biomarker data has challenged the use of all available 
biomonitoring data to reconstruct exposures. This call is 
motivated by the traditional risk assessment paradigm, and 
the resulting estimates of safe “exposures” are based on 
measures of administered dose (e.g., RfD, NOAEL, LOAEL) 
or environmental concentrations (e.g., reference concentra­
tion [RfC], maximum contaminant level [MCL], National 
Ambient Air Quality Standards [NAAQS]). In cases where 
exposure guidance values exist, dose levels or environmental 
concentrations converted by biomarker measurements can 
then be compared with exposure guidance values for assess­
ing human health risks (Figure 8). 

NRC (2006) recommended two main computational 
approaches for such conversion. 

a. Use human pharmacokinetic models to convert 
biomarker measurements to dose levels that are 
comparable to an RfD or other dose-based toxicity 
value (reverse dosimetry) 

b. Use animal pharmacokinetic models to convert 
the administered dose-response relationship from 
toxicology studies to a target site dose-response 
relationship that can be used to evaluate human 
biomonitoring results (forward dosimetry) 

Both approaches begin with either a well-vetted kinetic 
model (or physiologically based pharmacokinetic (PBPK) 
model, often originating from controlled animal studies) or 
a provisional model that is structurally representative and 
complete as possible based on available kinetic data. Ideally, 
if a human model exists or can be constructed using time 
course data from controlled human studies, and the biomark­
er of interest is one of the model outputs, then the availability 
of exposure information will determine whether a biomarker 
measurement can be used to reconstruct exposure concentra­
tions. In cases where reliable exposure information exists, 
a human pharmacokinetic model can be utilized to recon­
struct exposure concentration as the only unknown exposure 
parameter (Figure 9, Steps 1, 2, and 3). The caveat is that 
some variability and uncertainty in pharmacokinetics still 
exist around the estimated exposure concentrations. When 

9 	Part of this subsection is published in Tan et al. (2012). Reconstructing 
Human Exposures Using Biomarkers and Other “Clues”, Journal of 
Toxicology and Environmental Health, Part B, 15(1), 22-38. 
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 Figure 8. Biomarker measurements to estimate dose levels, exposure levels and environmental stressor levels for 
comparison to reference values. The blue box shows measured values, the red triangles and box show estimated values, 
and the green arrows show the reconstruction pathways. 

Figure 9. The type of exposure information that a biomarker measurement can infer depends on the availability of 
kinetic and exposure data. 
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large variability and uncertainty are expected for other expo­
sure parameters (e.g., duration, frequency), a probabilistic 
approach should be conducted for estimating a distribution of 
potential exposure concentrations (Figure 9, Steps 1, 2, 4, and 
5). In the case where exposure pathways are not well charac­
terized or understood, a pharmacokinetic model only can be 
used to test hypotheses of potential exposure scenarios and 
identify data gaps regarding exposure information (Figure 9, 
Steps 1, 2, 4, and 6). 

If most exposure information can be obtained, different 
modeling approaches can be applied in exposure reconstruc­
tion based on the biological half-life of the chemical in body 
(see Section 5.2). When only an animal pharmacokinetic 
model is available, a provisional human model may be 
constructed to identify exposures of greater concern or to 
complement other exposure measurements to assist in expo­
sure and risk assessment (Figure 9, Steps 7 and 8). 
A provisional model is expected to produce a “fi rst approxi­
mation” of chemical disposition that requires additional 
human data to support. Sometimes, when the biomarker of 
interest is not one of the model outputs (Figure 9, Steps 1 
& 9), or neither a pharmacokinetic model nor kinetic data 
exist (Figure 9, Steps 1, 7, and 10), animal kinetics studies 
will need to be conducted to inform the ADME process and 
the dose-biomarker relationship. These in vivo data can be 
used to develop and parameterize an animal pharmacokinetic 
model, which can subsequently be “scaled up” to a provision­
al human model. Alternatively, in silico molecular models 
may be utilized to parameterize a provisional human model. 
The provisional model then can be used to test hypothesis or 
to identify data gaps. 

5.4 Nondetect data 
Analytical chemistry methods have limits of detection (LOD) 
and limits of quantification (LOQ) that rarely (if ever) include 
zero. Improvements in analytical capability would be expect­
ed to lower the LOD and possibly the LOQ toward zero, but 
never at zero. In addition, it is problematic to treat nondetects 
statistically.10 Assigning zero to nondetects is a problem 
for transformation (angular, square root, or logarithmic) to 
approximate the normal distribution. A large number of zero 
values is equally challenging for normal score transformation 
(too many ties) and the use of distribution-free procedures. 
One common solution to this problem is to truncate the 
distribution of environmental/biomarker measurements at 
the LOD and to consider only the positive values for statisti­
cal analysis. This approach, however, would suggest that the 
nondetect values are uninformative or missing values rather 
than true values indicative of low or nonexposure. Censoring 
zero values when they are true is like imposing a type 1 error, 
rejecting a hypothesis that is actually true, before the start of 
the test. In the case of biomonitoring in which comparisons 
are sought between populations, subpopulation, and cohorts 
by time and location, left-truncation leaves the Poisson or 
log-normal distributions biased in favor of positive (overesti­
mated) exposure. 

10 Taylor et al. (2001). A Mixture Model for Occupational Exposure Mean    
Testing with a Limit of Detection. Biometrics, 57(3), 681-688. 

An alternative to left-truncation of a continuous variable 
involves imputation of replacement values for non-detects 
(allowing some to be actual zero) at the relevant LOD (e.g., 
2/3X, X/2, X/√2). However, this imputation assumes that the 
nondetect values are members of that same population (i.e., 
each trial has only a single possible outcome). Thus, a test of 
normality is expected to follow. Rejection of the hypothesis 
of normality would render the need for the imputations moot, 
and consideration must be given to alternative binomial or 
multinomial treatments (i.e., each outcome can have two or 
more possible outcomes). 

5.5 Nonspecifi c biomarkers 
The presence of nonspecific biomarkers is relatively 
common. Nonspecific biomarkers can arise when multiple 
parent chemicals can yield the same metabolite that is the 
biomarker or when both the parent chemical and its degradate 
(which is also the metabolite used as the biomarker) co-occur 
in the environment. Concurrent exposures to multiple chemi­
cals that yield the same biomarker can lead to false positive 
interpretations related to an exposure. Successful attribu­
tion of nonspecific biomarkers to actual exposure lies with 
studious understanding of metabolism and pharmacokinetics, 
combined with knowledge of the spatial and temporal condi­
tions of exposures. Additional information of environmental 
conditions, such as prior determination of ratios of chemical 
of interest/other chemicals can ameliorate false-positive inter­
pretations and make dose-biomarker relationships predict­
able. When exposure to the chemical of interest overshadows 
concurrent exposures to other chemicals, one may assume 
that the biomarker is originated from one chemical. When 
exposures to other chemicals are also significant, one may 
use the predetermined environmental concentration ratio as 
input for a pharmacokinetic model to estimate the relative 
contribution of each parent chemical to the output biomarker 
concentration by tracking the time course of the metabolite 
from each parent chemical. However, if the ratio of multiple 
chemicals varies spatially and temporally because of differ­
ent rates of production/use and environmental degradation, 
it will be necessary to collect more environmental measure­
ments and/or use a fate and transport model in conjunction 
with an exposure model to estimate the ratio of different 
parent compounds’ presence in the environment as a function 
of time and space. Once the fate and transport and exposure 
pathways are characterized, the uncertainty in the environ­
mental concentration of the parent chemicals is reduced, and 
such information then can be used as input for a pharmaco­
kinetic model to estimate the dose-biomarker relationship. 
On the other hand, if the metabolite, rather than the parent 
compound, is the toxic moiety, a nonspecific biomarker may 
be advantageous in that it integrates exposure to all parent 
chemicals within a single measure. Thus, the necessary 
approach for establishing exposure-biomarker relationship is 
dictated largely by the nature of exposure conditions, as well 
as the toxic mechanism of action. 

22 

http:statistically.10


 

5.6 Stereochemistry of biomarkers 
Many environmental chemicals and biologically relevant 
molecules are “optically active” or chiral by nature. 
Anthropogenic (e.g., synthetic pesticides) chiral chemicals 
often are synthesized as racemic mixtures, containing 2n 
isomeric components (where n = number of asymmetric or 
stereogenic centers, atoms with four different substituents). 
Enantiomers are stereoisomers that are nonsuperimposable 
mirror images of one another and have the same inher­
ent physical-chemical properties (i.e., boiling point, vapor 
pressure, and molecular weight), whereas diastereomers and 
nonsuperimposable nonmirror images have similar but 
nonequivalent physicochemical properties, making them 
separable. Most chiral natural products (e.g., sugars, amino 
acids, lipids, and nucleic acids) exist as an enriched single 
isomeric form (i.e., homochiral). Many anthropogenic chemi­
cals (e.g., pesticides and therapeutic drugs) may be designed 
or formulated to favor one biologically active racemate over 
the other to improve efficacy. Known enrichment/enhance­
ment factors of stereoisomeric mixtures (natural vensus 
anthropogenic) can provide a simple basis for differences in 
exposure when considering multimedia environmental factors 
(e.g., biological degradation pathways). However, molecular 
interactions involving enantiomers with endogenous mole­
cules usually have different binding kinetics (e.g., affinities) 
with enzymes involved in metabolism or interactions with 
target ligands. Therefore, chirality may be expected to impact 

exposure through ADME and, in turn, stereospecifi c differ­
ences in risk. Although consideration of chirality may seem 
to complicate exposure and risk assessments, consideration 
of the impact of chirality (or stereochemistry) on exposure 
and risk assessment is unavoidable. Because enantiomers 
can undergo reactions and metabolize differently in the body, 
chiral biomarkers may be used as unique markers that can be 
related back to exposure. By characterizing stereoselectivity 
in exposure for parent compounds and metabolites, additional 
information can be gleaned about exposure pathways and 
internal chemical disposition that cannot be obtained from 
remedial assessments based on achirality or two dimen­
sional planar assumptions. Ultimately, boundary conditions 
between tissue distribution, metabolism and toxicity require 
knowledge of individual isomeric fate in the same way that 
mixtures of multiple chemicals with uniquely defi ned kinetics 
cannot be reduced by simple additive action as additional 
mass of each single chemical under the rubric of aggregate 
exposure and cumulative risk assessment. 
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6.0 Future Directions for Research on Biomarkers 
of Exposure 

The future directions for research on biomarkers conducted 
in NERL will support several new research programs in the 
Office of Research and Development (ORD): Air, Climate, 
and Energy (ACE), Sustainable and Health Communities 
(SHC), and Chemical Safety for Sustainability (CSS). More 
specifically, one of the eight topics in CSS is “Biomarkers.” 
Currently, the linkage and translation of exposure and hazard 
data into human or ecological risk are conducted indepen­
dently, which can often lead to data gaps and scientific 
uncertainties. One of the promising tools for linking different 
elements along the source-to-outcome continuum to under­
stand the public health implications of exposure to environ­
mental chemicals is biomarkers. Thus, the overall goals of the 
biomarkers research are (1) to develop the scientifi c knowl­
edge and tools that will improve the use of biomonitoring 
data in both single and multiple chemical risk assessment and 
risk management decisions and (2) to improve our under­
standing of the fundamental processes and linkages along the 
exposure-dose-effects continuum that lead to risk. 

Research in the biomarkers research topic will be led 
by scientists in NERL and the National Health and 
Environmental Effects Research Laboratory (NHEERL) and 
is organized around two projects outlined below. 

1. 	 Project 1 will identify biomarkers/bioindicators11 and 
approaches of interpretation in the context of establishing 
exposure to dose to outcome linkages. With biomarkers/ 
bioindicators linkages defined, this project will contrib­
ute to Project 2 that uses systems models for predicting 
adverse health and environmental effects of human and 
wildlife exposures. 

2. 	 Project 2 will evaluate the predictive models and 
develop robust tools for monitoring exposure and effects 
in clinical, epidemiological, and ecological fi eld stud­
ies. These efforts will be coordinated with other CSS, 
ACE, and SHC topics to identify and understand the most 
important exposure sources, routes, and pathways for 
high-priority chemicals for human and wildlife species 
and how exposure is related to adverse outcome. 

11 Bioindicators are defined as measurements of biochemical or physiological 
changes within an organism that reflect biological responses. 

For NERL, the research direction will focus in the following 
three areas. 

1. 	 Data collection and analysis 

a. Develop a knowledge base of novel and existing 
biomarkers of exposure for high-priority and high-
interest emerging chemicals 

b. Develop or improve measurement and analytical 
methods for environmental and biological samples 

c. Perform observational studies to collect data on 
environmental and biomarker concentrations, human 
time/location activities, and product/chemical use 
patterns 

d. Develop and identify new biomarkers of exposure 
that are better indicators of exposure 

2. 	 Predictive modeling tools 

a. Develop and apply in silico models to estimate inher­
ent and derived chemical properties based on chemi­
cal structures for informing the selection of proper 
biomarkers 

b. Evaluate the correlation among empirical environ­
mental and biomarker data using statistical models 

c. Describe the exposure-biomarker relationship using 
pharmacokinetic models 

d. Use in vitro data or in silico models to estimate phar­
macokinetic data for provisional or screening-level 
pharmacokinetic models 

3. Integrated research 

a. Integrate environmental media measurements, human 
activity observations, and other exposure factors with 
pharmacokinetic models for linking exposures to 
biomarkers 

b. Identify normal ranges of “probative” biomarkers and 
quantify resiliency and shifts in homeostasis using 
biomarkers 

c. Evaluate variability and susceptibility using bio­
marker measurements 
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